1
|
De Gaetano F, Mannino D, Celesti C, Bulzomí M, Iraci N, Vincenzo Giofrè S, Esposito E, Paterniti I, Anna Ventura C. Randomly methylated β-cyclodextrin improves water - solubility, cellular protection and mucosa permeability of idebenone. Int J Pharm 2024; 665:124718. [PMID: 39288841 DOI: 10.1016/j.ijpharm.2024.124718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's are very common today. Idebenone (IDE) is a potent antioxidant with good potential for restoring cerebral efficiency in cases of these and other medical conditions, but a serious drawback for the clinical use of IDE in neurological disorders lies in its scarce water solubility, which greatly inhibits its bioavailability. In this work, we prepared the inclusion complex of IDE with randomly methylated β-cyclodextrin (RAMEB), resulting in improved water solubility of the included drug; then its in vitro biological activity and ex vivo permeability was evalutated. The solid complex was characterized through FT-IR spectroscopy, Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). A 78-fold improvement of the solubility of IDE in water resulted, together with a strong 1:1 host-guest interaction (association constant of 12630 M-1), and dissolution of the complex within 15 min, all evidenced during the in-solution studies. Biological in vitro studies were then performed on differentiated human neuroblastoma cells (SH-SY5Y) subjected to oxidative stress. Pretreatment with IDE/RAMEB positively affected cell viability, promoted the nuclear translocation of Nrf2, and increased the levels of GSH as well as those of the endogenous antioxidant enzymes Mn-SOD and HO-1. Lastly, the complexation significantly improved the permeation of IDE through isolated rat nasal mucosa.
Collapse
Affiliation(s)
- Federica De Gaetano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Deborah Mannino
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Consuelo Celesti
- Dipartimento di ingegneria, Università di Messina, Contrada Di Dio, 98166 Messina, Italy.
| | - Maria Bulzomí
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Nunzio Iraci
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Salvatore Vincenzo Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Emanuela Esposito
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Irene Paterniti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Cinzia Anna Ventura
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
2
|
Chen S, Song S, Tan Y, He S, Ren X, Li Z, Liu Y. Optimization of ultrasonic-assisted debittering of Ganoderma lucidum using response surface methodology, characterization, and evaluation of antioxidant activity. PeerJ 2024; 12:e17943. [PMID: 39421421 PMCID: PMC11485051 DOI: 10.7717/peerj.17943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 10/19/2024] Open
Abstract
Background Ganoderma lucidum (G. lucidum) has gained increasing attention as a potential health care product and food source. However, the bitter taste of G. lucidum has limited its development and utilization for the food industry. Methonds The response surface methodology was employed to optimize the inclusion conditions for the debittering of G. lucidum. The effects of 2-hydroxypropyl-β-cyclodextrin concentration (12-14 g/mL), ultrasound temperature (20-40 °C and host-guest ratio (1:1-2:1) on response variables were studied. The physical characteristics of inclusion complexes prepared through spray drying and freeze drying were analyzed. The antioxidant activity of the different treated samples was subsequently investigated. Results Study results showed that, in comparison to the control group, the inclusion solution displayed a significantly enhanced taste profile under optimal processing conditions, exhibiting an 80.74% reduction in bitterness value. Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (NMR) studies indicated the successful formation of inclusion compounds. The moisture content and bulk density of spray-dried powder were found to be significantly superior to those of freeze-dried powder (p < 0.05). In comparison to the diluted solution, the inclusion liquid demonstrated a 20.27%, 30.01% and 36.55% increase in ferric ion reducing antioxidant power (FRAP), hydroxyl radical scavenging and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging respectively. Further, the DPPH clearance of microencapsulated powder was not significantly different from that of tocopherol at a concentration of 25 mg/mL. Conclusions In summary, the study provides theoretical basis and methodological guidance to eliminate the bitterness of G. lucidum, and therefore provide potential options to the use of G. lucidum as a food source.
