1
|
Melo TS, Andrade BS. Advancing rational pesticide development against Drosophila suzukii: bioinformatics tools and applications-a systematic review. J Mol Model 2024; 30:319. [PMID: 39222282 DOI: 10.1007/s00894-024-06113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
CONTEXT Drosophila suzukii (Matsumura, 1931) is a widespread agricultural pest responsible for significant damage to various soft-skinned fruit hosts. The revolutionary potential of bioinformatics in agriculture emerges from its ability to provide extensive information on pests, fungi, chemical resistance, implications of non-target species, and other critical aspects. This wealth of information allows researchers to engage in projects and applied research in diverse agricultural domains that face these challenges. In this context, bioinformatics tools play a fundamental role. The negative impact of pests on crops, resulting in substantial economic losses, has highlighted the importance of in silico methods. METHODS To achieve this, we conducted a systematic search in scientific databases using as keywords "Drosophila suzukii," "biopesticides," "simulations computational," and "in-silico." After applying the filters of relevance and publication date, we organized the articles and prioritized those that directly addressed that matched the keywords and the use of bioinformatics tools. Additionally, we included studies focusing on in silico assays of biopesticides, such as molecular docking. Our review aimed to present a collection of recent literature on biopesticides against Drosophila suzukii, emphasizing bioinformatics methods. Through this work, we strive to contribute to the literature of new perspectives on the development and efficiency of biopesticides, along with to advance research that may improve pest control strategies. RESULTS In the results of the systematic review, we found 2734 articles related to the selected keywords. Six of these articles directly address Drosophila suzukii and the use of bioinformatics tools in the search for alternatives in pest control. In the selected studies, we observed that two articles tend to focus on phylogenetic approaches, searching for gene sequences, amino acids, and constructing phylogenetic trees. The other three articles used molecular modeling and docking of receptors such as GABA and TRP with plant-derived and synthetic compounds to study intermolecular interactions. However, we identified gaps in these studies that could lead to further research in the biorational development of biopesticides using bioinformatics tools.
Collapse
Affiliation(s)
- Tarcisio Silva Melo
- Laboratory of Bioinformatics and Computational Chemistry, Department of Biological Sciences, State University of Southwest Bahia (UESB), Jequié, Bahia, Brazil.
- Graduate Program in Biotechnology, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil.
| | - Bruno Silva Andrade
- Laboratory of Bioinformatics and Computational Chemistry, Department of Biological Sciences, State University of Southwest Bahia (UESB), Jequié, Bahia, Brazil
- Graduate Program in Biotechnology, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
| |
Collapse
|
2
|
Biswas S, Kundu A, Suby SB, Kushwah AS, Patanjali N, Shasany AK, Verma R, Saha S, Mandal A, Banerjee T, Kumar A, Singh A. Lippia alba-a potential bioresource for the management of Spodoptera frugiperda (Lepidoptera: Noctuidae). FRONTIERS IN PLANT SCIENCE 2024; 15:1422578. [PMID: 39175487 PMCID: PMC11338851 DOI: 10.3389/fpls.2024.1422578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), a threat to maize production systems, is a polyphagous pest of global significance. There is no registered bioinsecticide of botanical origin to provide green remedy against this pest of concern. The present study reports for the first time the potency of the polar and non-polar bioinsecticidal leads sourced from Lippia alba (Mill.) N.E. Br. leaves. Shade-dried leaves of L. alba were extracted and evaluated; based on preliminary bioassay, the ethyl acetate leaf extract of L. alba (LEAE) was found to be the most potent against FAW in the in vitro and in vivo studies. Ultraperformance liquid chromatography-quadrupole time-of-flight-mass spectrometric (UPLC-QToF-MS) analysis of LEAE revealed the rich chemical profile of 28 compounds, dominated by flavones, namely, naringenin, trihydroxy-dimethoxy flavone, and dihydroxy-trimethoxy flavone. Among others, glycosides, such as clerodendrin, calceolarioside E, forsythoside B, geniposide, and martynoside, and glucuronides, such as luteolin-7-diglucuronide, tricin-7-O-glucuronide, and luteolin-7-O-glucuronide, were also identified. LEAE exhibited exceptionally high in vitro [LC50 = 6,900 parts per million (ppm)] and in vivo (computed as damage score on a scale of 1-9) insecticidal activity against S. frugiperda, with no phytotoxicity at a dose as high as 20 times of LC50. LEAE also exhibited significant antifeedant, ovicidal, and growth regulatory activity at the 70-16,000 ppm (w/v) concentration range. In silico assessment revealed strong binding of martynoside, calceolarioside E, and forsythoside B with acetylcholinesterase-, sodium-, and chloride-dependent γ-aminobutyric acid (GABA) receptor and ryanodine receptor, respectively, facilitated by hydrogen bonds (conventional and C-H bonds) stabilized by hydrophobic pi-sigma, pi-pi stacked, pi-alkyl, and alkyl interactions. The present study established L. alba as a potential bioresource and secondary metabolite enriched LEAE as bioinsecticide for further product development.
Collapse
Affiliation(s)
- Shreosi Biswas
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - S. B. Suby
- ICAR-Indian Institute of Maize Research, Ludhiana, India
| | - Abran Singh Kushwah
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neeraj Patanjali
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ajit Kumar Shasany
- CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Rajesh Verma
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Supradip Saha
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Abhishek Mandal
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - Tirthankar Banerjee
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar
- Indian Council of Agricultural Research, New Delhi, India
| | - Anupama Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
3
|
Muthukrishnan S, Sekar S, Raman C, Pandiyan J, Ponnaiah J. Phytochemical analysis, physicochemical, pharmacokinetic properties and molecular docking studies of bioactive compounds in Ottelia alismoides (L.) pers. Against breast cancer proteins. In Silico Pharmacol 2024; 12:53. [PMID: 38860144 PMCID: PMC11162403 DOI: 10.1007/s40203-024-00227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
Plants provide compounds that can be used to treat diseases, and in silico methods help to expedite drug discovery while reducing costs. This study explored the phytochemical profile of methanol extract of O. alismoides using GC-MS to identify potential bioactive compounds. Autodock 4.2.6. was employed for molecular docking evaluation of the efficacy of these identified compounds against Estrogen Receptor Alpha (ERα), Human Epidermal Growth Factor Receptor 2 (HER2), and Epidermal Growth Factor Receptor (EGFR), proteins. Additionally, the ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties of the compounds were predicted using the SwissADME online tool. The preliminary phytochemical analysis revealed the presence of alkaloids, carbohydrates, glycosides, and steroids. During the GC-MS analysis, seven compounds were identified, and drug-likeness prediction of these compounds showed good pharmacokinetic properties having high gastrointestinal absorption, and orally bioavailable. The molecular docking studies exhibited promising binding affinities of bioactive compounds against all target proteins. Specifically, the compounds Tricyclo[5.2.1.0(2,6)]decan-10-ol and 2,2,6-Trichloro-7-oxabicyclo[4.1.0]heptane-1-carboxamide demonstrated the highest binding affinities with the ERα (-6.3 and - 6.0 k/cal), HER2 (-5.6 and - 6.1 k/cal), and EGFR (-5.4 and - 5.4 k/cal), respectively. These findings suggest the potential of O. alismoides as a source for developing new cancer therapeutics. The study highlights the effectiveness of in silico approaches for accelerating drug discovery from natural sources and paves the way for further exploration of these promising compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00227-y.
