1
|
Mun H, Lee S, Choi S, Jeong JH, Ko S, Chun YL, Deaton B, Yeager CT, Boyette A, Palmera J, Newman L, Zhou P, Shin S, Kim DC, Sagum CA, Bedford MT, Kim YK, Kwon J, Jung J, Chang JH, Yoon JH. Targeting of CYP2E1 by miRNAs in alcohol-induced intestine injury. Mol Cells 2024; 47:100074. [PMID: 38901530 PMCID: PMC11267015 DOI: 10.1016/j.mocell.2024.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Although binge alcohol-induced gut leakage has been studied extensively in the context of reactive oxygen species-mediated signaling, it was recently revealed that post-transcriptional regulation plays an essential role as well. Ethanol (EtOH)-inducible cytochrome P450-2E1 (CYP2E1), a key enzyme in EtOH metabolism, promotes alcohol-induced hepatic steatosis and inflammatory liver disease, at least in part by mediating changes in intestinal permeability. For instance, gut leakage and elevated intestinal permeability to endotoxins have been shown to be regulated by enhancing CYP2E1 mRNA and CYP2E1 protein levels. Although it is understood that EtOH promotes CYP2E1 induction and activation, the mechanisms that regulate CYP2E1 expression in the context of intestinal damage remain poorly defined. Specific miRNAs, including miR-132, miR-212, miR-378, and miR-552, have been shown to repress the expression of CYP2E1, suggesting that these miRNAs contribute to EtOH-induced intestinal injury. Here, we have shown that CYP2E1 expression is regulated post-transcriptionally through miRNA-mediated degradation, as follows: (1) the RNA-binding protein AU-binding factor 1 (AUF1) binds mature miRNAs, including CYP2E1-targeting miRNAs, and this binding modulates the degradation of corresponding target mRNAs upon EtOH treatment; (2) the serine/threonine kinase mammalian Ste20-like kinase 1 (MST1) mediates oxidative stress-induced phosphorylation of AUF1. Those findings suggest that reactive oxygen species-mediated signaling modulates AUF1/miRNA interaction through MST1-mediated phosphorylation. Thus, our study demonstrates the critical functions of AUF1 phosphorylation by MST1 in the decay of miRNAs targeting CYP2E1, the stabilization of CYP2E1 mRNA in the presence of EtOH, and the relationship of this pathway to subsequent intestinal injury.
Collapse
Affiliation(s)
- Hyejin Mun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Oncology Science, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Sungyul Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Suyoung Choi
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Ji-Hoon Jeong
- Department of Oncology Science, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Seungbeom Ko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yoo Lim Chun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Benjamin Deaton
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Clay T Yeager
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Audrey Boyette
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Juliana Palmera
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - London Newman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ping Zhou
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Soona Shin
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Dong-Chan Kim
- Division of Medical Device R&D Center, NQ-Lab, Inc.,Yongin-si, Gyeonggi-do 16827, Republic of Korea
| | - Cari A Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD, Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD, Anderson Cancer Center, Houston, TX 77030, USA
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Jaeyul Kwon
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Education, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Translational Immunology Institute, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Oncology Science, University of Oklahoma, Oklahoma City, OK 73104, USA.
| |
Collapse
|
2
|
Fan XR, Huang Y, Su Y, Chen SJ, Zhang YL, Huang WK, Wang H. Exploring the regulatory mechanism of tRNA-derived fragments 36 in acute pancreatitis based on small RNA sequencing and experiments. World J Gastroenterol 2023; 29:4642-4656. [PMID: 37662862 PMCID: PMC10472903 DOI: 10.3748/wjg.v29.i30.4642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/26/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is a disease featuring acute inflammation of the pancreas and histological destruction of acinar cells. Approximately 20% of AP patients progress to moderately severe or severe pancreatitis, with a case fatality rate of up to 30%. However, a single indicator that can serve as the gold standard for prognostic prediction has not been discovered. Therefore, gaining deeper insights into the underlying mechanism of AP progression and the evolution of the disease and exploring effective biomarkers are important for early diagnosis, progression evaluation, and precise treatment of AP. AIM To determine the regulatory mechanisms of tRNA-derived fragments (tRFs) in AP based on small RNA sequencing and experiments. METHODS Small RNA sequencing and functional enrichment analyses were performed to identify key tRFs and the potential mechanisms in AP. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was conducted to determine tRF expression. AP cell and mouse models were created to investigate the role of tRF36 in AP progression. Lipase, amylase, and cytokine levels were assayed to examine AP progression. Ferritin expression, reactive oxygen species, malondialdehyde, and ferric ion levels were assayed to evaluate cellular ferroptosis. RNA pull down assays and methylated RNA immunoprecipitation were performed to explore the molecular mechanisms. RESULTS RT-qPCR results showed that tRF36 was significantly upregulated in the serum of AP patients, compared to healthy controls. Functional enrichment analysis indicated that target genes of tRF36 were involved in ferroptosis-related pathways, including the Hippo signaling pathway and ion transport. Moreover, the occurrence of pancreatic cell ferroptosis was detected in AP cells and mouse models. The results of interference experiments and AP cell models suggested that tRF-36 could promote AP progression through the regulation of ferroptosis. Furthermore, ferroptosis gene microarray, database prediction, and immunoprecipitation suggested that tRF-36 accelerated the progression of AP by recruiting insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) to the p53 mRNA m6A modification site by binding to IGF2BP3, which enhanced p53 mRNA stability and promoted the ferroptosis of pancreatic follicle cells. CONCLUSION In conclusion, regulation of nuclear pre-mRNA domain-containing protein 1B promoted AP development by regulating the ferroptosis of pancreatic cells, thereby acting as a prospective therapeutic target for AP. In addition, this study provided a basis for understanding the regulatory mechanisms of tRFs in AP.
Collapse
Affiliation(s)
- Xi-Rui Fan
- Department of Gastroenterology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan’an Hospital of Kunming, Kunming 650051, Yunnan Province, China
| | - Yun Huang
- Department of Gastroenterology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Yu Su
- Department of Gastroenterology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Si-Jin Chen
- Department of Gastroenterology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Yu-Lu Zhang
- Department of Gastroenterology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Wei-Kang Huang
- Department of Gastroenterology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Hui Wang
- Department of Gastroenterology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan’an Hospital of Kunming, Kunming 650051, Yunnan Province, China
| |
Collapse
|
3
|
Günay N, Taheri S, Memiş M, Yilmaz Şükranli Z, Şahin T, Demiryürek Ş, Ekici Günay N, Aslan YE, Demiryürek AT. Male- and female-specific microRNA expression patterns in a mouse model of methanol poisoning. Food Chem Toxicol 2023; 174:113666. [PMID: 36780935 DOI: 10.1016/j.fct.2023.113666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/29/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
The aims of this study were to determine the miRNAs involved in the methanol poisoning, and identify the male- and female-specific miRNA expression patterns in mice. Methanol was applied orally at the doses of 4 g/kg and 8 g/kg to induce mild and severe methanol poisoning in Balb/c mice. miRNA expression levels were detected at 3 different time periods (30, 60, and 180 min) following methanol exposure. miRNA expression profiles were determined using the high-throughput Fluidigm BioMark real-time PCR. We observed that serum miR-206 expression in male mice and miR-6357 expression in female mice could be an indicator of methanol poisoning. miR-9-3p downregulation and miR-1187 upregulation could be important for liver tissue. miR-3106-5p and miR-133a-5p upregulations and miR-122-3p downregulation could be poison biomarkers for ocular tissue in male mice. However, miR-194-5p downregulation could be a biomarker for ocular tissue in female mice. miR-122-5p and miR-124-3p downregulations and miR-499a-5p upregulation appeared to be important for kidney tissue in male mice. miR-543 and miR-6342 upregulations could be potential candidate biomarkers for kidney tissue in female mice. Our study is the first to report that differential miRNA expressions are involved in blood and tissues in male and female mice after methanol treatment.
Collapse
Affiliation(s)
- Nurullah Günay
- Department of Emergency Medicine, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey.
| | - Serpil Taheri
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38280, Turkey; Erciyes University, Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, 38280, Turkey
| | - Mehmet Memiş
- Erciyes University, Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, 38280, Turkey; Erciyes University, Gevher Nesibe Genome and Stem Cell Institute, Department of Medical Biology and Genetics, Kayseri, 38280, Turkey
| | - Zeynep Yilmaz Şükranli
- Erciyes University, Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, 38280, Turkey
| | - Taner Şahin
- Kayseri City Hospital, Clinics of Emergency Medicine, Kayseri, 38080, Turkey
| | - Şeniz Demiryürek
- Department of Physiology, Faculty of Medicine, Gaziantep University, Gaziantep, 27310, Turkey
| | - Nahide Ekici Günay
- Kayseri City Hospital, Clinics of Medical Biochemistry, Kayseri, 38080, Turkey
| | - Yusuf Ertugrul Aslan
- Department of Emergency Medicine, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | | |
Collapse
|
4
|
Effect of Ethanol on Exosome Biogenesis: Possible Mechanisms and Therapeutic Implications. Biomolecules 2023; 13:biom13020222. [PMID: 36830592 PMCID: PMC9953654 DOI: 10.3390/biom13020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 01/26/2023] Open
Abstract
Most eukaryotic cells, including hepatocytes, secrete exosomes into the extracellular space, which are vesicles facilitating horizontal cell-to-cell communication of molecular signals and physiological cues. The molecular cues for cellular functions are carried by exosomes via specific mRNAs, microRNAs, and proteins. Exosomes released by liver cells are a vital part of biomolecular communication in liver diseases. Importantly, exosomes play a critical role in mediating alcohol-associated liver disease (ALD) and are potential biomarkers for ALD. Moreover, alcohol exposure itself promotes exosome biogenesis and release from the livers of humans and rodent models. However, the mechanisms by which alcohol promotes exosome biogenesis in hepatocytes are still unclear. Of note, alcohol exposure leads to liver injury by modulating various cellular processes, including autophagy, ER stress, oxidative stress, and epigenetics. Evidence suggests that there is a link between each of these processes with exosome biogenesis. The aim of this review article is to discuss the interplay between ethanol exposure and these altered cellular processes in promoting hepatocyte exosome biogenesis and release. Based on the available literature, we summarize and discuss the potential mechanisms by which ethanol induces exosome release from hepatocytes, which in turn leads to the progression of ALD.