Collapse
Affiliation(s)
- Shuting Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Shiying Song
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Yumei Tan
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Shengling He
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Xiyi Ren
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
| | - Yongxiang Liu
- Guizhou Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, Guizhou Province, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, Guizhou Province, China
| |
Collapse
|
3
|
Ferrero R, Pantaleone S, Gho CI, Hoti G, Trotta F, Brunella V, Corno M. Unveiling the synergy: a combined experimental and theoretical study of β-cyclodextrin with melatonin. J Mater Chem B 2024; 12:4004-4017. [PMID: 38568714 DOI: 10.1039/d3tb02795c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Melatonin (MT) is a vital hormone controlling biorhythms, and optimizing its release in the human body is crucial. To address MT's unfavorable pharmacokinetics, we explored the inclusion complexes of MT with β-cyclodextrin (β-CD). Nano spray drying was applied to efficiently synthesize these complexes in three molar ratios (MT : β-CD = 1 : 1, 2 : 1, and 1 : 2), reducing reagent use and expediting inclusion. The complex powders were characterized through thermal analyses (TGA and DSC), Fourier transform infrared spectroscopy (FTIR), and in vitro MT release measurements via high-performance liquid chromatography (HPLC). In parallel, computational studies were conducted, examining the stability of MT : β-CD complexes by means of unbiased semi-empirical conformational searches refined by DFT, which produced a distribution of MT : β-CD binding enthalpies. Computational findings highlighted that these complexes are stabilized by specific hydrogen bonds and non-specific dispersive forces, with stronger binding in the 1 : 1 complex, which was corroborated by in vitro release data. Furthermore, the alignment between simulated and experimental FTIR spectra demonstrated the quality of both the structural model and computational methodology, which was crucial to enhance our comprehension of optimizing MT's release for therapeutic applications.
Collapse
Affiliation(s)
- Riccardo Ferrero
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Stefano Pantaleone
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Cecilia Irene Gho
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Gjylije Hoti
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Francesco Trotta
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Valentina Brunella
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Marta Corno
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
4
|
Kraszni M, Balogh B, Mándity I, Horváth P. Advantages of Induced Circular Dichroism Spectroscopy for Qualitative and Quantitative Analysis of Solution-Phase Cyclodextrin Host-Guest Complexes. Int J Mol Sci 2023; 25:412. [PMID: 38203583 PMCID: PMC10779089 DOI: 10.3390/ijms25010412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The presence of a chiral or chirally perturbed chromophore in the molecule under investigation is a fundamental requirement for the appearance of a circular dichroism (CD) spectrum. For native and for most of the substituted cyclodextrins, this condition is not applicable, because although chiral, cyclodextrins lack a chromophore group and therefore have no characteristic CD spectra over 220 nm. The reason this method can be used is that if the guest molecule has a chromophore group and this is in the right proximity to the cyclodextrin, it becomes chirally perturbed. As a result, the complex will now provide a CD signal, and this phenomenon is called induced circular dichroism (ICD). The appearance of the ICD spectrum is clear evidence of the formation of the complex, and the spectral sign and intensity is a good predictor of the structure of the complex. By varying the concentration of cyclodextrin, the ICD signal changes, resulting in a saturation curve, and from these data, the stability constant can be calculated for a 1:1 complex. This article compares ICD and NMR spectroscopic and molecular modeling results of cyclodextrin complexes of four model compounds: nimesulide, fenbufen, fenoprofen, and bifonazole. The results obtained by the different methods show good agreement, and the structures estimated from the ICD spectra are supported by NMR data and molecular modeling.