Collapse
Affiliation(s)
- Sathish Muthukrishnan
- Department of Microbiology, JJ College of Arts and Science (Autonomous), (Affiliated to Bharathidasan University, Tiruchirappalli, Pudukkottai, Tamil Nadu 622 422 India
| | - Suriya Sekar
- Department of Microbiology, JJ College of Arts and Science (Autonomous), (Affiliated to Bharathidasan University, Tiruchirappalli, Pudukkottai, Tamil Nadu 622 422 India
| | - Chamundeeswari Raman
- Department of Microbiology, JJ College of Arts and Science (Autonomous), (Affiliated to Bharathidasan University, Tiruchirappalli, Pudukkottai, Tamil Nadu 622 422 India
| | - Jeevan Pandiyan
- Department of Microbiology, JJ College of Arts and Science (Autonomous), (Affiliated to Bharathidasan University, Tiruchirappalli, Pudukkottai, Tamil Nadu 622 422 India
| | - Jansirani Ponnaiah
- Department of Botany, The Madura College (Autonomous), Madurai Kamarajar University, Madurai, Tamil Nadu India
| |
Collapse
|
4
|
Bazaid AS, Alsolami A, Patel M, Khateb AM, Aldarhami A, Snoussi M, Almusheet SM, Qanash H. Antibiofilm, Antimicrobial, Anti-Quorum Sensing, and Antioxidant Activities of Saudi Sidr Honey: In Vitro and Molecular Docking Studies. Pharmaceutics 2023; 15:2177. [PMID: 37765148 PMCID: PMC10534861 DOI: 10.3390/pharmaceutics15092177] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Sidr honey is a valuable source of bioactive compounds with promising biological properties. In the present study, antimicrobial, antioxidant, and anti-quorum sensing properties of Saudi Sidr honey were assessed, along with phytochemical analysis, via gas chromatography-mass spectrometry (GC-MS). In silico study was also carried out to study the drug-likeness properties of the identified compounds and to study their affinity with known target proteins assessed using molecular docking approach. The results showed that Saudi Sidr honey exhibited promising antibacterial activity, with MIC values ranging from 50 to 400 mg/mL and MBC values from 50 to >450 mg/mL. Interestingly, the Saudi Sidr honey was active against Candida auris and Candida neoformans, with an MIC value of about 500 mg/mL. Moreover, the Sidr honey showed important antioxidant activities (ABTS assay: IC50 5.41 ± 0.045 mg/mL; DPPH assay: IC50 7.70 ± 0.065 mg/mL) and β-carotene bleaching test results (IC50 ≥ 20 mg/mL). In addition, the Saudi Sidr honey was able to inhibit biofilm formation on glass slides at 1/2 MIC by 77.11% for Bacillus subtilis, 70.88% for Staphylococcus aureus, 61.79% for Escherichia coli, and 56.64% for Pseudomonas aeruginosa. Similarly, violacein production by Chromobacterium violaceum was reduced by about 56.63%, while the production of pyocyanin by P. aeruginosa was decreased to 46.27% at a low concentration of Saudi Sidr honey. ADMET properties showed that five identified compounds, namely, 1-cyclohexylimidazolidin-2-one, 3-Butyl-3-methylcyclohexanone, 4-butyl-3-methoxy-2-cyclo penten-1-one, 2,2,3,3-Tetramethyl cyclopropane carboxylic acid, and 3,5-dihydroxy-2-(3-methylbut-2-en-1-yl showed promising drug-likeness properties. The compound 3,5-dihydroxy-2-(3-methylbut-2-en-1-yl exhibited the highest binding energy against antimicrobial and antioxidant target proteins (1JIJ, 2VAM, 6B8A, 6F86, 2CDU, and 1OG5). Overall, the obtained results highlighted the promising potential of Saudi Sidr honey as a rich source of bioactive compounds that can be used as food preservatives and antimicrobial, antioxidant, and anti-quorum sensing molecules.
Collapse
Affiliation(s)
- Abdulrahman S. Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Ahmed Alsolami
- Department of Internal Medicine, College of Medicine, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India;
| | - Aiah Mustafa Khateb
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia;
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Abdu Aldarhami
- Department of Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah 21961, Saudi Arabia;
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Hail 55476, Saudi Arabia;
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources, University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | | | - Husam Qanash
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia;
| |
Collapse
|
5
|
Gupta I, Singh R, Muthusamy S, Sharma M, Grewal K, Singh HP, Batish DR. Plant Essential Oils as Biopesticides: Applications, Mechanisms, Innovations, and Constraints. PLANTS (BASEL, SWITZERLAND) 2023; 12:2916. [PMID: 37631128 PMCID: PMC10458566 DOI: 10.3390/plants12162916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
The advent of the "Green Revolution" was a great success in significantly increasing crop productivity. However, it involved high ecological costs in terms of excessive use of synthetic agrochemicals, raising concerns about agricultural sustainability. Indiscriminate use of synthetic pesticides resulted in environmental degradation, the development of pest resistance, and possible dangers to a variety of nontarget species (including plants, animals, and humans). Thus, a sustainable approach necessitates the exploration of viable ecofriendly alternatives. Plant-based biopesticides are attracting considerable attention in this context due to their target specificity, ecofriendliness, biodegradability, and safety for humans and other life forms. Among all the relevant biopesticides, plant essential oils (PEOs) or their active components are being widely explored against weeds, pests, and microorganisms. This review aims to collate the information related to the expansion and advancement in research and technology on the applications of PEOs as biopesticides. An insight into the mechanism of action of PEO-based bioherbicides, bioinsecticides, and biofungicides is also provided. With the aid of bibliometric analysis, it was found that ~75% of the documents on PEOs having biopesticidal potential were published in the last five years, with an annual growth rate of 20.51% and a citation per document of 20.91. Research on the biopesticidal properties of PEOs is receiving adequate attention from European (Italy and Spain), Asian (China, India, Iran, and Saudi Arabia), and American (Argentina, Brazil, and the United States of America) nations. Despite the increasing biopesticidal applications of PEOs and their widespread acceptance by governments, they face many challenges due to their inherent nature (lipophilicity and high volatility), production costs, and manufacturing constraints. To overcome these limitations, the incorporation of emerging innovations like the nanoencapsulation of PEOs, bioinformatics, and RNA-Seq in biopesticide development has been proposed. With these novel technological interventions, PEO-based biopesticides have the potential to be used for sustainable pest management in the future.