Collapse
|
5
|
Jiao M, Yan S, Shi Q, Liu Y, Li Y, Lv J, Ding S, Li A. Alcohol-Related Elevation of Liver Transaminase Is Associated With Gut Microbiota in Male. Front Med (Lausanne) 2022; 9:823898. [PMID: 35280887 PMCID: PMC8904186 DOI: 10.3389/fmed.2022.823898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Alcoholic liver damage has become a widespread health problem as alcohol consumption increases and is usually identified by elevated liver transaminase. We conducted this study to investigate the role of the gut microbiome in the individual susceptibility to alcoholic liver injury. We divided the participants into four groups based on alcohol consumption and liver transaminase elevation, which were drinking case group, drinking control group, non-drinking case group, and non-drinking control group. The drinking case group meant participants who were alcohol consumers with elevated liver transaminase. We found that alpha and beta diversities of the drinking case group differed from the other three groups. Species Faecalibacterium prausnitzii and Roseburia hominis were significantly in lower abundance in the drinking case group and were proved the protective effect against inflammatory liver damage in the former study. Ruminococcus gnavus exhibited the most positive association to alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and contributed to liver inflammation.
Collapse
Affiliation(s)
- Mengfan Jiao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su Yan
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaoguang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Lv
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Suying Ding
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Habash NW, Sehrawat TS, Shah VH, Cao S. Epigenetics of alcohol-related liver diseases. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100466. [PMID: 35462859 PMCID: PMC9018389 DOI: 10.1016/j.jhepr.2022.100466] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Alcohol-related liver disease (ARLD) is a primary cause of chronic liver disease in the United States. Despite advances in the diagnosis and management of ARLD, it remains a major public health problem associated with significant morbidity and mortality, emphasising the need to adopt novel approaches to the study of ARLD and its complications. Epigenetic changes are increasingly being recognised as contributing to the pathogenesis of multiple disease states. Harnessing the power of innovative technologies for the study of epigenetics (e.g., next-generation sequencing, DNA methylation assays, histone modification profiling and computational techniques like machine learning) has resulted in a seismic shift in our understanding of the pathophysiology of ARLD. Knowledge of these techniques and advances is of paramount importance for the practicing hepatologist and researchers alike. Accordingly, in this review article we will summarise the current knowledge about alcohol-induced epigenetic alterations in the context of ARLD, including but not limited to, DNA hyper/hypo methylation, histone modifications, changes in non-coding RNA, 3D chromatin architecture and enhancer-promoter interactions. Additionally, we will discuss the state-of-the-art techniques used in the study of ARLD (e.g. single-cell sequencing). We will also highlight the epigenetic regulation of chemokines and their proinflammatory role in the context of ARLD. Lastly, we will examine the clinical applications of epigenetics in the diagnosis and management of ARLD.
Collapse
Key Words
- 3C, chromosome conformation capture
- 4C, chromosome conformation capture-on-chip
- AH, alcohol-related hepatitis
- ARLD, alcohol-related liver disease
- ASH, alcohol-related steatohepatitis
- ATAC, assay for transposase-accessible chromatin
- Acetylation
- Alcohol liver disease
- BET, bromodomain and extraterminal motif
- BETi, BET inhibitor
- BRD, bromodomain
- CCL2, C-C motif chemokine ligand 2
- CTCF, CCCTC-binding factor
- CXCL, C-X-C motif chemokine ligand
- Chromatin architecture
- Computational biology
- DNA methylation
- DNMT, DNA methyltransferase
- E-P, enhancer-promoter
- Epidrugs
- Epigenetics
- FKBP5, FK506-binding protein 5
- HCC, hepatocellular carcinoma
- HDAC, histone deacetylase
- HIF1α, hypoxia inducible factor-1α
- HMGB1, high-mobility group box protein 1
- HNF4α, hepatocyte nuclear factor 4α
- HSC, hepatic stellate cell
- Hi-C, chromosome capture followed by high-throughput sequencing
- Histones
- IL, interleukin
- LPS, lipopolysaccharide
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MECP2, methyl-CpG binding protein 2
- NAFLD, non-alcohol-related fatty liver disease
- PPARG, peroxisome proliferator activated receptor-γ
- SAA, salvianolic acid A
- SIRT, sirtuin
- SREBPs, sterol regulatory element-binding proteins
- Single cell epigenome
- TAD, topologically associating domain
- TEAD, TEA domain transcription factor
- TLR, Toll-like receptor
- TNF, tumour necrosis factor
- YAP, Yes-associated protein
- lncRNA, long non-coding RNA
- miRNA, microRNA
Collapse
Affiliation(s)
| | | | - Vijay H. Shah
- Corresponding authors. Address: Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA. Tel. 507-255-6028, fax: 507-255-6318.
| | - Sheng Cao
- Corresponding authors. Address: Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA. Tel. 507-255-6028, fax: 507-255-6318.
| |
Collapse
|
7
|
Abstract
At-risk alcohol use is a major contributor to the global health care burden and leads to preventable deaths and diseases including alcohol addiction, alcoholic liver disease, cardiovascular disease, diabetes, traumatic injuries, gastrointestinal diseases, cancers, and fetal alcohol syndrome. Excessive and frequent alcohol consumption has increasingly been linked to alcohol-associated tissue injury and pathophysiology, which have significant adverse effects on multiple organ systems. Extensive research in animal and in vitro models has elucidated the salient mechanisms involved in alcohol-induced tissue and organ injury. In some cases, these pathophysiological mechanisms are shared across organ systems. The major alcohol- and alcohol metabolite-mediated mechanisms include oxidative stress, inflammation and immunometabolic dysregulation, gut leak and dysbiosis, cell death, extracellular matrix remodeling, endoplasmic reticulum stress, mitochondrial dysfunction, and epigenomic modifications. These mechanisms are complex and interrelated, and determining the interplay among them will make it possible to identify how they synergistically or additively interact to cause alcohol-mediated multiorgan injury. In this article, we review the current understanding of pathophysiological mechanisms involved in alcohol-induced tissue injury.
Collapse
Affiliation(s)
- Liz Simon
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA;
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Flavia M Souza-Smith
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E Molina
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA;
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
8
|
Lewis SA, Doratt B, Sureshchandra S, Pan T, Gonzales SW, Shen W, Grant KA, Messaoudi I. Profiling of extracellular vesicle-bound miRNA to identify candidate biomarkers of chronic alcohol drinking in nonhuman primates. Alcohol Clin Exp Res 2022; 46:221-231. [PMID: 34910314 PMCID: PMC8858875 DOI: 10.1111/acer.14760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/04/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Long-term alcohol drinking is associated with numerous health complications including susceptibility to infection, cancer, and organ damage. However, due to the complex nature of human drinking behavior, it has been challenging to identify reliable biomarkers of alcohol drinking behavior prior to signs of overt organ damage. Recently, extracellular vesicle-bound microRNAs (EV-miRNAs) have been found to be consistent biomarkers of conditions that include cancer and liver disease. METHODS In this study, we profiled the plasma EV-miRNA content by miRNA-Seq from 80 nonhuman primates after 12 months of voluntary alcohol drinking. RESULTS We identified a list of up- and downregulated EV-miRNA candidate biomarkers of heavy drinking and those positively correlated with ethanol dose. We overexpressed these candidate miRNAs in control primary peripheral immune cells to assess their potential functional mechanisms. We found that overexpression of miR-155, miR-154, miR-34c, miR-450a, and miR-204 led to increased production of the inflammatory cytokines TNFα or IL-6 in peripheral blood mononuclear cells after stimulation. CONCLUSION This exploratory study identified several EV-miRNAs that could serve as biomarkers of long-term alcohol drinking and provide a mechanism to explain alcohol-induced peripheral inflammation.