Collapse
Affiliation(s)
- Márta Kraszni
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre utca 9, 1092 Budapest, Hungary;
| | - Balázs Balogh
- Department of Organic Chemistry, Semmelweis University, Hőgyes Endre utca 7, 1092 Budapest, Hungary; (B.B.); (I.M.)
| | - István Mándity
- Department of Organic Chemistry, Semmelweis University, Hőgyes Endre utca 7, 1092 Budapest, Hungary; (B.B.); (I.M.)
| | - Péter Horváth
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre utca 9, 1092 Budapest, Hungary;
| |
Collapse
|
5
|
Sarabia-Vallejo Á, Caja MDM, Olives AI, Martín MA, Menéndez JC. Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects. Pharmaceutics 2023; 15:2345. [PMID: 37765313 PMCID: PMC10534465 DOI: 10.3390/pharmaceutics15092345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Many active pharmaceutical ingredients show low oral bioavailability due to factors such as poor solubility and physical and chemical instability. The formation of inclusion complexes with cyclodextrins, as well as cyclodextrin-based polymers, nanosponges, and nanofibers, is a valuable tool to improve the oral bioavailability of many drugs. The microencapsulation process modifies key properties of the included drugs including volatility, dissolution rate, bioavailability, and bioactivity. In this context, we present relevant examples of the stabilization of labile drugs through the encapsulation in cyclodextrins. The formation of inclusion complexes with drugs belonging to class IV in the biopharmaceutical classification system as an effective solution to increase their bioavailability is also discussed. The stabilization and improvement in nutraceuticals used as food supplements, which often have low intestinal absorption due to their poor solubility, is also considered. Cyclodextrin-based nanofibers, which are polymer-free and can be generated using environmentally friendly technologies, lead to dramatic bioavailability enhancements. The synthesis of chemically modified cyclodextrins, polymers, and nanosponges based on cyclodextrins is discussed. Analytical techniques that allow the characterization and verification of the formation of true inclusion complexes are also considered, taking into account the differences in the procedures for the formation of inclusion complexes in solution and in the solid state.
Collapse
Affiliation(s)
- Álvaro Sarabia-Vallejo
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - María del Mar Caja
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - Ana I. Olives
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - M. Antonia Martín
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| |
Collapse
|
6
|
Gao F, Guan X, Zhang W, Han T, Liu X, Shi B. Oxidized Soybean Oil Evoked Hepatic Fatty Acid Metabolism Disturbance in Rats and their Offspring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13483-13494. [PMID: 37667911 DOI: 10.1021/acs.jafc.3c02466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The oxidation of fats and oils is an undisputed subject of science, given the effect of oxidized fats and oils on food quality and safety. This study aimed to determine whether maternal exposure to oxidized soybean oil (OSO) causes lipid metabolism disorders in the liver and whether this lipid metabolism disorder can be transmitted to offspring or even worsened. A total of 60 female Sprague-Dawley (SD) rats were divided randomly into four groups in this study. Treatment groups received a pure diet of OSO with a peroxide value of 200, 400, or 800 mEqO2/kg, while the control group received fresh soybean oil (FSO). As for our results, OSO affected serum biochemical parameters in the maternal generation (F0) and induced liver histopathology changes, inflammation, and oxidative stress. Moreover, the expression of genes related to the liver X receptor α (LXRα)─sterol regulatory element binding protein-1c (SREBP-1c) signaling pathway was changed. Similar trends were found in the livers of offspring on postnatal days 21 and 56. In conclusion, exposure to OSO during gestation and lactation can affect liver lipid synthesis. Additionally, it is detrimental to the development of the offspring's liver, affecting fatty acid metabolism and causing liver damage.