Collapse
Affiliation(s)
- Ipsa Gupta
- Department of Botany, Faculty of Science, Panjab University, Chandigarh 160014, India; (I.G.); (R.S.)
| | - Rishikesh Singh
- Department of Botany, Faculty of Science, Panjab University, Chandigarh 160014, India; (I.G.); (R.S.)
| | - Suganthi Muthusamy
- Department of Biotechnology, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai 600117, India;
| | - Mansi Sharma
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh 160014, India;
| | - Kamaljit Grewal
- Department of Botany, Khalsa College for Women, Civil Lines, Ludhiana 141001, India;
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh 160014, India;
| | - Daizy R. Batish
- Department of Botany, Faculty of Science, Panjab University, Chandigarh 160014, India; (I.G.); (R.S.)
| |
Collapse
|
6
|
Rao H, Ahmad S, Y.Aati H, Basit A, Ahmad I, Ahmad Ghalloo B, Nadeem Shehzad M, Nazar R, Zeeshan M, Nasim J, ur Rehman Khan K. Phytochemical screening, biological evaluation, and molecular docking studies of aerial parts of Trigonella hamosa (branched Fenugreek). ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
7
|
Duque JE, Urbina DL, Vesga LC, Ortiz-Rodríguez LA, Vanegas TS, Stashenko EE, Mendez-Sanchez SC. Insecticidal activity of essential oils from American native plants against Aedes aegypti (Diptera: Culicidae): an introduction to their possible mechanism of action. Sci Rep 2023; 13:2989. [PMID: 36805522 PMCID: PMC9941582 DOI: 10.1038/s41598-023-30046-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Searching for new bioactive molecules to design insecticides is a complex process since pesticides should be highly selective, active against the vector, and bio-safe for humans. Aiming to find natural compounds for mosquito control, we evaluated the insecticidal activity of essential oils (EOs) from 20 American native plants against Aedes aegypti larvae using bioassay, biochemical, and in silico analyses. The highest larvicide activity was exhibited by EOs from Steiractinia aspera (LC50 = 42.4 µg/mL), Turnera diffusa (LC50 = 70.9 µg/mL), Piper aduncum (LC50 = 55.8 µg/mL), Lippia origanoides (chemotype thymol/carvacrol) (LC50 = 61.9 µg/mL), L. origanoides (chemotype carvacrol/thymol) (LC50 = 59.8 µg/mL), Hyptis dilatata (LC50 = 61.1 µg/mL), Elaphandra quinquenervis (LC50 = 61.1 µg/mL), and Calycolpus moritzianus (LC50 = 73.29 µg/mL) after 24 h. This biological activity may be related to the disruption of the electron transport chain through the mitochondrial protein complexes. We hypothesized that the observed EOs' effect is due to their major components, where computational approaches such as homology modeling and molecular docking may suggest the possible binding pose of secondary metabolites that inhibit the mitochondrial enzymes and acetylcholinesterase activity (AChE). Our results provided insights into the possible mechanism of action of EOs and their major compounds for new insecticide designs targeting the mitochondria and AChE activity in A. aegypti for effective and safe insecticide.
Collapse
Affiliation(s)
- Jonny E. Duque
- grid.411595.d0000 0001 2105 7207Centro de Investigaciones en Enfermedades Tropicales – Cintrop, Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Parque Tecnológico y de Investigaciones Guatiguará Km 2 El Refugio, Piedecuesta, Colombia
| | - Diana L. Urbina
- grid.411595.d0000 0001 2105 7207Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Luis C. Vesga
- grid.411595.d0000 0001 2105 7207Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Luis A. Ortiz-Rodríguez
- grid.411595.d0000 0001 2105 7207Centro de Investigaciones en Enfermedades Tropicales – Cintrop, Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Parque Tecnológico y de Investigaciones Guatiguará Km 2 El Refugio, Piedecuesta, Colombia
| | - Thomas S. Vanegas
- grid.411595.d0000 0001 2105 7207Centro de Investigaciones en Enfermedades Tropicales – Cintrop, Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Parque Tecnológico y de Investigaciones Guatiguará Km 2 El Refugio, Piedecuesta, Colombia
| | - Elena E. Stashenko
- grid.411595.d0000 0001 2105 7207Centro de Investigación en Biomoléculas – CIBIMOL y Centro Nacional de Investigación para la Agroindustrialización de Plantas Aromáticas y Medicinales Tropicales – CENIVAM, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Stelia C. Mendez-Sanchez
- grid.411595.d0000 0001 2105 7207Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| |
Collapse
|
8
|
Bacteriocin-Nanoconjugates (Bac10307-AgNPs) Biosynthesized from Lactobacillus acidophilus-Derived Bacteriocins Exhibit Enhanced and Promising Biological Activities. Pharmaceutics 2023; 15:pharmaceutics15020403. [PMID: 36839725 PMCID: PMC9967518 DOI: 10.3390/pharmaceutics15020403] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
The proteinaceous compounds produced by lactic acid bacteria are called bacteriocins and have a wide variety of bioactive properties. However, bacteriocin's commercial availability is limited due to short stability periods and low yields. Therefore, the objective of this study was to synthesize bacteriocin-derived silver nanoparticles (Bac10307-AgNPs) extracted from Lactobacillus acidophilus (L. acidophilus), which may have the potential to increase the bioactivity of bacteriocins and overcome the hurdles. It was found that extracted and purified Bac10307 had a broad range of stability for both temperature (20-100 °C) and pH (3-12). Further, based on Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, its molecular weight was estimated to be 4.2 kDa. The synthesized Bac10307-AgNPs showed a peak of surface plasmon resonance at 430 nm λmax. Fourier transform infrared (FTIR) confirmed the presence of biological moieties, and transmission electron microscopy (TEM) coupled with Energy dispersive X-Ray (EDX) confirmed that AgNPs were spherical and irregularly shaped, with a size range of 9-20 nm. As a result, the Bac10307-AgNPs displayed very strong antibacterial activity with MIC values as low as 8 μg/mL for Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), when compared to Bac10307 alone. In addition, Bac10307-AgNPs demonstrated promising in vitro antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 116.04 μg/mL) and in vitro cytotoxicity against human liver cancer cells (HepG2) (IC50 = 135.63 μg/mL), more than Bac10307 alone (IC50 = 139.82 μg/mL against DPPH and 158.20 μg/mL against HepG2). Furthermore, a protein-protein molecular docking simulation study of bacteriocins with target proteins of different biological functions was also carried out in order to ascertain the interactions between bacteriocins and target proteins.
Collapse
|
9
|
Multitarget Potential of Phytochemicals from Traditional Medicinal Tree, Terminalia arjuna (Roxb. ex DC.) Wight & Arnot as Potential Medicaments for Cardiovascular Disease: An In-Silico Approach. Molecules 2023; 28:molecules28031046. [PMID: 36770716 PMCID: PMC9920080 DOI: 10.3390/molecules28031046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Terminalia arjuna (Roxb. ex DC.) Wight & Arnot of the Combretaceae family is one of the most frequently approved and utilized medicinal trees in the traditional medicinal system, which was used for the treatment of a variety of diseases, including cardiovascular disorders. The present study aims to identify phytochemicals from T. arjuna, that do not exhibit any toxicity and have significant cardioprotective activity using an in-silico technique. Four different cardiovascular proteins, namely human angiotensin receptor (PDB ID: 4YAY), P38 mitogen-activated protein kinase (MAPK, PDB ID: 4DLI), 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-Co A) reductase (PDB ID: 1HW9), and human C-reactive protein (PDB ID: 1B09), were used as target proteins to identify potential inhibitors using a virtual screening of the phytochemicals in T. arjuna revealed casuarinin as a potential inhibitor of all selected target proteins with strong binding energy. Furthermore, MD simulations for a 100 ns time scale also revealed that most of the key protein contacts of all target proteins were retained throughout the simulation trajectories. Binding free energy calculations using the MM-GBSA approach also support a strong inhibitory effect of casuarinin on target proteins. Casuarinin's effective binding to these proteins lays the groundwork for the development of broad-spectrum drugs as well as the understanding of the underlying mechanism against cardiovascular diseases through in vivo and clinical studies.