Collapse
Affiliation(s)
- Sloan A. Lewis
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA, USA,Institute for Immunology, University of California, Irvine CA, USA
| | - Brianna Doratt
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA, USA,Institute for Immunology, University of California, Irvine CA, USA
| | - Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA, USA,Institute for Immunology, University of California, Irvine CA, USA
| | - Tianyu Pan
- Department of Statistics, University of California, Irvine CA, USA
| | - Steven W. Gonzales
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Weining Shen
- Department of Statistics, University of California, Irvine CA, USA
| | - Kathleen A. Grant
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA, USA,Institute for Immunology, University of California, Irvine CA, USA,Center for Virus Research, University of California, Irvine CA, USA,Corresponding Author: Ilhem Messaoudi, Molecular Biology and Biochemistry, University of California Irvine, 2400 Biological Sciences III, Irvine, CA 92697, Phone: 949-824-3078,
| |
Collapse
|
9
|
Mead EA, Boulghassoul-Pietrzykowska N, Wang Y, Anees O, Kinstlinger NS, Lee M, Hamza S, Feng Y, Pietrzykowski AZ. Non-Invasive microRNA Profiling in Saliva can Serve as a Biomarker of Alcohol Exposure and Its Effects in Humans. Front Genet 2022; 12:804222. [PMID: 35126468 PMCID: PMC8812725 DOI: 10.3389/fgene.2021.804222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Alcohol Use Disorder (AUD) is one of the most prevalent mental disorders worldwide. Considering the widespread occurrence of AUD, a reliable, cheap, non-invasive biomarker of alcohol consumption is desired by healthcare providers, clinicians, researchers, public health and criminal justice officials. microRNAs could serve as such biomarkers. They are easily detectable in saliva, which can be sampled from individuals in a non-invasive manner. Moreover, microRNAs expression is dynamically regulated by environmental factors, including alcohol. Since excessive alcohol consumption is a hallmark of alcohol abuse, we have profiled microRNA expression in the saliva of chronic, heavy alcohol abusers using microRNA microarrays. We observed significant changes in salivary microRNA expression caused by excessive alcohol consumption. These changes fell into three categories: downregulated microRNAs, upregulated microRNAs, and microRNAs upregulated de novo. Analysis of these combinatorial changes in microRNA expression suggests dysregulation of specific biological pathways leading to impairment of the immune system and development of several types of epithelial cancer. Moreover, some of the altered microRNAs are also modulators of inflammation, suggesting their contribution to pro-inflammatory mechanisms of alcohol actions. Establishment of the cellular source of microRNAs in saliva corroborated these results. We determined that most of the microRNAs in saliva come from two types of cells: leukocytes involved in immune responses and inflammation, and buccal cells, involved in development of epithelial, oral cancers. In summary, we propose that microRNA profiling in saliva can be a useful, non-invasive biomarker allowing the monitoring of alcohol abuse, as well as alcohol-related inflammation and early detection of cancer.
Collapse
Affiliation(s)
- Edward A. Mead
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nadia Boulghassoul-Pietrzykowska
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Mayo Clinic Health System, NWWI, Barron, WI, United States
- Department of Medicine, Capital Health, Trenton, NJ, United States
- Weight and Life MD, Hamilton, NJ, United States
| | - Yongping Wang
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Holmdel Township School, Holmdel, NJ, United States
| | - Onaiza Anees
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Virginia Commonwealth University Health, CMH Behavioral Health, South Hill, VA, United States
| | - Noah S. Kinstlinger
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maximillian Lee
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- George Washington University, School of Medicine and Health Sciences, Washington DC, MA, United States
| | - Shireen Hamza
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Department of the History of Science, Harvard University, Cambridge, MA, United States
| | - Yaping Feng
- Waksman Genomics Core Facility, Rutgers University, Piscataway, NJ, United States
- Bioinformatics Department, Admera Health, South Plainfield, NJ, United States
| | - Andrzej Z. Pietrzykowski
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Weight and Life MD, Hamilton, NJ, United States
| |
Collapse
|
10
|
Coccini T, Ottonello M, Spigno P, Malovini A, Fiabane E, Roda E, Signorini C, Pistarini C. Biomarkers for alcohol abuse/withdrawal and their association with clinical scales and temptation to drink. A prospective pilot study during 4-week residential rehabilitation. Alcohol 2021; 94:43-56. [PMID: 33887366 DOI: 10.1016/j.alcohol.2021.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022]
Abstract
A bulk of evidence in the field of translational medicine applied to clinical toxicology and rehabilitation has highlighted the possibility of using biomarkers as a support in the diagnosis of alcohol-related diseases and in monitoring of alcohol withdrawal. In a cohort of 55 subjects admitted to a 4-week residential rehabilitation period for alcohol detoxification, we applied a complementary approach correlating novel and conventional peripheral blood and urine parameters in combination with clinical and functional evaluation, contextually considered with the patient's history. Biomarkers of oxidative, inflammatory, hepatic, and neurochemical effects paralleled by alcohol craving and clinical scale measurements were determined at two specific time points, i.e., admission and discharge. Concerning the post-discharge assessment (i.e., relapse evaluation one month after discharge), a follow-up oral interview during a clinical examination was applied to evaluate alcohol abstinence.Selected biomarkers, i.e., MCP1, F2-IsoPs, and SOD1, were altered in chronic alcoholics at admission, and then showed a clearly changing trend during hospitalization. Our findings demonstrated that these specific non-traditional biomarkers, measured together with more conventional ones (e.g., CDT, EtG, IL8, ALT, AST, GGT), could represent novel key parameters for monitoring alcohol use disorders and withdrawal, being also suggestive of the complexity of the psychoneuroimmune response to alcohol. A general improvement in psychological functioning (i.e., decreases in anxiety, depression, and psychological distress) was also revealed during the 4-week rehabilitation treatment, paralleled by an increase of well-being and positive changes in terms of scores. Moreover, a positive association between SOD1 and drink craving at admission was evidenced. Notably, both SOD1 and well-being displayed a significant relation with lower risk of alcohol relapse one month after discharge, indicating that SOD1 is a good predictor of reduced relapse probability. This 4-week residential rehabilitation protocol represents a sound strategy enabling identification of alcohol use disorders and monitoring of alcohol addiction state and withdrawal. However, it has to be emphasized that results derived from this pilot study need to be extensively validated in large and independent cohorts of subjects.
Collapse
Affiliation(s)
- Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy.
| | - Marcella Ottonello
- Department of Physical and Rehabilitation Medicine, ICS Maugeri Spa - SB, Institute of G Nervi, Genoa, Italy
| | - Paola Spigno
- Department of Physical and Rehabilitation Medicine, ICS Maugeri Spa - SB, Institute of G Nervi, Genoa, Italy
| | - Alberto Malovini
- Laboratory of Informatics and Systems Engineering for Clinical Research, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Elena Fiabane
- Department of Physical and Rehabilitation Medicine, ICS Maugeri Spa - SB, Institute of G Nervi, Genoa, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Elisa Roda
- Laboratory of Clinical and Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy; Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Caterina Pistarini
- Department of Physical and Rehabilitation Medicine, ICS Maugeri Spa - SB, Institute of G Nervi, Genoa, Italy
| |
Collapse
|
11
|
Silva CBP, Elias-Oliveira J, McCarthy CG, Wenceslau CF, Carlos D, Tostes RC. Ethanol: striking the cardiovascular system by harming the gut microbiota. Am J Physiol Heart Circ Physiol 2021; 321:H275-H291. [PMID: 34142885 DOI: 10.1152/ajpheart.00225.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethanol consumption represents a significant public health problem, and excessive ethanol intake is a risk factor for cardiovascular disease (CVD), one of the leading causes of death and disability worldwide. The mechanisms underlying the effects of ethanol on the cardiovascular system are complex and not fully comprehended. The gut microbiota and their metabolites are indispensable symbionts essential for health and homeostasis and therefore, have emerged as potential contributors to ethanol-induced cardiovascular system dysfunction. By mechanisms that are not completely understood, the gut microbiota modulates the immune system and activates several signaling pathways that stimulate inflammatory responses, which in turn, contribute to the development and progression of CVD. This review summarizes preclinical and clinical evidence on the effects of ethanol in the gut microbiota and discusses the mechanisms by which ethanol-induced gut dysbiosis leads to the activation of the immune system and cardiovascular dysfunction. The cross talk between ethanol consumption and the gut microbiota and its implications are detailed. In summary, an imbalance in the symbiotic relationship between the host and the commensal microbiota in a holobiont, as seen with ethanol consumption, may contribute to CVD. Therefore, manipulating the gut microbiota, by using antibiotics, probiotics, prebiotics, and fecal microbiota transplantation might prove a valuable opportunity to prevent/mitigate the deleterious effects of ethanol and improve cardiovascular health and risk prevention.
Collapse
Affiliation(s)
- Carla B P Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jefferson Elias-Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cameron G McCarthy
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Camilla F Wenceslau
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Morris NL, Harris FL, Brown LAS, Yeligar SM. Alcohol induces mitochondrial derangements in alveolar macrophages by upregulating NADPH oxidase 4. Alcohol 2021; 90:27-38. [PMID: 33278514 DOI: 10.1016/j.alcohol.2020.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/11/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Excessive alcohol users have increased risk of developing respiratory infections in part due to oxidative stress-induced alveolar macrophage (AM) phagocytic dysfunction. Chronic ethanol exposure increases cellular oxidative stress in AMs via upregulation of NADPH oxidase (Nox) 4, and treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) ligand, rosiglitazone, decreases ethanol-induced Nox4. However, the mechanism by which ethanol induces Nox4 expression and the PPARγ ligand reverses this defect has not been elucidated. Since microRNA (miR)-92a has been predicted to target Nox4 for destabilization, we hypothesized that ethanol exposure decreases miR-92a expression and leads to Nox4 upregulation. Previous studies have implicated mitochondrial-derived oxidative stress in AM dysfunction. We further hypothesized that ethanol increases mitochondrial-derived AM oxidative stress and dysfunction via miR-92a, and that treatment with the PPARγ ligand, pioglitazone, could reverse these derangements. To test these hypotheses, a mouse AM cell line, MH-S cells, was exposed to ethanol in vitro, and primary AMs were isolated from a mouse model of chronic ethanol consumption to measure Nox4, mitochondrial target mRNA (qRT-PCR) and protein levels (confocal microscopy), mitochondria-derived reactive oxygen species (confocal immunofluorescence), mitochondrial fission (electron microscopy), and mitochondrial bioenergetics (extracellular flux analyzer). Ethanol exposure increased Nox4, enhanced mitochondria-derived oxidative stress, augmented mitochondrial fission, and impaired mitochondrial bioenergetics. Transfection with a miR-92a mimic in vitro or pioglitazone treatment in vivo diminished Nox4 levels, resulting in improvements in these ethanol-mediated derangements. These findings demonstrate that pioglitazone may provide a novel therapeutic approach to mitigate ethanol-induced AM mitochondrial derangements.