Collapse
Affiliation(s)
- Feng Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xin Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wentao Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Tingting Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xinyu Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
7
|
De Gaetano F, Margani F, Barbera V, D’Angelo V, Germanò MP, Pistarà V, Ventura CA. Characterization and In Vivo Antiangiogenic Activity Evaluation of Morin-Based Cyclodextrin Inclusion Complexes. Pharmaceutics 2023; 15:2209. [PMID: 37765179 PMCID: PMC10536596 DOI: 10.3390/pharmaceutics15092209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Morin (MRN) is a natural compound with antiangiogenic, antioxidant, anti-inflammatory, and anticancer activity. However, it shows a very low water solubility (28 μg/mL) that reduces its oral absorption, making bioavailability low and unpredictable. To improve MRN solubility and positively affect its biological activity, particularly its antiangiogenic activity, in this work, we prepared the inclusion complexes of MNR with sulfobutylether-β-cyclodextrin (SBE-β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD). The inclusion complexes obtained by the freeze-drying method were extensively characterized in solution (phase-solubility studies, UV-Vis titration, and NMR spectroscopy) and in the solid state (TGA, DSC, and WAXD analysis). The complexation significantly increased the water solubility by about 100 times for MRN/HP-β-CD and 115 times for MRN/SBE-β-CD. Furthermore, quantitative dissolution of the complexes was observed within 60 min, whilst 1% of the free drug dissolved in the same experimental time. 1H NMR and UV-Vis titration studies demonstrated both CDs well include the benzoyl moiety of the drug. Additionally, SBE-β-CD could interact with the cinnamoyl moiety of MRN too. The complexes are stable in solution, showing a high value of association constant, that is, 3380 M-1 for MRN/HP-β-CD and 2870 M-1 for MRN/SBE-β-CD. In vivo biological studies on chick embryo chorioallantoic membrane (CAM) and zebrafish embryo models demonstrated the high biocompatibility of the inclusion complexes and the effective increase in antiangiogenic activity of complexed MRN with respect to the free drug.
Collapse
Affiliation(s)
- Federica De Gaetano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| | - Fatima Margani
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, I-20131 Milano, Italy; (F.M.); (V.B.)
| | - Vincenzina Barbera
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, I-20131 Milano, Italy; (F.M.); (V.B.)
| | - Valeria D’Angelo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| | - Maria Paola Germanò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| | - Venerando Pistarà
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Cinzia Anna Ventura
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| |
Collapse
|
8
|
Ali S, Sikdar S, Basak S, Haydar MS, Mallick K, Mondal M, Roy D, Ghosh S, Sahu S, Paul P, Roy MN. Label-Free Detection of Epinephrine Using Flower-like Biomimetic CuS Antioxidant Nanozymes. Inorg Chem 2023; 62:11291-11303. [PMID: 37432268 DOI: 10.1021/acs.inorgchem.3c00538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
A biosensor comprising crystalline CuS nanoparticles (NPs) was synthesized via a one-step simple coprecipitation route without involvement of a surfactant. The powder X-ray diffraction method has been used to evaluate the crystalline nature and different phases consist of the formation of CuS NPs. Mainly hexagonal unit cells consist of the formation of CuS NP unit cells. Most of the surfaces are covered with rhombohedral microparticles with a smooth exterior and surface clustering, examined by SEM images, and the shape of NPs was spherical, having an average size of 23 nm, as confirmed by TEM analysis. This study has focused on the peroxidase-mimicking activity, superoxide dismutase (SOD)-mimicking activity, and chemosensor-based colorimetric determination and detection of epinephrine (EP) neurotransmitters with excellent selectivity. The CuS NPs catalyzed the oxidation of the oxidase substrate 3, 3-5, 5 tetramethyl benzidine (TMB) with the help of supplementary H2O2 that followed Michaelis-Menten kinetics with excellent Km and Vmax values calculated by the Lineweaver-Burk plot. Taking advantage of the drop in absorbance upon introduction of EP for the CuS NPs-TMB/H2O2 system, a colorimetric route has been developed for selective and real-time detection of EP. The sensitivity of the new colorimetric probe was vibrant, having a linear range of 0-16 μM, and achieved a low limit of detection of 457 nM. Moreover, the present nanosystem exhibited appreciable SOD-mimicking activity which could effectively remove O2•- from commercial cigarette smoke, along with it acting as a potential radical scavenger as well. The new nanosystem effectively scavenged •OH, O2.-, and metal chelation which were investigated calorimetrically.