Collapse
|
10
|
Molecular docking analysis and evaluation of the antimicrobial properties of the constituents of Geranium wallichianum D. Don ex Sweet from Kashmir Himalaya. Sci Rep 2022; 12:12547. [PMID: 35869098 PMCID: PMC9307801 DOI: 10.1038/s41598-022-16102-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022] Open
Abstract
Geranium wallichianum D. Don ex Sweet is a well-known medicinal plant in Kashmir Himalya. The evidence for its modern medicinal applications remains majorly unexplored. The present study was undertaken to elucidate the detailed antimicrobial promises of different crude extracts (methanolic, ethanolic, petroleum ether, and ethyl acetate) of G. wallichainum against common human bacterial and fungal pathogens in order to scientifically validate its traditional use. The LC–MS analysis of G. wallichainum yielded 141 bioactive compounds with the vast majority of them having therapeutic applications. Determination of minimum inhibitory concentrations (MICs) by broth microdilution method of G. wallichainum was tested against bacterial and fungal pathogens with MICs ranging from 0.39 to 400 µg/mL. Furthermore, virtual ligands screening yielded elatine, kaempferol, and germacrene-A as medicinally most active constituents and the potential inhibitors of penicillin-binding protein (PBP), dihydropteroate synthase (DHPS), elongation factor-Tu (Eu-Tu), ABC transporter, 1,3 beta glycan, and beta-tubulin. The root mean square deviation (RMSD) graphs obtained through the molecular dynamic simulations (MDS) indicated the true bonding interactions which were further validated using root mean square fluctuation (RMSF) graphs which provided a better understanding of the amino acids present in the proteins responsible for the molecular motions and fluctuations. The effective binding of elatine, kaempferol, and germacrene-A with these proteins provides ground for further research to understand the underlying mechanism that ceases the growth of these microbes.
Collapse
|
11
|
Chávez-Gutiérrez E, Martínez-Arellanes M, Murillo-López M, Medina-Guzmán MF, Mobarak-Richaud L, Pelcastre-Guzmán K, Quintana-Romero OJ, Ariza-Castolo A, Ayala-Moreno MDR, Salazar JR, Guerra-Araiza C, Rodríguez-Páez L, Pinto-Almazán R, Loza-Mejía MA. In Combo Studies for the Optimization of 5-Aminoanthranilic Acid Derivatives as Potential Multitarget Drugs for the Management of Metabolic Syndrome. Pharmaceuticals (Basel) 2022; 15:1461. [PMID: 36558912 PMCID: PMC9784827 DOI: 10.3390/ph15121461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Metabolic syndrome is a set of risk factors that consist of abdominal obesity, arterial hypertension, alterations in the lipid profile, and hyperglycemia. The current therapeutic strategy includes polypharmacy, using three or more drugs to control each syndrome component. However, this approach has drawbacks that could lead to therapeutic failure. Multitarget drugs are molecules with the ability to act on different targets simultaneously and are an attractive alternative for treating complex diseases such as metabolic syndrome. Previously, we identified a triamide derivative of 5-aminoanthranilic acid that exhibited hypoglycemic, hypolipemic, and antihypertensive activities simultaneously. In the present study, we report the synthesis and in combo evaluation of new derivatives of anthranilic acid, intending to identify the primary structural factors that improve the activity over metabolic syndrome-related parameters. We found that substitution on position 5, incorporation of 3,4-dimethoxyphenyl substituents, and having a free carboxylic acid group lead to the in vitro inhibition of HMG-CoA reductase, and simultaneously the diminution of the serum levels of glucose, triglycerides, and cholesterol in a diet-induced in vivo model.
Collapse
Affiliation(s)
- Edwin Chávez-Gutiérrez
- Design, Isolation and Synthesis of Bioactive Molecules Research Group, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico
- Doctorado en Ciencias en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Manuel Carpio y Plan de Ayala s/n, Mexico City 11340, Mexico
| | - Matilda Martínez-Arellanes
- Design, Isolation and Synthesis of Bioactive Molecules Research Group, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico
| | - Montserrat Murillo-López
- Design, Isolation and Synthesis of Bioactive Molecules Research Group, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico
| | - María Fernanda Medina-Guzmán
- Design, Isolation and Synthesis of Bioactive Molecules Research Group, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico
| | - Laila Mobarak-Richaud
- Design, Isolation and Synthesis of Bioactive Molecules Research Group, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico
| | - Karen Pelcastre-Guzmán
- Design, Isolation and Synthesis of Bioactive Molecules Research Group, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico
| | - Osvaldo Javier Quintana-Romero
- Department of Chemistry, Center for Research and Advanced Studies, The National Polytechnic Institute (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Armando Ariza-Castolo
- Department of Chemistry, Center for Research and Advanced Studies, The National Polytechnic Institute (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | | | - Juan Rodrigo Salazar
- Design, Isolation and Synthesis of Bioactive Molecules Research Group, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico
| | - Christian Guerra-Araiza
- Medical Research Unit in Pharmacology, Specialities Hospital Bernardo Sepúlveda, National Medical Center XXI Century, Social Security Mexican Institute (IMSS), Av. Cuauhtémoc 330, Mexico City 06720, Mexico
| | - Lorena Rodríguez-Páez
- Biochemistry Department, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Manuel Carpio y Plan de Ayala s/n, Mexico City 11340, Mexico
| | - Rodolfo Pinto-Almazán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City 11340, Mexico
| | - Marco A. Loza-Mejía
- Design, Isolation and Synthesis of Bioactive Molecules Research Group, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico
| |
Collapse
|
12
|
Khan A, Khan SU, Khan A, Shal B, Rehman SU, Rehman SU, Htar TT, Khan S, Anwar S, Alafnan A, Rengasamy KRR. Anti-Inflammatory and Anti-Rheumatic Potential of Selective Plant Compounds by Targeting TLR-4/AP-1 Signaling: A Comprehensive Molecular Docking and Simulation Approaches. Molecules 2022; 27:molecules27134319. [PMID: 35807562 PMCID: PMC9268648 DOI: 10.3390/molecules27134319] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Plants are an important source of drug development and numerous plant derived molecules have been used in clinical practice for the ailment of various diseases. The Toll-like receptor-4 (TLR-4) signaling pathway plays a crucial role in inflammation including rheumatoid arthritis. The TLR-4 binds with pro-inflammatory ligands such as lipopolysaccharide (LPS) to induce the downstream signaling mechanism such as nuclear factor κappa B (NF-κB) and mitogen activated protein kinases (MAPKs). This signaling activation leads to the onset of various diseases including inflammation. In the present study, 22 natural compounds were studied against TLR-4/AP-1 signaling, which is implicated in the inflammatory process using a computational approach. These compounds belong to various classes such as methylxanthine, sesquiterpene lactone, alkaloid, flavone glycosides, lignan, phenolic acid, etc. The compounds exhibited different binding affinities with the TLR-4, JNK, NF-κB, and AP-1 protein due to the formation of multiple hydrophilic and hydrophobic interactions. With TLR-4, rutin had the highest binding energy (−10.4 kcal/mol), poncirin had the highest binding energy (−9.4 kcal/mol) with NF-κB and JNK (−9.5 kcal/mol), respectively, and icariin had the highest binding affinity (−9.1 kcal/mol) with the AP-1 protein. The root means square deviation (RMSD), root mean square fraction (RMSF), and radius of gyration (RoG) for 150 ns were calculated using molecular dynamic simulation (MD simulation) based on rutin’s greatest binding energy with TLR-4. The RMSD, RMSF, and RoG were all within acceptable limits in the MD simulation, and the complex remained stable for 150 ns. Furthermore, these compounds were assessed for the potential toxic effect on various organs such as the liver, heart, genotoxicity, and oral maximum toxic dose. Moreover, the blood–brain barrier permeability and intestinal absorption were also predicted using SwissADME software (Lausanne, Switzerland). These compounds exhibited promising physico-chemical as well as drug-likeness properties. Consequently, these selected compounds portray promising anti-inflammatory and drug-likeness properties.