Collapse
|
13
|
Tavanasefat H, Li F, Koyano K, Gourtani BK, Marty V, Mulpuri Y, Lee SH, Shin KH, Wong DTW, Xiao X, Spigelman I, Kim Y. Molecular consequences of fetal alcohol exposure on amniotic exosomal miRNAs with functional implications for stem cell potency and differentiation. PLoS One 2020; 15:e0242276. [PMID: 33196678 PMCID: PMC7668603 DOI: 10.1371/journal.pone.0242276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Alcohol (ethanol, EtOH) consumption during pregnancy can result in fetal alcohol spectrum disorders (FASDs), which are characterized by prenatal and postnatal growth restriction and craniofacial dysmorphology. Recently, cell-derived extracellular vesicles, including exosomes and microvesicles containing several species of RNAs (exRNAs), have emerged as a mechanism of cell-to-cell communication. However, EtOH's effects on the biogenesis and function of non-coding exRNAs during fetal development have not been explored. Therefore, we studied the effects of maternal EtOH exposure on the composition of exosomal RNAs in the amniotic fluid (AF) using rat fetal alcohol exposure (FAE) model. Through RNA-Seq analysis we identified and verified AF exosomal miRNAs with differential expression levels specifically associated with maternal EtOH exposure. Uptake of purified FAE AF exosomes by rBMSCs resulted in significant alteration of molecular markers associated with osteogenic differentiation of rBMSCs. We also determined putative functional roles for AF exosomal miRNAs (miR-199a-3p, miR-214-3p and let-7g) that are dysregulated by FAE in osteogenic differentiation of rBMSCs. Our results demonstrate that FAE alters AF exosomal miRNAs and that exosomal transfer of dysregulated miRNAs has significant molecular effects on stem cell regulation and differentiation. Our results further suggest the usefulness of assessing molecular alterations in AF exRNAs to study the mechanisms of FAE teratogenesis that should be further investigated by using an in vivo model.
Collapse
Affiliation(s)
- Honey Tavanasefat
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, UCLA, Los Angeles, California, United States of America
- CSUN-UCLA Stem Cell Research Bridge Program, Department of Biology, California State University at Northridge, Northridge, California, United States of America
| | - Feng Li
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Kikuye Koyano
- Department of Integrative Biology and Physiology, Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Bahar Khalilian Gourtani
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, UCLA, Los Angeles, California, United States of America
| | - Vincent Marty
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Yatendra Mulpuri
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Sung Hee Lee
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - David T. W. Wong
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Igor Spigelman
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Yong Kim
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, UCLA, Los Angeles, California, United States of America
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
- UCLA Broad Stem Cell Research Center, Los Angeles, California, United States of America
| |
Collapse
|
14
|
Kupffer Cells: Inflammation Pathways and Cell-Cell Interactions in Alcohol-Associated Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2185-2193. [PMID: 32919978 DOI: 10.1016/j.ajpath.2020.08.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/11/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023]
Abstract
Chronic alcohol consumption is linked to the development of alcohol-associated liver disease (ALD). This disease is characterized by a clinical spectrum ranging from steatosis to hepatocellular carcinoma. Several cell types are involved in ALD progression, including hepatic macrophages. Kupffer cells (KCs) are the resident macrophages of the liver involved in the progression of ALD by activating pathways that lead to the production of cytokines and chemokines. In addition, KCs are involved in the production of reactive oxygen species. Reactive oxygen species are linked to the induction of oxidative stress and inflammation in the liver. These events are activated by the bacterial endotoxin, lipopolysaccharide, that is released from the gastrointestinal tract through the portal vein to the liver. Lipopolysaccharide is recognized by receptors on KCs that are responsible for triggering several pathways that activate proinflammatory cytokines involved in alcohol-induced liver injury. In addition, KCs activate hepatic stellate cells that are involved in liver fibrosis. Novel strategies to treat ALD aim at targeting Kupffer cells. These interventions modulate Kupffer cell activation or macrophage polarization. Evidence from mouse models and early clinical studies in patients with ALD injury supports the notion that pathogenic macrophage subsets can be successfully translated into novel treatment options for patients with this disease.
Collapse
|
15
|
Addolorato G, Abenavoli L, Dallio M, Federico A, Germani G, Gitto S, Leandro G, Loguercio C, Marra F, Stasi E. Alcohol associated liver disease 2020: A clinical practice guideline by the Italian Association for the Study of the Liver (AISF). Dig Liver Dis 2020; 52:374-391. [PMID: 32001151 DOI: 10.1016/j.dld.2019.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/06/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
Abstract
Alcohol use disorder which includes alcohol abuse and dependence represents one of the leading risk factors for premature mortality in Europe and it is responsible of over 200 conditions, including neuropsychiatric disorders, chronic diseases, cancers and accidents leading to permanent disability. Alcohol use disorder represents the most common cause of liver damage in the Western world, with a wide spectrum of diseases ranging from steatosis, steatohepatitis, fibrosis, cirrhosis and cancer. The present clinical practice guidelines by the Italian Association for the Study of the Liver (AISF) are focused on the current knowledge about epidemiology, pathophysiology, clinical features, diagnosis and treatment of alcohol associated liver disease, aiming to provide practical recommendations on the management of this complex pathological condition.
Collapse
Affiliation(s)
- Giovanni Addolorato
- Alcohol Use Disorder Unit, Division of Internal Medicine, Gastroenterology and Hepatology Unit, Catholic University of Rome, A. Gemelli Hospital, Rome, Italy; "Agostino Gemelli" Hospital Foundation - IRCCS, Rome, Italy.
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Marcello Dallio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giacomo Germani
- Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Stefano Gitto
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Gioacchino Leandro
- National Institute of Gastroenterology "S. De Bellis" Research Hospital, Castellana Grotte, Italy
| | - Carmelina Loguercio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Italy; Research Center Denothe, University of Florence, Italy
| | - Elisa Stasi
- National Institute of Gastroenterology "S. De Bellis" Research Hospital, Castellana Grotte, Italy
| |
Collapse
|
16
|
Warren KJ, Poole JA, Sweeter JM, DeVasure JM, Wyatt TA. An association between MMP-9 and impaired T cell migration in ethanol-fed BALB/c mice infected with respiratory syncytial virus-2A. Alcohol 2019; 80:25-32. [PMID: 30291948 DOI: 10.1016/j.alcohol.2018.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases are important for proper airway matrix structure and wound healing. These enzymes are also implicated in many airway diseases. Previously, chronic ethanol consumption was shown to prolong inflammation and delay viral clearance in respiratory syncytial virus (RSV)-infected mice. We hypothesize that alcohol alters anti-viral immunity by disrupting immune cell chemotaxis in the lung. BALB/c mice were randomly selected to consume 18% alcohol ad libitum for 8 weeks prior to infection with RSV-2A. Bronchoalveolar lavage (BAL) cell populations were measured by flow cytometry, and chemokines were detected by Western blot or ELISA. MMP-9 levels were determined by polymerase chain reaction (PCR) in mouse lungs and in BAL fluid by ELISA. T cells were acquired from the spleens of water-fed, non-infected control mice (CTRL); alcohol-fed, non-infected (ETOH); water-fed, RSV-infected (RSV); or ethanol-fed, RSV-infected (ETOH-RSV) 4 days after RSV infection. T cells were placed in a transmigration system where chemokines had been treated with and without activated MMP-9. Lymphocyte recruitment was significantly reduced in the BAL 4 days after RSV infection in ETOH-RSV mice, whereas chemokine levels were the highest in this group at all experimental time points examined in comparison to RSV (p < 0.05). MMP-9 mRNA and protein were detected at high levels in ETOH-RSV mice compared to RSV. Using ex vivo transmigration to CCL2 and CXCL10, T cell migration was not impaired between any of the treatment groups, yet when CCL2 and CXCL10 were treated with activated MMP-9, significantly fewer T cells migrated across collagen-coated 5-μm membranes (p < 0.05). Immune cell recruitment is necessary for viral clearance. We show that immune cells are decreased in the lungs of ETOH-RSV mice. In contrast to decreased cell recruitment, key inflammatory chemokines were elevated in the lungs of ETOH-RSV mice. These proteins may be prematurely degraded by MMP-9 in the lung, leading to defective immunity and reduced viral clearance.