Collapse
Affiliation(s)
- Salim Ali
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Suranjan Sikdar
- Department of Chemistry, Government General Degree College at Kushmandi, Dakshin Dinajpur, Kushmandi 733121, India
| | - Shatarupa Basak
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Md Salman Haydar
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Kangkan Mallick
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Modhusudan Mondal
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Debadrita Roy
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Shibaji Ghosh
- CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - Sanjay Sahu
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak 484886, Madhya Pradesh, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| |
Collapse
|
9
|
Acri G, Testagrossa B, Piccione G, Arfuso F, Giudice E, Giannetto C. Central and Peripheral Fatigue Evaluation during Physical Exercise in Athletic Horses by Means of Raman Spectroscopy. Animals (Basel) 2023; 13:2201. [PMID: 37443998 DOI: 10.3390/ani13132201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The evaluation of the performance levels in athletic horses is of major importance to prevent sports injuries. Raman spectroscopy is an innovative technique that allows for a rapid evaluation of biomolecules in biological fluids. It also permits qualitative and quantitative sample analyses, which lead to the simultaneous determination of the components of the examined biological fluids. On the basis of this, the Raman spectroscopy technique was applied on serum samples collected from five Italian Saddle horses subjected to a standardized obstacle course preceded by a warm-up to evaluate the applicability of this technique for the assessment of central and peripheral fatigue in athletic horses. Blood samples were collected via jugular venipuncture in a vacutainer tube with a clot activator before exercise, immediately after exercise, and 30 min and 1 h after the end of the obstacle course. Observing the obtained Raman spectra, the major changes due to the experimental conditions appeared in the (1300-1360) cm-1 and (1385-1520) cm-1 bands. In the (1300-1360) cm-1 band, lipids and tryptophan were identified; in the (1385-1520) cm-1 band, leucine, glycine, isoleucine, lactic acid, tripeptide, adenosine, and beta carotene were identified. A significant effect of exercise was recorded on all the sub-bands. In particular, a change immediately after exercise versus before exercise was found. Moreover, the mean lactic concentration was positively correlated with the Raman area of the sub-band assigned to lactic acid. In this context, the application of Raman spectroscopy on blood serum samples represents a useful technique for secondary-structure protein identification to investigate the metabolic changes that occur in athletic horses during physical exercise.
Collapse
Affiliation(s)
- Giuseppe Acri
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Barbara Testagrossa
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Via Palatucci n 13, 98168 Messina, Italy
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Via Palatucci n 13, 98168 Messina, Italy
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Via Palatucci n 13, 98168 Messina, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Via Palatucci n 13, 98168 Messina, Italy
| |
Collapse
|
10
|
Boyuklieva R, Hristozova A, Pilicheva B. Synthesis and Characterization of PCL-Idebenone Nanoparticles for Potential Nose-to-Brain Delivery. Biomedicines 2023; 11:biomedicines11051491. [PMID: 37239161 DOI: 10.3390/biomedicines11051491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The present work is focused on the preparation of an optimal model of poly-ε-caprolactone nanoparticles as potential carriers for nasal administration of idebenone. A solvent/evaporation technique was used for nanoparticle preparation. Poly-ε-caprolactone with different molecular weights (14,000 and 80,000 g/mol) was used. Polysorbate 20 and Poloxamer 407, alone and in combination, were used as emulsifiers at different concentrations to obtain a stable formulation. The nanoparticles were characterized using dynamic light scattering, SEM, TEM, and FTIR. The resulting structures were spherical in shape and their size distribution depended on the type of emulsifier. The average particle size ranged from 188 to 628 nm. The effect of molecular weight and type of emulsifier was established. Optimal models of appropriate size for nasal administration were selected for inclusion of idebenone. Three models of idebenone-loaded nanoparticles were developed and the effect of molecular weight on the encapsulation efficiency was investigated. Increased encapsulation efficiency was found when poly-ε-caprolactone with lower molecular weight was used. The molecular weight also affected the drug release from the nanostructures. Dissolution study data were fitted into various kinetic models and the Korsmeyer-Peppas model was found to be indicative of the release mechanism of idebenone.