Collapse
Affiliation(s)
- Ashrafullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Shafi Ullah Khan
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar 25000, Pakistan;
- Product & Process Innovation Department, Qarshi Brands (Pvt) Ltd., Hattar 22610, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Faculty of Health Sciences, IQRA University, Islamabad Campus (Chak Shahzad), Park link Rd., Islamabad 44000, Pakistan
| | - Sabih Ur Rehman
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore 54600, Pakistan; (S.U.R.); (S.U.R.)
| | - Shaheed Ur Rehman
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore 54600, Pakistan; (S.U.R.); (S.U.R.)
| | - Thet Thet Htar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia;
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Correspondence: or (S.K.); (K.R.R.)
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 55211, Saudi Arabia; (S.A.); (A.A.)
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 55211, Saudi Arabia; (S.A.); (A.A.)
| | - Kannan RR Rengasamy
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College, Chennai 600077, India
- Correspondence: or (S.K.); (K.R.R.)
| |
Collapse
|
13
|
Sakthivel S, Mohideen HS, Raman C, Mohamad SB. Potential Acetylcholinesterase Inhibitor Acting on the Pesticide Resistant and Susceptible Cotton Pests. ACS OMEGA 2022; 7:20515-20527. [PMID: 35755373 PMCID: PMC9219083 DOI: 10.1021/acsomega.1c07359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Gossypium spp., produces economically important cotton fiber, and its yield is highly affected due to pest attacks. Insecticidal target site mutation is one of the reasons behind insecticide resistance to a wide range of pesticides. Acetylcholinesterase (AChE) protein sequences from major pests of cotton were analyzed to assess various physicochemical properties, presence of motifs, and understand evolutionary relationship. The impact of three mutant AChE1, A. lucorum A216S, B. tabaci F392W, and A. gossypii A302S, on the strucutral stability was assessed, and F392W_AChE1 was selected based on 100 ns molecular dynamics simulation. Virtual screening of the zinc database and high-throughput virtual screening, standard precision, and extra precision docking resulted in the identification of six compounds. The six identified compounds and six known commercial pesticdes were docked with three mutant and three wild type AChE1, and one (C1) was selected based on Tice criteria. The conformational and interaction stability of the AChE1-C1 and F392W_AChE1-C1 complexes were monitored at 100 ns Gromacs simulation and were found to be thermodynamically favorable. Therefore, C1 may have the potential to bind to the resistant and susceptible strains of cotton pest, and the resistance developed by insects could be arrested. Furthermore, synthesis and field study of C1 will lead us to a better understanding of the efficacy of the identified compound.
Collapse
Affiliation(s)
- Seethalakshmi Sakthivel
- Bioinformatics
and Entomoinformatics Lab, Department of Genetic Engineering, School
of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Chennai, Tamilnadu 603203, India
| | - Habeeb Shaik Mohideen
- Bioinformatics
and Entomoinformatics Lab, Department of Genetic Engineering, School
of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu, Chennai, Tamilnadu 603203, India
| | - Chandrasekar Raman
- Lab
Manager, Integrative Physiology & Metabolism, Joslin Diabetes
Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Saharuddin Bin Mohamad
- Institute
of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala
Lumpur 50603, Malaysia
| |
Collapse
|
14
|
Ralte L, Khiangte L, Thangjam NM, Kumar A, Singh YT. GC-MS and molecular docking analyses of phytochemicals from the underutilized plant, Parkia timoriana revealed candidate anti-cancerous and anti-inflammatory agents. Sci Rep 2022; 12:3395. [PMID: 35233058 PMCID: PMC8888824 DOI: 10.1038/s41598-022-07320-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 02/15/2022] [Indexed: 12/30/2022] Open
Abstract
Plants are excellent sources of functionally bioactive compounds and essential nutrients. The phytochemical constituents have enormous potential in treating both plant and human diseases. Parkia timoriana (Yongchak/Zawngtah), one of the most important underutilized plants popularly consumed in Manipur and Mizoram states of Northeastern region of India, is known for its ethnobotanical and ethnomedicinal values. A significant DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)), and Phosphomolybdate scavenging activity corresponding to high antioxidant potentials was shown by the extracts from different edible parts of P. timoriana. P. timoriana extract showed significant antibacterial potential against Bacillus pumilus, Bacillus subtillis, Escherichia coli and Pseudomonas aeruginosa. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry (GC-MS) analyses of the extracts revealed the functional groups and bioactive compounds present in different edible parts of the plant. Characteristic peaks of phenols, carboxylic acids, alkenes, glycogen, alkyl halides, halogen, aliphatic amines, primary and secondary amines, esters, ether, aromatics, lipids, triglycerides, nitro compounds that had antimicrobial, anti-cancer and anti-inflammatory properties etc. were observed. The GC-MS analysis also revealed the occurrence of 49 bioactive compounds that are known to possess a variety of pharmacological activities. Subsequently, in silico molecular docking studies of the identified bioactive compounds predicted potential anticancer and anti-inflammatory properties. To the best of our knowledge, this is the first-hand report on the bioactive compounds of edible parts of P. timoriana extracts showing antioxidant, antimicrobial and pharmacological significance. This study can lead to the production of new herbal medicines for various diseases employing P. timoriana and perhaps leading to the creation of new medications.