Collapse
Affiliation(s)
- Kristi J Warren
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States.
| | - Jill A Poole
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States
| | - Jenea M Sweeter
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States.
| | - Jane M DeVasure
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States.
| | - Todd A Wyatt
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States; Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, United States; University of Nebraska Medical Center, Department of Environmental, Agricultural, & Occupational Health, Omaha, NE, 68198, United States.
| |
Collapse
|
17
|
Abstract
Hepatic lipid metabolism is a series of complex processes that control influx and efflux of not only hepatic lipid pools, but also organismal pools. Lipid homeostasis is usually tightly controlled by expression, substrate supply, oxidation and secretion that keep hepatic lipid pools relatively constant. However, perturbations of any of these processes can lead to lipid accumulation in the liver. Although it is thought that these responses are hepatic arms of the 'thrifty genome', they are maladaptive in the context of chronic fatty liver diseases. Ethanol is likely unique among toxins, in that it perturbs almost all aspects of hepatic lipid metabolism. This complex response is due in part to the large metabolic demand placed on the organ by alcohol metabolism, but also appears to involve more nuanced changes in expression and substrate supply. The net effect is that steatosis is a rapid response to alcohol abuse. Although transient steatosis is largely an inert pathology, the chronicity of alcohol-related liver disease seems to require steatosis. Better and more specific understanding of the mechanisms by which alcohol causes steatosis may therefore translate into targeted therapies to treat alcohol-related liver disease and/or prevent its progression.
Collapse
|
18
|
Wu N, McDaniel K, Zhou T, Ramos-Lorenzo S, Wu C, Huang L, Chen D, Annable T, Francis H, Glaser S, Alpini G, Meng F. Knockout of microRNA-21 attenuates alcoholic hepatitis through the VHL/NF-κB signaling pathway in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2018; 315:G385-G398. [PMID: 29848019 PMCID: PMC6415712 DOI: 10.1152/ajpgi.00111.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 01/31/2023]
Abstract
microRNA-21 (miRNA) is one of the most abundant miRNAs in chronic liver injuries including alcoholic liver injury. Previous studies have demonstrated that miR-21 plays a role in inflammation in the liver and functions in hepatic stellate cells (HSCs), which reside in the perisinusoidal space between sinusoidal endothelial cells and hepatocytes and regulate sinusoidal circulation. HSCs integrate cytokine-mediated inflammatory responses in the sinusoids and relay them to the liver parenchyma. Here, we showed that the activation of Von Hippel-Lindau (VHL) expression, by miR-21 knockout in vivo and anti-miR-21 or VHL overexpression in vitro, suppressed the production of proinflammatory cytokines, such as interleukin (IL)-6, monocyte chemoattractant protein-1, and IL-1β, in human HSCs during alcoholic liver injury. Sequence and functional analyses confirmed that miR-21 directly targeted the 3'-untranslated region of VHL. Immunofluorescence and real-time PCR analysis revealed that miR-21 depletion blocked NF-κB activation in human HSCs both in cultured HSCs as well as HSCs isolated from alcohol-related liver disease mice liver by laser capture microdissection. We also showed that conditioned medium from anti-miR-21-transfected HSCs suppressed human monocyte-derived THP-1 cell migration. Taken together, our study indicates that depletion of miR-21 may downregulate cytokine production in HSCs and macrophage chemotaxis during alcoholic liver injury and that the targeting of miR-21 may have therapeutic potential for preventing the progression of alcoholic liver diseases. NEW & NOTEWORTHY This study demonstrates that silencing microRNA-21 can inhibit cytokine production and inflammatory responses in human hepatic stellate cells during alcoholic liver injury and that the targeting of microR-21 in hepatic stellate cells may have therapeutic potential for prevention and treatment of alcoholic liver diseases.
Collapse
Affiliation(s)
- Nan Wu
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
| | - Kelly McDaniel
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
- Research Institute, Baylor Scott & White Health, Temple, Texas
| | - Tianhao Zhou
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
| | - Sugeily Ramos-Lorenzo
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
- Research Institute, Baylor Scott & White Health, Temple, Texas
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University , College Station, Texas
| | - Li Huang
- Department of Hepatobiliary Surgery and Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangdong , China
| | - Demeng Chen
- Department of Hepatobiliary Surgery and Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangdong , China
| | - Tami Annable
- Research Institute, Baylor Scott & White Health, Temple, Texas
- Texas Bioscience District, Temple, Texas
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
- Research Institute, Baylor Scott & White Health, Temple, Texas
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine and Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Sciences Center and Scott & White Hospital, Temple, Texas
- Research Institute, Baylor Scott & White Health, Temple, Texas
| |
Collapse
|
19
|
Getachew B, Hudson T, Heinbockel T, Csoka AB, Tizabi Y. Protective Effects of Donepezil Against Alcohol-Induced Toxicity in Cell Culture: Role of Caspase-3. Neurotox Res 2018; 34:757-762. [PMID: 29804239 DOI: 10.1007/s12640-018-9913-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/29/2018] [Accepted: 05/17/2018] [Indexed: 01/12/2023]
Abstract
Ethanol (EtOH) is one of the most frequently abused drugs with heavy health, economic, and societal burdens. Although moderate to low EtOH may have some neuroprotective effects, heavy EtOH consumption associated with high blood alcohol level (BAL) can be quite detrimental. The brain is particularly vulnerable to the damaging effects of high BAL, leading to neuronal loss, cognitive, and behavioral deficits. Although the exact causes of these detriments are not fully elucidated, it is believed that damage to the cholinergic system is at least partially responsible for the cognitive impairment. Thus, high BAL may result in selective apoptotic damage to the cholinergic neurons. Donepezil (DON), a centrally acting, reversible and non-competitive acetylcholinesterase (AChE) inhibitor, approved for use in Alzheimer's disease (AD), may also attenuate EtOH-induced cognitive impairment. Cognitive effects of DON might be due to an anti-apoptotic activity as some AChE inhibitors have been shown to have this property. The aim of this study was to determine whether DON might protect against EtOH-induced toxicity and whether such protection might be apoptotically mediated. We exposed the human neuroblastoma-derived, SH-SY5Y cells to a relatively high concentration of EtOH (500 mM) for 24 h and evaluated the effects of two concentrations of DON (0.1 and 1.0 μM) on alcohol-induced toxicity and caspase-3, an apoptotic marker. We found a dose-dependent protection of DON against EtOH-induced toxicity as well as dose-dependent attenuation of EtOH-induced increases in caspase-3 levels. Thus, DON may inhibit apoptosis as well as alcohol-induced toxicity.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College Medicine, 520 W Street NW, Washington, DC, 20059, USA
| | - Tamaro Hudson
- Department of Pharmacology, Howard University College Medicine, 520 W Street NW, Washington, DC, 20059, USA
| | - Thomas Heinbockel
- Department of Anatomy, Howard University College Medicine, Washington, DC, 20059, USA
| | - Antonei B Csoka
- Department of Anatomy, Howard University College Medicine, Washington, DC, 20059, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College Medicine, 520 W Street NW, Washington, DC, 20059, USA.
| |
Collapse
|
20
|
Zapater P. Los estudios genéticos y la enfermedad hepática alcohólica. Rev Clin Esp 2018; 218:190-191. [DOI: 10.1016/j.rce.2018.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
|
21
|
Genetic studies and alcoholic liver disease. Rev Clin Esp 2018. [DOI: 10.1016/j.rceng.2018.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Novo-Veleiro I, Cieza-Borrella C, Pastor I, González-Sarmiento R, Laso F, Marcos M. Analysis of the relationship between interleukin polymorphisms within miRNA-binding regions and alcoholic liver disease. Rev Clin Esp 2018. [DOI: 10.1016/j.rceng.2018.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Nonprotein-coding RNAs in Fetal Alcohol Spectrum Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:299-342. [PMID: 29933954 DOI: 10.1016/bs.pmbts.2017.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early developmental exposure to ethanol, a known teratogen, can result in a range of neurodevelopmental disorders, collectively referred to as Fetal Alcohol Spectrum Disorders (FASDs). Changes in the environment, including exposure to teratogens, can result in long term alterations to the epigenetic landscape of a cell, thereby altering gene expression. Noncoding RNAs (ncRNAs) can affect transcription and translation of networks of genes. ncRNAs are dynamically expressed during development and have been identified as a target of alcohol. ncRNAs therefore make for attractive targets for novel therapeutics to address the developmental deficits associated with FASDs.
Collapse
|
24
|
Novo-Veleiro I, Cieza-Borrella C, Pastor I, González-Sarmiento R, Laso FJ, Marcos M. Analysis of the relationship between interleukin polymorphisms within miRNA-binding regions and alcoholic liver disease. Rev Clin Esp 2018; 218:170-176. [PMID: 29566963 DOI: 10.1016/j.rce.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/01/2017] [Accepted: 02/13/2018] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Alcohol consumption promotes inflammation through the Toll-like receptor 4 (TLR4)/nuclear factor (NF)-?B pathway, leading to organic damage. Some micro-RNA (miRNA) molecules modulate this inflammatory response by downregulating TLR4/NF-?B pathway mediators, like interleukins (ILs). Thus, polymorphisms within IL genes located near miRNA binding sites could modify the risk of ethanol-induced damage. The present study analyzed potential relationships between alcoholism or alcoholic liver disease (ALD) and IL12B 2124 G>T (rs1368439), IL16 5000 C>T (rs1131445), IL1R1 3114 C>T (rs3917328), and NFKB1 3400 A>G (rs4648143) polymorphisms. PATIENTS AND METHODS The study included 301 male alcoholic patients and 156 male healthy volunteers. Polymorphisms were genotyped using TaqMan® PCR assays for allelic discrimination. Allele and genotype frequencies were compared between groups. Logistic regression analysis was performed to analyze the inheritance model. RESULTS Analysis of the IL1R1 (rs3917328) polymorphism showed that the proportion of alleleT carriers (CT and TT genotypes) was higher in healthy controls (9.7%) than in alcoholic patients (6.5%; P=.042). However, multivariable logistic regression analyses did not yield a significant result. No differences between groups were found for other analyzed polymorphisms. CONCLUSIONS Our study describes, for the first time, the expected frequencies of certain polymorphisms within miRNA-binding sites in alcoholic patients with and without ALD. Further studies should be developed to clarify the potential relevance of these polymorphisms in alcoholism and ALD development.