Collapse
Affiliation(s)
- Radka Boyuklieva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Asya Hristozova
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Department of Analytical Chemistry and Computational Chemistry, Faculty of Chemistry, University of Plovdiv "Paisii Hilendarski", 4000 Plovdiv, Bulgaria
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
11
|
De Gaetano F, Scala A, Celesti C, Lambertsen Larsen K, Genovese F, Bongiorno C, Leggio L, Iraci N, Iraci N, Mazzaglia A, Ventura CA. Amphiphilic Cyclodextrin Nanoparticles as Delivery System for Idebenone: A Preformulation Study. Molecules 2023; 28:molecules28073023. [PMID: 37049785 PMCID: PMC10096402 DOI: 10.3390/molecules28073023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Idebenone (IDE), a synthetic short-chain analogue of coenzyme Q10, is a potent antioxidant able to prevent lipid peroxidation and stimulate nerve growth factor. Due to these properties, IDE could potentially be active towards cerebral disorders, but its poor water solubility limits its clinical application. Octanoyl-β-cyclodextrin is an amphiphilic cyclodextrin (ACyD8) bearing, on average, ten octanoyl substituents able to self-assemble in aqueous solutions, forming various typologies of supramolecular nanoassemblies. Here, we developed nanoparticles based on ACyD8 (ACyD8-NPs) for the potential intranasal administration of IDE to treat neurological disorders, such as Alzheimer’s Disease. Nanoparticles were prepared using the nanoprecipitation method and were characterized for their size, zeta potential and morphology. STEM images showed spherical particles, with smooth surfaces and sizes of about 100 nm, suitable for the proposed therapeutical aim. The ACyD8-NPs effectively loaded IDE, showing a high encapsulation efficiency and drug loading percentage. To evaluate the host/guest interaction, UV-vis titration, mono- and two-dimensional NMR analyses, and molecular modeling studies were performed. IDE showed a high affinity for the ACyD8 cavity, forming a 1:1 inclusion complex with a high association constant. A biphasic and sustained release of IDE was observed from the ACyD8-NPs, and, after a burst effect of about 40%, the release was prolonged over 10 days. In vitro studies confirmed the lack of toxicity of the IDE/ACyD8-NPs on neuronal SH-SY5Y cells, and they demonstrated their antioxidant effect upon H2O2 exposure, as a general source of ROS.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Kim Lambertsen Larsen
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Fabio Genovese
- Technical, Economic and Technological Institute “Girolamo Caruso”, Via John Fitzgerald Kennedy 2, 91011 Alcamo, Italy
| | - Corrado Bongiorno
- National Council of Research, Institute of Microelectronics and Microsystems (CNR-IMM), Strada VIII n. 5-Zona Industriale, 95121 Catania, Italy
| | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (N.I.); (A.M.); (C.A.V.)
| | - Antonino Mazzaglia
- National Council of Research, Institute for the Study of Nanostructured Materials (CNR-ISMN), URT of Messina c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (N.I.); (A.M.); (C.A.V.)
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (N.I.); (A.M.); (C.A.V.)