Collapse
Affiliation(s)
- Laldinfeli Ralte
- Department of Botany, Mizoram University, Aizawl, Mizoram, 796004, India
| | | | - Nurpen M Thangjam
- Department of Horticulture, Aromatic and Medicinal Plants, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Awadhesh Kumar
- Department of Horticulture, Aromatic and Medicinal Plants, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Y Tunginba Singh
- Department of Botany, Mizoram University, Aizawl, Mizoram, 796004, India.
| |
Collapse
|
15
|
In Silico Studies of Lamiaceae Diterpenes with Bioinsecticide Potential against Aphis gossypii and Drosophila melanogaster. Molecules 2021; 26:molecules26030766. [PMID: 33540716 PMCID: PMC7867283 DOI: 10.3390/molecules26030766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/19/2022] Open
Abstract
Background: The growing demand for agricultural products has led to the misuse/overuse of insecticides; resulting in the use of higher concentrations and the need for ever more toxic products. Ecologically, bioinsecticides are considered better and safer than synthetic insecticides; they must be toxic to the target organism, yet with low or no toxicity to non-target organisms. Many plant extracts have seen their high insecticide potential confirmed under laboratory conditions, and in the search for plant compounds with bioinsecticidal activity, the Lamiaceae family has yielded satisfactory results. Objective: The aim of our study was to develop computer-assisted predictions for compounds with known insecticidal activity against Aphis gossypii and Drosophila melanogaster. Results and conclusion: Structure analysis revealed ent-kaurane, kaurene, and clerodane diterpenes as the most active, showing excellent results. We also found that the interactions formed by these compounds were more stable, or presented similar stability to the commercialized insecticides tested. Overall, we concluded that the compounds bistenuifolin L (1836) and bistenuifolin K (1931), were potentially active against A. gossypii enzymes; and salvisplendin C (1086) and salvixalapadiene (1195), are potentially active against D. melanogaster. We observed and highlight that the diterpenes bistenuifolin L (1836), bistenuifolin K (1931), salvisplendin C (1086), and salvixalapadiene (1195), present a high probability of activity and low toxicity against the species studied.
Collapse
|
16
|
Konappa N, Udayashankar AC, Krishnamurthy S, Pradeep CK, Chowdappa S, Jogaiah S. GC-MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci Rep 2020; 10:16438. [PMID: 33009462 PMCID: PMC7532471 DOI: 10.1038/s41598-020-73442-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Amomum nilgiricum is one of the plant species reported from Western Ghats of India, belonging to the family Zingiberaceae, with ethno-botanical values, and is well-known for their ethno medicinal applications. In the present investigation, ethyl acetate and methanol extracts of A. nilgiricum were analyzed by Fourier transform infrared spectrometer (FTIR) and gas chromatography-mass spectrometry (GC-MS) to identify the important functional groups and phytochemical constituents. The FTIR spectra revealed the occurrence of functional characteristic peaks of aromatic amines, carboxylic acids, ketones, phenols and alkyl halides group from leaf and rhizome extracts. The GC-MS analysis of ethyl acetate and methanol extracts from leaves, and methanol extract from rhizomes of A. nilgiricum detected the presence of 25 phytochemical compounds. Further, the leaf and rhizome extracts of A. nilgiricum showed remarkable antibacterial and antifungal activities at 100 mg/mL. The results of DPPH and ferric reducing antioxidant power assay recorded maximum antioxidant activity in A. nilgiricum methanolic leaf extract. While, ethyl acetate leaf extract exhibited maximum α-amylase inhibition activity, followed by methanolic leaf extract exhibiting aldose reductase inhibition. Subsequently, these 25 identified compounds were analyzed for their bioactivity through in silico molecular docking studies. Results revealed that among the phytochemical compounds identified, serverogenin acetate might have maximum antibacterial, antifungal, antiviral, antioxidant and antidiabetic properties followed by 2,4-dimethyl-1,3-dioxane and (1,3-13C2)propanedioic acid. To our best knowledge, this is the first description on the phytochemical constituents of the leaves and rhizomes of A. nilgiricum, which show pharmacological significance, as there has been no literature available yet on GC-MS and phytochemical studies of this plant species. The in silico molecular docking of serverogenin acetate was also performed to confirm its broad spectrum activities based on the binding interactions with the antibacterial, antifungal, antiviral, antioxidant and antidiabetic target proteins. The results of the present study will create a way for the invention of herbal medicines for several ailments by using A. nilgiricum plants, which may lead to the development of novel drugs.
Collapse
Affiliation(s)
- Narasimhamurthy Konappa
- Department of Studies in Biotechnology, University of Mysore, 570 006, Manasagangotri, Mysuru, Karnataka, India
| | - Arakere C Udayashankar
- Department of Studies in Biotechnology, University of Mysore, 570 006, Manasagangotri, Mysuru, Karnataka, India
| | - Soumya Krishnamurthy
- Department of Microbiology, Field Marshal K. M. Cariappa College, A Constituent College of Mangalore University, Madikeri, 571201, Karnataka, India
| | | | - Srinivas Chowdappa
- Department of Microbiology and Biotechnology, Jnanabharathi Campus, Bangalore University, Bengaluru, 560 056, Karnataka, India
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Biotechnology and Microbiology, Karnataka University, Dharwad, Karnataka, India.
| |
Collapse
|
17
|
Lv M, Chen S, Zhang S, Xu H. Toxicology study of fraxinellone as ovicidal agents against Mythimna separata Walker and Bombyx mori Linaeus. Z NATURFORSCH C 2020; 75:291-295. [PMID: 32568736 DOI: 10.1515/znc-2020-0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
Fraxinellone is a naturally occurring degraded limonoid isolated from many species of plants in Meliaceae and Rutaceae. Besides structural modification of the lead compounds, the toxicology study of the lead compounds is also a very important procedure to develop insecticidal agents. Herein the toxicology study of fraxinellone was carried out as the ovicidal agent against the eggs of two lepidopteran insects Mythimna separata Walker and Bombyx mori Linaeus. Fraxinellone selectively exhibited an ovicidal activity against the eggs of M. separata. After treatment with fraxinellone, the eggshells of M. separata were shrinked, whereas those of B. mori had no obvious change. The dynamic process of M. separata embryo development demonstrated that the distinct difference between the treated eggs and the control ones was obvious at the second day after treatment, especially, the control embryo finished blastokinesis, whereas the treated ones were still laid at pre-reversion status and a lot of yolk can be seen around the embryo. It ultimately resulted in the eggshell withered and the egg hatching inhibited.