Collapse
Affiliation(s)
- I Novo-Veleiro
- Departamento de Medicina Interna, Hospital Universitario Santiago de Compostela, Santiago de Compostela, La Coruña, España
| | - C Cieza-Borrella
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca. Instituto de Investigación Biomédica de Salamanca-IBSAL, Salamanca, España
| | - I Pastor
- Unidad de Alcoholismo, Departamento de Medicina Interna, Hospital Universitario de Salamanca. Instituto de Investigación Biomédica de Salamanca-IBSAL, Salamanca, España
| | - R González-Sarmiento
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca. Instituto de Investigación Biomédica de Salamanca-IBSAL, Salamanca, España
| | - F-J Laso
- Unidad de Alcoholismo, Departamento de Medicina Interna, Hospital Universitario de Salamanca. Instituto de Investigación Biomédica de Salamanca-IBSAL, Salamanca, España
| | - M Marcos
- Unidad de Alcoholismo, Departamento de Medicina Interna, Hospital Universitario de Salamanca. Instituto de Investigación Biomédica de Salamanca-IBSAL, Salamanca, España.
| |
Collapse
|
25
|
Izzotti A, Longobardi M, La Maestra S, Micale RT, Pulliero A, Camoirano A, Geretto M, D'Agostini F, Balansky R, Miller MS, Steele VE, De Flora S. Release of MicroRNAs into Body Fluids from Ten Organs of Mice Exposed to Cigarette Smoke. Theranostics 2018; 8:2147-2160. [PMID: 29721069 PMCID: PMC5928877 DOI: 10.7150/thno.22726] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022] Open
Abstract
Purpose: MicroRNAs are small non-coding RNAs that regulate gene expression, thereby playing a role in a variety of physiological and pathophysiological states. Exposure to cigarette smoke extensively downregulates microRNA expression in pulmonary cells of mice, rats, and humans. Cellular microRNAs are released into body fluids, but a poor parallelism was previously observed between lung microRNAs and circulating microRNAs. The purpose of the present study was to validate the application of this epigenetic biomarker by using less invasive collection procedures. Experimental design: Using microarray analyses, we measured 1135 microRNAs in 10 organs and 3 body fluids of mice that were either unexposed or exposed to mainstream cigarette smoke for up to 8 weeks. The results obtained with selected miRNAs were validated by qPCR. Results: The lung was the main target affected by smoke (190 dysregulated miRNAs), followed by skeletal muscle (180), liver (138), blood serum (109), kidney (96), spleen (89), stomach (36), heart (33), bronchoalveolar lavage fluid (32), urine (27), urinary bladder (12), colon (5), and brain (0). Skeletal muscle, kidney, and lung were the most important sources of smoke-altered microRNAs in blood serum, urine, and bronchoalveolar lavage fluid, respectively. Conclusions: microRNA expression analysis was able to identify target organs after just 8 weeks of exposure to smoke, well before the occurrence of any detectable histopathological alteration. The present translational study validates the use of body fluid microRNAs as biomarkers applicable to human biomonitoring for mechanistic studies, diagnostic purposes, preventive medicine, and therapeutic strategies.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | | | - Rosanna T. Micale
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | | - Anna Camoirano
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Marta Geretto
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | | - Roumen Balansky
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
- National Center of Oncology, Sofia-1756, Bulgaria
| | - Mark Steven Miller
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
| | - Vernon E. Steele
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
26
|
Obad A, Peeran A, Little JI, Haddad GE, Tarzami ST. Alcohol-Mediated Organ Damages: Heart and Brain. Front Pharmacol 2018; 9:81. [PMID: 29487525 PMCID: PMC5816804 DOI: 10.3389/fphar.2018.00081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/24/2018] [Indexed: 12/12/2022] Open
Abstract
Alcohol is one of the most commonly abused substances in the United States. Chronic consumption of ethanol has been responsible for numerous chronic diseases and conditions globally. The underlying mechanism of liver injury has been studied in depth, however, far fewer studies have examined other organs especially the heart and the central nervous system (CNS). The authors conducted a narrative review on the relationship of alcohol with heart disease and dementia. With that in mind, a complex relationship between inflammation and cardiovascular disease and dementia has been long proposed but inflammatory biomarkers have gained more attention lately. In this review we examine some of the consequences of the altered cytokine regulation that occurs in alcoholics in organs other than the liver. The article reviews the potential role of inflammatory markers such as TNF-α in predicting dementia and/or cardiovascular disease. It was found that TNF-α could promote and accelerate local inflammation and damage through autocrine/paracrine mechanisms. Unraveling the mechanisms linking chronic alcohol consumption with proinflammatory cytokine production and subsequent inflammatory signaling pathways activation in the heart and CNS, is essential to improve our understanding of the disease and hopefully facilitate the development of new remedies.
Collapse
Affiliation(s)
| | | | | | | | - Sima T. Tarzami
- Department of Physiology and Biophysics, Howard University, Washington, DC, United States
| |
Collapse
|
27
|
Gillet V, Hunting DJ, Takser L. Turing Revisited: Decoding the microRNA Messages in Brain Extracellular Vesicles for Early Detection of Neurodevelopmental Disorders. Curr Environ Health Rep 2018; 3:188-201. [PMID: 27301443 DOI: 10.1007/s40572-016-0093-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The prevention of neurodevelopmental disorders (NDD) of prenatal origin suffers from the lack of objective tools for early detection of susceptible individuals and the long time lag, usually in years, between the neurotoxic exposure and the diagnosis of mental dysfunction. Human data on the effects of alcohol, lead, and mercury and experimental data from animals on developmental neurotoxins and their long-term behavioral effects have achieved a critical mass, leading to the concept of the Developmental Origin of Health and Disease (DOHaD). However, there is currently no way to evaluate the degree of brain damage early after birth. We propose that extracellular vesicles (EVs) and particularly exosomes, released by brain cells into the fetal blood, may offer us a non-invasive means of assessing brain damage by neurotoxins. We are inspired by the strategy applied by Alan Turing (a cryptanalyst working for the British government), who created a first computer to decrypt German intelligence communications during World War II. Given the growing evidence that microRNAs (miRNAs), which are among the molecules carried by EVs, are involved in cell-cell communication, we propose that decrypting messages from EVs can allow us to detect damage thus offering an opportunity to cure, reverse, or prevent the development of NDD. This review summarizes recent findings on miRNAs associated with selected environmental toxicants known to be involved in the pathophysiology of NDD.
Collapse
Affiliation(s)
- Virginie Gillet
- Département Pédiatrie, Faculté de Médecine et Sciences de la Santé de l'Université de Sherbrooke, 3001, 12ème avenue Nord, Sherbrooke, Québec, Canada, J1H 5N4
| | - Darel John Hunting
- Département Radiobiologie, Faculté de Médecine et Sciences de la Santé de l'Université de Sherbrooke, 3001, 12ème avenue Nord, Sherbrooke, Québec, Canada, J1H 5N4
| | - Larissa Takser
- Département Pédiatrie, Faculté de Médecine et Sciences de la Santé de l'Université de Sherbrooke, 3001, 12ème avenue Nord, Sherbrooke, Québec, Canada, J1H 5N4.
| |
Collapse
|
28
|
Zhao YX, Sun YY, Huang AL, Li XF, Huang C, Ma TT, Li J. MicroRNA-200a induces apoptosis by targeting ZEB2 in alcoholic liver disease. Cell Cycle 2018; 17:250-262. [PMID: 29251244 DOI: 10.1080/15384101.2017.1417708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ABSTRAT Alcoholic liver disease (ALD) and its complication continued to be a major health problem throughout the world. Increasing evidence suggests that microRNA (miRNA) that regulate apoptosis, inflammation and lipid metabolism are affected by alcohol in ALD. MiR-200a has emerged as a major regulator in several liver diseases, but its role in ALD has not been elucidated. The aim of this study is to figure out the biological function of miR-200a in ALD and to explore its underlying mechanism. The expression pattern of miR-200a were analyzed in vitro and in vivo, we showed that miR-200a was up-regulated in ALD in AML-12 and primary hepatocyte. We then examined it's effect on cell apoptosis and identified zinc finger E-box binding homeobox 2 (ZEB2; also known as SIP1) as a direct target gene of miR-200a. Furthermore, reintroduction of ZEB2 could reverse the pro-apoptosis of miR-200a on AML-12. Taken together, our study demonstrated that miR-200a regulates the apoptosis of hepatocyte in ALD by directly target ZEB2, both of which could serve as new therapeutic targets for ALD.
Collapse
Affiliation(s)
- Yu-Xin Zhao
- a Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs , School of Pharmacy , Anhui Medical University , 230000 Hefei , China.,b The Key Laboratory of Anti-Inflammatory and Immune Medicines , Ministry of Education , 230000 Hefei , China.,c Institute for Liver Diseases , Anhui Medical University , 230000 Hefei , China
| | - Ying-Yin Sun
- a Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs , School of Pharmacy , Anhui Medical University , 230000 Hefei , China.,b The Key Laboratory of Anti-Inflammatory and Immune Medicines , Ministry of Education , 230000 Hefei , China.,c Institute for Liver Diseases , Anhui Medical University , 230000 Hefei , China
| | - Ai-Ling Huang
- a Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs , School of Pharmacy , Anhui Medical University , 230000 Hefei , China.,b The Key Laboratory of Anti-Inflammatory and Immune Medicines , Ministry of Education , 230000 Hefei , China.,c Institute for Liver Diseases , Anhui Medical University , 230000 Hefei , China
| | - Xiao-Feng Li
- a Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs , School of Pharmacy , Anhui Medical University , 230000 Hefei , China.,b The Key Laboratory of Anti-Inflammatory and Immune Medicines , Ministry of Education , 230000 Hefei , China.,c Institute for Liver Diseases , Anhui Medical University , 230000 Hefei , China
| | - Cheng Huang
- a Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs , School of Pharmacy , Anhui Medical University , 230000 Hefei , China.,b The Key Laboratory of Anti-Inflammatory and Immune Medicines , Ministry of Education , 230000 Hefei , China.,c Institute for Liver Diseases , Anhui Medical University , 230000 Hefei , China
| | - Tao-Tao Ma
- a Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs , School of Pharmacy , Anhui Medical University , 230000 Hefei , China.,b The Key Laboratory of Anti-Inflammatory and Immune Medicines , Ministry of Education , 230000 Hefei , China.,c Institute for Liver Diseases , Anhui Medical University , 230000 Hefei , China
| | - Jun Li
- a Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs , School of Pharmacy , Anhui Medical University , 230000 Hefei , China.,b The Key Laboratory of Anti-Inflammatory and Immune Medicines , Ministry of Education , 230000 Hefei , China.,c Institute for Liver Diseases , Anhui Medical University , 230000 Hefei , China
| |
Collapse
|
29
|
Chao J, Li P, Chao L. Kallistatin: double-edged role in angiogenesis, apoptosis and oxidative stress. Biol Chem 2017; 398:1309-1317. [DOI: 10.1515/hsz-2017-0180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/18/2017] [Indexed: 01/25/2023]
Abstract
AbstractKallistatin, via its two structural elements – an active site and a heparin-binding domain – displays a double-edged function in angiogenesis, apoptosis and oxidative stress. First, kallistatin has both anti-angiogenic and pro-angiogenic effects. Kallistatin treatment attenuates angiogenesis and tumor growth in cancer-bearing mice. Kallistatin via its heparin-binding site inhibits angiogenesis by blocking vascular endothelial growth factor (VEGF)-induced growth, migration and adhesion of endothelial cells. Conversely, kallistatin via the active site promotes neovascularization by stimulating VEGF levels in endothelial progenitor cells. Second, kallistatin inhibits or induces apoptosis depending on cell types. Kallistatin attenuates organ injury and apoptosis in animal models, and its heparin-binding site is essential for blocking tumor necrosis factor (TNF)-α-induced apoptosis in endothelial cells. However, kallistatin via its active site induces apoptosis in breast cancer cells by up-regulating miR-34a and down-regulating miR-21 and miR-203 synthesis. Third, kallistatin can act as an antioxidant or pro-oxidant. Kallistatin treatment inhibits oxidative stress and tissue damage in animal models and cultured cells. Kallistatin via the heparin-binding domain antagonizes TNF-α-induced oxidative stress, whereas its active site is crucial for stimulating antioxidant enzyme expression. In contrast, kallistatin provokes oxidant formation, leading to blood pressure reduction and bacterial killing. Kallistatin-mediated vasodilation is partly mediated by H2O2, as the effect is abolished by the antioxidant enzyme catalase. Moreover, kallistatin exerts a bactericidal effect by stimulating superoxide production in neutrophils of mice with microbial infection as well as in cultured immune cells. Thus, kallistatin’s dual roles in angiogenesis, apoptosis and oxidative stress contribute to its beneficial effects in various diseases.
Collapse
|
30
|
Study of acetylcholinesterase activity and apoptosis in SH-SY5Y cells and mice exposed to ethanol. Toxicology 2017; 384:33-39. [PMID: 28427893 DOI: 10.1016/j.tox.2017.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/14/2017] [Accepted: 04/16/2017] [Indexed: 02/06/2023]
Abstract
Ethanol is one of the most commonly abused psychotropic substances with deleterious effects on the central nervous system. Ethanol exposure during development results in the loss of neurons in brain regions and when exposed to ethanol cultured cells undergo apoptosis. To date no information is available on whether abnormally high AChE activity is characteristic of apoptosis in animals exposed to ethanol. The aims of the present study were to determine whether induction of AChE activity is associated with ethanol-induced apoptosis and to explore the mechanism of enhanced AChE activity induced by ethanol. For this purpose, in vitro and in vivo experiments were performed. AChE activity was quantified by spectrophotometry and apoptosis by flow cytometer in SH-SY5Y cells exposed to ethanol. The results showed that cells treated with 500mM ethanol for 24h had a 9-fold increase in apoptotic cells and a 6-fold increase in AChE activity compared with controls. Mice exposed acutely to 200μl of 20% ethanol daily on days 1-4 had elevated AChE activity in plasma on days 3-7. On day 4, plasma AChE activity was 2.4-fold higher than pretreatment activity. More apoptotic cells were found in the brains of treated mice compared to controls. Cells in brain sections that were positive in the TUNEL assay stained for AChE activity. In conclusion, AChE activity and apoptosis were induced in SH-SY5Y cells and mice treated with ethanol, which may indicate that increased AChE may related to apoptosis induced by ethanol. Unusually high AChE activity may be an effect marker of exposure to ethanol. The relationship between AChE and apoptosis might represent a novel mechanism of ethanol-associated neuronal injury.
Collapse
|
31
|
Wang Z, Song J, Zhang L, Huang S, Bao L, Chen F, Zhao X. Increased expression of microRNA-378a-5p in acute ethanol exposure of rat cardiomyocytes. Cell Stress Chaperones 2017; 22:245-252. [PMID: 28160209 PMCID: PMC5352598 DOI: 10.1007/s12192-016-0760-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/18/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022] Open
Abstract
Alcohol abuse is a risk factor for a distinct form of congestive heart failure, known as alcoholic cardiomyopathy (ACM). Here, we investigate how microRNAs may participate in the induction of cardiomyocyte apoptosis associated with ethanol exposure in vitro. Increasing the concentrations of ethanol to primary rat cardiomyocytes resulted in elevated apoptosis assessed by annexin V and propidium iodide staining, and reduced expression of an enzyme for alcohol detoxification aldehyde dehydrogenase 2 (ALDH2). These ethanol effects were accompanied by a substantial elevation of miR-378a-5p. Driving miR-378a-5p overexpression in cardiomyocytes decreased ALDH2. The specific interaction of miR-378a-5p with the 3'UTR of ALDH2 was examined by luciferase reporter assays, and we found that miR-378a-5p activity depends on a complementary base pairing at the 3'-UTR region of ALDH2 mRNA. Finally, ethanol-induced apoptosis in cardiomyocytes was attenuated in the presence of anti-miR378a-5p. Collectively, these data implicate a likely involvement of miR-378a-5p in the stimulation of cardiomyocyte apoptosis through ALDH2 gene suppression, which might play a potential role in the pathogenesis of ACM.
Collapse
Affiliation(s)
- Zhongkai Wang
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Jingwen Song
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Liang Zhang
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Songqun Huang
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Lizhi Bao
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Feng Chen
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Xianxian Zhao
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
32
|
Oliveros A, Choi DS. Repurposing Tigecycline for the Treatment of Alcohol Use Disorder. Alcohol Clin Exp Res 2017; 41:497-500. [PMID: 28133753 DOI: 10.1111/acer.13312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Alfredo Oliveros
- Department of Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Psychiatry and Psychology , Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
33
|
Fernández-Solà J, Planavila Porta A. New Treatment Strategies for Alcohol-Induced Heart Damage. Int J Mol Sci 2016; 17:E1651. [PMID: 27690014 PMCID: PMC5085684 DOI: 10.3390/ijms17101651] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 02/07/2023] Open
Abstract
High-dose alcohol misuse induces multiple noxious cardiac effects, including myocyte hypertrophy and necrosis, interstitial fibrosis, decreased ventricular contraction and ventricle enlargement. These effects produce diastolic and systolic ventricular dysfunction leading to congestive heart failure, arrhythmias and an increased death rate. There are multiple, dose-dependent, synchronic and synergistic mechanisms of alcohol-induced cardiac damage. Ethanol alters membrane permeability and composition, interferes with receptors and intracellular transients, induces oxidative, metabolic and energy damage, decreases protein synthesis, excitation-contraction coupling and increases cell apoptosis. In addition, ethanol decreases myocyte protective and repair mechanisms and their regeneration. Although there are diverse different strategies to directly target alcohol-induced heart damage, they are partially effective, and can only be used as support medication in a multidisciplinary approach. Alcohol abstinence is the preferred goal, but control drinking is useful in alcohol-addicted subjects not able to abstain. Correction of nutrition, ionic and vitamin deficiencies and control of alcohol-related systemic organ damage are compulsory. Recently, several growth factors (myostatin, IGF-1, leptin, ghrelin, miRNA, and ROCK inhibitors) and new cardiomyokines such as FGF21 have been described to regulate cardiac plasticity and decrease cardiac damage, improving cardiac repair mechanisms, and they are promising agents in this field. New potential therapeutic targets aim to control oxidative damage, myocyte hypertrophy, interstitial fibrosis and persistent apoptosis In addition, stem-cell therapy may improve myocyte regeneration. However, these strategies are not yet approved for clinical use.