Collapse
Affiliation(s)
- Min Lv
- College of Plant Protection, Northwest A&F University, Yangling, 712100, PR China
| | - Suying Chen
- College of Plant Protection, Northwest A&F University, Yangling, 712100, PR China
| | - Shaoyong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, PR China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling, 712100, PR China.,Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, PR China
| |
Collapse
|
18
|
Hao M, Sun Z, Xu J, Lv M, Xu H. Semisynthesis and Pesticidal Activities of Derivatives of the Diterpenoid Andrographolide and Investigation on the Stress Response of Aphis citricola Van der Goot (Homoptera: Aphididae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4131-4143. [PMID: 32162924 DOI: 10.1021/acs.jafc.9b08242] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To discover natural-product-based pesticides, 7β-oxycarbonylandrographolide derivatives were stereoselectively constructed from a labdane diterpenoid andrographolide. Among them, 2'-(n)Pr-1',3'-dioxin-7β-oxy(m-Cl)benzoylandrographolide (IIc), 2'-(n)Pr-1',3'-dioxin-7β-oxyacetylandrographolide (IIf), 2'-(p-Me)Ph-1',3'-dioxin-7β-oxy(o-Cl)benzoylandrographolide (Vb), and 2'-(p-Me)Ph-1',3'-dioxin-7β-oxy(m-Cl)benzoylandrographolide (Vc) against Mythimna separata displayed the most promising growth inhibitory activity; 2'-(n)Pr-1',3'-dioxin-7β-oxy(o-Cl)benzoylandrographolide (IIb: LC50 = 0.406 mg/mL) and IIc (LC50 = 0.415 mg/mL) exhibited the most pronounced acaricidal activity (andrographolide; LC50: 5.106 mg/mL) and good control effects against Tetranychus cinnabarinus; compounds Ic, IIe, and Va-c (LD50 = 0.035-0.039 μg/nymph) showed potent aphicidal activity (andrographolide: LD50 = 0.178 μg/nymph), and compounds IIe and Vb showed good control effects against Aphis citricola. Moreover, it was found that Hsp70 of A. citricola was an important gene involved in stress response to andrographolide and its derivatives.
Collapse
Affiliation(s)
- Meng Hao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zhiqiang Sun
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jianwei Xu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China
| |
Collapse
|
19
|
Salazar JR, Loza-Mejía MA, Soto-Cabrera D. Chemistry, Biological Activities and In Silico Bioprospection of Sterols and Triterpenes from Mexican Columnar Cactaceae. Molecules 2020; 25:molecules25071649. [PMID: 32260146 PMCID: PMC7180492 DOI: 10.3390/molecules25071649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
The Cactaceae family is an important source of triterpenes and sterols. The wide uses of those plants include food, gathering, medicinal, and live fences. Several studies have led to the isolation and characterization of many bioactive compounds. This review is focused on the chemistry and biological properties of sterols and triterpenes isolated mainly from some species with columnar and arborescent growth forms of Mexican Cactaceae. Regarding the biological properties of those compounds, apart from a few cases, their molecular mechanisms displayed are not still fully understand. To contribute to the above, computational chemistry tools have given a boost to traditional methods used in natural products research, allowing a more comprehensive exploration of chemistry and biological activities of isolated compounds and extracts. From this information an in silico bioprospection was carried out. The results suggest that sterols and triterpenoids present in Cactaceae have interesting substitution patterns that allow them to interact with some bio targets related to inflammation, metabolic diseases, and neurodegenerative processes. Thus, they should be considered as attractive leads for the development of drugs for the management of chronic degenerative diseases.
Collapse
Affiliation(s)
- Juan Rodrigo Salazar
- Correspondence: (J.R.S.); (M.A.L.-M.); Tel.: +52-55-5278-9500 (J.R.S. & M.A.L.-M.)
| | - Marco A. Loza-Mejía
- Correspondence: (J.R.S.); (M.A.L.-M.); Tel.: +52-55-5278-9500 (J.R.S. & M.A.L.-M.)
| | | |
Collapse
|
20
|
Sánchez-Tejeda JF, Sánchez-Ruiz JF, Salazar JR, Loza-Mejía MA. A Definition of "Multitargeticity": Identifying Potential Multitarget and Selective Ligands Through a Vector Analysis. Front Chem 2020; 8:176. [PMID: 32232029 PMCID: PMC7083080 DOI: 10.3389/fchem.2020.00176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/26/2020] [Indexed: 11/13/2022] Open
Abstract
The design of multitarget drugs is an essential area of research in Medicinal Chemistry since they have been proposed as potential therapeutics for the management of complex diseases. However, defining a multitarget drug is not an easy task. In this work, we propose a vector analysis for measuring and defining "multitargeticity." We developed terms, such as order and force of a ligand, to finally reach two parameters: multitarget indexes 1 and 2. The combination of these two indexes allows discrimination of multitarget drugs. Several training sets were constructed to test the usefulness of the indexes: an experimental training set, with real affinities, a docking training set, within theoretical values, and an extensive database training set. The indexes proved to be useful, as they were used independently in silico and experimental data, identifying actual multitarget compounds and even selective ligands in most of the training sets. We then applied these indexes to evaluate a virtual library of potential ligands for targets related to multiple sclerosis, identifying 10 compounds that are likely leads for the development of multitarget drugs based on their in silico behavior. With this work, a new milestone is made in the way of defining multitargeticity and in drug design.
Collapse
Affiliation(s)
| | | | | | - Marco A Loza-Mejía
- Facultad de Ciencias Químicas, Universidad La Salle, Mexico City, Mexico
| |
Collapse
|
21
|
Combined 3D-quantitative structure-activity relationships and topomer technology-based molecular design of human 4-hydroxyphenylpyruvate dioxygenase inhibitors. Future Med Chem 2020; 12:795-811. [PMID: 32223563 DOI: 10.4155/fmc-2019-0349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: 4-Hydroxyphenylpyruvate dioxygenase (HPPD) has attracted increasing attention as an important target against tyrosinemia type I. This paper aimed to explore the structure-activity relationship of HPPD inhibitors with pyrazole scaffolds and to design novel HPPD inhibitors. Methodology & results: The best 3D-quantitative structure-activity relationships model was established by two different strategies based on 40 pyrazole scaffold-based analogs. Screening of molecular fragments by topomer technology, combined with molecular docking, 14 structures were identified for potential human HPPD inhibitory activity. Molecular dynamics results demonstrated that all the compounds obtained bound to the enzyme and possessed a satisfactory binding free energy. Conclusion: The quantitative structure-activity relationship of HPPD inhibitors of pyrazole scaffolds was clarified and 14 original structures with potential human HPPD inhibitory activity were obtained.
Collapse
|
22
|
Venugopala KN, Ramachandra P, Tratrat C, Gleiser RM, Bhandary S, Chopra D, Morsy MA, Aldhubiab BE, Attimarad M, Nair AB, Sreeharsha N, Venugopala R, Deb PK, Chandrashekharappa S, Khalil HE, Alwassil OI, Abed SN, Bataineh YA, Palenge R, Haroun M, Pottathil S, Girish MB, Akrawi SH, Mohanlall V. Larvicidal Activities of 2-Aryl-2,3-Dihydroquinazolin -4-ones against Malaria Vector Anopheles arabiensis, In Silico ADMET Prediction and Molecular Target Investigation. Molecules 2020; 25:molecules25061316. [PMID: 32183140 PMCID: PMC7144721 DOI: 10.3390/molecules25061316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
Malaria, affecting all continents, remains one of the life-threatening diseases introduced by parasites that are transmitted to humans through the bites of infected Anopheles mosquitoes. Although insecticides are currently used to reduce malaria transmission, their safety concern for living systems, as well as the environment, is a growing problem. Therefore, the discovery of novel, less toxic, and environmentally safe molecules to effectively combat the control of these vectors is in high demand. In order to identify new potential larvicidal agents, a series of 2-aryl-1,2-dihydroquinazolin-4-one derivatives were synthesized and evaluated for their larvicidal activity against Anopheles arabiensis. The in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of the compounds were also investigated and most of the derivatives possessed a favorable ADMET profile. Computational modeling studies of the title compounds demonstrated a favorable binding interaction against the acetylcholinesterase enzyme molecular target. Thus, 2-aryl-1,2-dihydroquinazolin-4-ones were identified as a novel class of Anopheles arabiensis insecticides which can be used as lead molecules for the further development of more potent and safer larvicidal agents for treating malaria.