Collapse
Affiliation(s)
- Joaquim Fernández-Solà
- Alcohol Unit, Department of Internal Medicine, Hospital Clinic, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain.
| | - Ana Planavila Porta
- Departament of Biochemistry and Molecular Biomedicine, Faculty of Biology, Avda Diagonal 643, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
34
|
Chronic alcohol exposure induces muscle atrophy (myopathy) in zebrafish and alters the expression of microRNAs targeting the Notch pathway in skeletal muscle. Biochem Biophys Res Commun 2016; 479:590-595. [PMID: 27671199 DOI: 10.1016/j.bbrc.2016.09.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022]
Abstract
Muscle wasting is estimated to affect 40-60% of alcoholics, and is more common than cirrhosis among chronic alcohol abusers. The molecular and cellular mechanisms underlying alcohol-related musculoskeletal dysfunction are, however, poorly understood. Muscle-specific microRNAs (miRNAs) referred to as myoMirs are now known to play a key role in both myogenesis and muscle atrophy. Yet, no studies have investigated a role for myoMirs in alcohol-related skeletal muscle damage. We developed a zebrafish model of chronic ethanol exposure to better define the mechanisms mediating alcohol-induced muscle atrophy. Adult fish maintained at 0.5% ethanol for eight weeks demonstrated significantly reduced muscle fiber cross-sectional area (∼12%, P < 0.05) compared to fish housed in normal water. Zebrafish miRNA microarray revealed marked changes in several miRNAs with ethanol treatment. Importantly, miR-140, a miRNA that shows 100% sequence homology with miR-140 from both mouse and human, is decreased 10-fold in ethanol treated fish. miR-140 targets several members of the Notch signaling pathway such as DNER, JAG1, and Hey1, and PCR data show that both Hey1 and Notch 1 are significantly up-related (3-fold) in muscle of ethanol treated fish. In addition, miR-146a, which targets the Notch antagonist Numb, is elevated in muscle from ethanol-treated fish. Upregulation of Notch signaling suppresses myogenesis and maintains muscle satellite cell quiescence. These data suggest that miRNAs targeting Notch are likely to play important roles in alcohol-related myopathy. Furthermore, zebrafish may serve as a useful model for better understanding the role of microRNAs in alcohol-related tissue damage.
Collapse
|
35
|
Montesinos J, Alfonso-Loeches S, Guerri C. Impact of the Innate Immune Response in the Actions of Ethanol on the Central Nervous System. Alcohol Clin Exp Res 2016; 40:2260-2270. [PMID: 27650785 DOI: 10.1111/acer.13208] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/02/2016] [Indexed: 12/25/2022]
Abstract
The innate immune response in the central nervous system (CNS) participates in both synaptic plasticity and neural damage. Emerging evidence from human and animal studies supports the role of the neuroimmune system response in many actions of ethanol (EtOH) on the CNS. Research studies have shown that alcohol stimulates brain immune cells, microglia, and astrocytes, by activating innate immune receptors Toll-like receptors (TLRs) and NOD-like receptors (inflammasome NLRs) triggering signaling pathways, which culminate in the production of pro-inflammatory cytokines and chemokines that lead to neuroinflammation. This review focuses on evidence that indicates the participation of TLRs and the inflammasome NLRs signaling response in many effects of EtOH on the CNS, such as neuroinflammation associated with brain damage, cognitive and behavioral dysfunction, and adolescent brain development alterations. It also reviews findings that indicate the role of TLR4-dependent signaling immune molecules in alcohol consumption, reward, and addiction. The research data suggest that overactivation of TLR4 or NLRs increases pro-inflammatory cytokines and mediators to cause neural damage in the cerebral cortex and hippocampus, while modest TLR4 activation, along with the generation of certain cytokines and chemokines in specific brain areas (e.g., amygdala, ventral tegmental area), modulate neurotransmission, alcohol drinking, and alcohol rewards. Elimination of TLR4 and NLRP3 abolishes many neuroimmune effects of EtOH. Despite much progress being made in this area, there are some research gaps and unanswered questions that this review discusses. Finally, potential therapies that target neuroimmune pathways to treat neuropathological and behavioral consequences of alcohol abuse are also evaluated.
Collapse
Affiliation(s)
- Jorge Montesinos
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| | - Silvia Alfonso-Loeches
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain.
| |
Collapse
|
36
|
Guo XY, Lu M, Chen XQ, He FD, Li A. Correlation study of biological characteristics of non-small cell lung cancer A549 cells after transfecting plasmid by microbubble ultrasound contrast agent. ASIAN PAC J TROP MED 2016; 9:582-6. [DOI: 10.1016/j.apjtm.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/16/2016] [Indexed: 10/21/2022] Open
|
37
|
Osna NA, Kharbanda KK. Multi-Organ Alcohol-Related Damage: Mechanisms and Treatment. Biomolecules 2016; 6:biom6020020. [PMID: 27092531 PMCID: PMC4919915 DOI: 10.3390/biom6020020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 02/05/2023] Open
Abstract
Alcohol consumption causes damage to various organs and systems.[...].
Collapse
Affiliation(s)
- Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
38
|
MicroRNAs as Biomarkers for Liver Disease and Hepatocellular Carcinoma. Int J Mol Sci 2016; 17:280. [PMID: 26927063 PMCID: PMC4813144 DOI: 10.3390/ijms17030280] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 01/19/2016] [Accepted: 02/19/2016] [Indexed: 02/07/2023] Open
Abstract
Serum levels of liver enzymes, such as alanine transaminase, aspartate transaminase, and α-fetoprotein, provide insight into liver function and are used during treatment of liver disease, but such information is limited. In the case of hepatocellular carcinoma (HCC), which is often not detected until an advanced stage, more sensitive biomarkers may help to achieve earlier detection. Serum also contains microRNAs, a class of small non-coding RNAs that play an important role in regulating gene expression. miR-122 is specific to the liver and correlates strongly with liver enzyme levels and necroinflammatory activity, and other microRNAs are correlated with the degree of fibrosis. miR-122 has also been found to be required for hepatitis C virus (HCV) infection, whereas other microRNAs have been shown to play antiviral roles. miR-125a-5p and miR-1231 have been shown to directly target hepatitis B virus (HBV) transcripts, and others are up- or down-regulated in infected individuals. MicroRNA profiles also differ in the case of HBV and HCV infection as well as between HBeAg-positive and negative patients, and in patients with occult versus active HBV infection. In such patients, monitoring of changes in microRNA profiles might provide earlier warning of neoplastic changes preceding HCC.
Collapse
|
39
|
Milić S, Lulić D, Štimac D, Ružić A, Zaputović L. Cardiac manifestations in alcoholic liver disease. Postgrad Med J 2016; 92:235-9. [PMID: 26850503 DOI: 10.1136/postgradmedj-2015-133755] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022]
Abstract
Alcoholic liver disease is the most prevalent cause of progressive liver disease in Europe. Alcoholic cirrhosis occurs in 8%-20% of cases of alcoholic liver disease. It has significant influence on cardiovascular system and haemodynamics through increased heart rate, cardiac output, decreased systemic vascular resistance, arterial pressure and plasma volume expansion. Cirrhotic cardiomyopathy is characterised by systolic and diastolic dysfunction and electrophysiological abnormalities, if no other underlying cardiac disease is present. It is often unmasked only during pharmacological or physiological stress, when compensatory mechanisms of the heart become insufficient to maintain adequate cardiac output. Low-to-moderate intake of alcohol can be cardioprotective. However, heavy drinking is associated with an increased risk of cardiovascular diseases, such as alcoholic cardiomyopathy, arterial hypertension, atrial arrhythmias as well as haemorrhagic and ischaemic stroke. Alcoholic cardiomyopathy is characterised by dilated left ventricle (LV), increased LV mass, normal or reduced LV wall thickness and systolic dysfunction.
Collapse
Affiliation(s)
- Sandra Milić
- Department of Gastroenterology, Internal Medicine Clinic, University Hospital Rijeka, Rijeka, Croatia
| | - Davorka Lulić
- Department of Cardiovascular Disease, Internal Medicine Clinic, University Hospital Rijeka, Rijeka, Croatia
| | - Davor Štimac
- Department of Gastroenterology, Internal Medicine Clinic, University Hospital Rijeka, Rijeka, Croatia
| | - Alen Ružić
- Department of Cardiovascular Disease, Internal Medicine Clinic, University Hospital Rijeka, Rijeka, Croatia
| | - Luka Zaputović
- Department of Cardiovascular Disease, Internal Medicine Clinic, University Hospital Rijeka, Rijeka, Croatia
| |
Collapse
|