Collapse
Affiliation(s)
- Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa;
- Correspondence:
| | - Pushpalatha Ramachandra
- Department of Chemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India; (P.R.); (R.P.)
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Raquel M. Gleiser
- CREAN-IMBIV (UNC-CONICET), Av. Valparaíso s.n., Córdoba, Argentina and FCEFyN, AV. Sarsfield 299, Universidad Nacional de Cordoba, Cordoba 5000, Argentina;
| | - Subhrajyoti Bhandary
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India; (S.B.); (D.C.)
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India; (S.B.); (D.C.)
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Bandar E. Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Rashmi Venugopala
- Department of Public Health Medicine, University of KwaZulu-Natal, Howard College Campus, Durban 4001, South Africa;
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (P.K.D.); (S.N.A.); (Y.A.B.)
| | - Sandeep Chandrashekharappa
- Institute for Stem Cell Biology and Regenerative Medicine, NCBS, TIFR, GKVK, Bellary Road, Bangalore 560 065, India;
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Osama I. Alwassil
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia;
| | - Sara Nidal Abed
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (P.K.D.); (S.N.A.); (Y.A.B.)
| | - Yazan A. Bataineh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (P.K.D.); (S.N.A.); (Y.A.B.)
| | - Ramachandra Palenge
- Department of Chemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India; (P.R.); (R.P.)
| | - Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Shinu Pottathil
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Meravanige B. Girish
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Sabah H. Akrawi
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Viresh Mohanlall
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa;
| |
Collapse
|
23
|
Gressel J. Perspective: present pesticide discovery paradigms promote the evolution of resistance - learn from nature and prioritize multi-target site inhibitor design. PEST MANAGEMENT SCIENCE 2020; 76:421-425. [PMID: 31613036 DOI: 10.1002/ps.5649] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 05/26/2023]
Abstract
For many years, the emphasis of industry discovery programs has been on finding new target sites of pesticides and finding pesticides that inhibit single targets. There had been an emphasis on genomics in finding single targets for potential pesticides. There is also the claim that registration of single target inhibiting pesticides is simpler if the mode of action is known. Conversely, if one looks at the evolution of resistance from an epidemiological perspective to ascertain which pesticides have been the most recalcitrant to evolutionary forces, it is those that have multiple target sites of action. Non-target-site resistances can evolve to multi-target-site inhibitors, but these resistances can often be overcome by structural modification of the pesticide. Industry has looked at pest-toxic natural products as pesticide leads, but seems to have abandoned those where they can find no single target of action. Perhaps nature has been intelligent and evolved many natural products that are synergistic multi-target-site inhibitors, and that is why natural compounds have been active for millennia? We should be learning from nature while combining new chemistry technologies with vast accrued databases and computer aided design allowing fragment-based discovery and scaffold hopping to produce multi-target site inhibitors instead of single target pesticides. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonathan Gressel
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
24
|
Ongaro A, Zagotto G, Memo M, Gianoncelli A, Ribaudo G. Natural phosphodiesterase 5 (PDE5) inhibitors: a computational approach. Nat Prod Res 2019; 35:1648-1653. [PMID: 31140295 DOI: 10.1080/14786419.2019.1619726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In 1998, sildenafil was marketed as the first FDA-approved oral drug for the treatment of erectile dysfunction (ED). During the last two decades, the commercialization of other synthetic phosphodiesterase 5 (PDE5) inhibitors has been paralleled by the rise of remedies based on natural molecules from different chemical classes (flavonoids, polyphenols and alkaloids in general). In this work, a set of in silico tools were applied to study a panel of 30 natural compounds claimed to be effective against ED in the scientific literature or in folk medicine. First, pharmacokinetic properties were analysed to exclude the compounds lacking in specific drug-like features. Estimated binding energy for PDE5 and selectivity towards other PDE isoforms were then considered to highlight some promising molecules. Finally, a detailed structural investigation of the interaction pattern with PDE in comparison with sildenafil was conducted for the best performing compound of the set.
Collapse
Affiliation(s)
- Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giovanni Ribaudo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
25
|
Hierarchical Virtual Screening of Potential Insectides Inhibitors of Acetylcholinesterase and Juvenile Hormone from Temephos. Pharmaceuticals (Basel) 2019; 12:ph12020061. [PMID: 31003398 PMCID: PMC6630876 DOI: 10.3390/ph12020061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 01/26/2023] Open
Abstract
Aedes aegypti (Linnaeus, 1762; Diptera: Culicidae) is the main vector transmitting viral diseases such as dengue fever, dengue haemorrhagic fever, urban yellow fever, zika and chikungunya. Worldwide, especially in the Americas and Brazil, many cases of dengue have been reported in recent years, which have shown significant growth. The main control strategy is the elimination of the vector, carried out through various education programs, to change human habits, but the most usual is biological control, together with environmental management and chemical control. The most commonly insecticide used is temephos (an organophosphorus compound), but Aedes aegypti populations have shown resistance and the product is highly toxic, so we chose it as a template molecule to perform a ligand-based virtual screening in the ChemBrigde (DIVERSet-CL subcollection) database, searching for derivatives with similarity in shape (ROCS) and electrostatic potential (EON). Thus, fourty-five molecules were filtered based on their pharmacokinetic and toxicological properties and 11 molecules were selected by a molecular docking study, including binding affinity and mode of interaction. The L46, L66 and L68 molecules show potential inhibitory activity for both the insect (−9.28, −10.08 and −6.78 Kcal/mol, respectively) and human (−6.05, 6.25 and 7.2 Kcal/mol respectively) enzymes, as well as the juvenile hormone protein (−9.2; −10.96 and −8.16 kcal/mol, respectively), showing a significant difference in comparison to the template molecule temephos. Molecules L46, L66 and L68 interacted with important amino acids at each catalytic site of the enzyme reported in the literature. Thus, the molecules here investigated are potential inhibitors for both the acetylcholinesterase enzymes and juvenile hormone protein–from insect and humans, characterizing them as a potential insecticide against the Aedes aegypti mosquito.
Collapse
|
26
|
Medina-Franco JL. New Approaches for the Discovery of Pharmacologically-Active Natural Compounds. Biomolecules 2019; 9:biom9030115. [PMID: 30909603 PMCID: PMC6468781 DOI: 10.3390/biom9030115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 11/16/2022] Open
Abstract
Natural products continue to be a major source of active compounds [...].
Collapse
Affiliation(s)
- José L Medina-Franco
- Department of Pharmacy, National Autonomous University of Mexico, Mexico City 04510, Mexico.
| |
Collapse
|