| |
Collapse
|
12
|
Mondal M, Basak S, Ali S, Roy D, Haydar MS, Sarkar K, Ghosh NN, Roy K, Roy MN. Assembled Bisphenol A with cyclic oligosaccharide as the controlled release complex to reduce risky effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43300-43319. [PMID: 36656475 DOI: 10.1007/s11356-023-25217-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Herein, in order to improve the bioavailability of a non-biodegradable pollutant, inclusion complexation procedures had been used to develop better formulations of this pollutant, Bisphenol A (BPA). In our research, an inclusion complex (IC) of β-cyclodextrin (β-CD) with BPA was formed to investigate the effect of β-CD on the water solubility, anti-oxidant, anti-bacterial activity, toxicity, and thermal stability of BPA. UV-Vis and other spectrometric methods such as NMR, FTIR, and XRD indicated the molecular mechanism of interactions between β-CD and BPA, which was further hypothesized using molecular modeling to confirm preliminary results. Studies of TGA and DSC demonstrated that encapsulation boosted the thermal stability of BPA. This research also makes predictions about BPA's release behavior when CT-DNA is present. In vitro testing of the IC's antibacterial activities showed that it outperformed pure BPA. The in silico study was found to have a considerable decrease in toxicity level for IC compared to pure BPA. Therefore, β-CD-encapsulated BPA can lessen toxicity by raising antioxidant levels. Additionally, as its antibacterial activity increases, it may be employed therapeutically. Thus, this discovery of creating BPA formulations with controlled release and/or protective properties allows for a more logical application of BPA by reducing its hazardous effects through boosting its efficacy.
Collapse
Affiliation(s)
- Modhusudan Mondal
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Shatarupa Basak
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Salim Ali
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Debadrita Roy
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Md Salman Haydar
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Darjeeling, 734013, India
| | - Kushankur Sarkar
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Darjeeling, 734013, India
| | | | - Kanak Roy
- Department of Chemistry, Alipurduar University, Alipurduar, 736122, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India.
- Alipurduar University, Alipurduar, 736122, India.
| |
Collapse
|
13
|
Ghosh B, Roy N, Mandal S, Ali S, Bomzan P, Roy D, Salman Haydar M, Dakua VK, Upadhyay A, Biswas D, Paul KK, Roy MN. Host-Guest Encapsulation of RIBO with TSC4X: Synthesis, Characterization, and Its Application by Physicochemical and Computational Investigations. ACS OMEGA 2023; 8:6778-6790. [PMID: 36844564 PMCID: PMC9948204 DOI: 10.1021/acsomega.2c07396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
In our present work, we synthesized a new encapsulated complex denoted as RIBO-TSC4X, which was derived from an important vitamin riboflavin (RIBO) and p-sulfonatothiacalix[4]arene(TSC4X). The synthesized complex RIBO-TSC4X was then characterized by utilizing several spectroscopic techniques such as 1H-NMR, FT-IR, PXRD, SEM, and TGA. Job's plot has been employed to show the encapsulation of RIBO (guest) with TSC4X (host) having a 1:1 molar ratio. The molecular association constant of the complex entity (RIBO-TSC4X) was found to be 3116.29 ± 0.17 M-1, suggesting the formation of a stable complex. The augment in aqueous solubility of the RIBO-TSC4X complex compared to pure RIBO was investigated by UV-vis spectroscopy, and it was viewed that the newly synthesized complex has almost 30 times enhanced solubility over pure RIBO. The enhancement of thermal stability upto 440 °C for the RIBO-TSC4X complex was examined by TG analysis. This research also forecasts RIBO's release behavior in the presence of CT-DNA, and at the same time, BSA binding study was also carried out. The synthesized RIBO-TSC4X complex exhibited comparatively better free radical scavenging activity, thereby minimizing oxidative injury of the cell as evident from a series of antioxidant and anti-lipid peroxidation assay. Furthermore, the RIBO-TSC4X complex showed peroxidase-like biomimetic activity, which is very useful for several enzyme catalyst reactions.
Collapse
Affiliation(s)
- Biswajit Ghosh
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Niloy Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Saikat Mandal
- Department
of Chemistry, National Institute of Technology, Durgapur 713209, India
| | - Salim Ali
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Pranish Bomzan
- Department
of Chemistry, Gorubathan Government College, Kalimpong 735231, India
| | - Debadrita Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Md Salman Haydar
- Department
of Botany, University of North Bengal, Darjeeling 734013, India
| | - Vikas Kumar Dakua
- Department
of Chemistry, Alipurduar University, Alipurduar 736122, West Bengal, India
| | - Anupam Upadhyay
- Department
of Chemistry, Alipurduar University, Alipurduar 736122, West Bengal, India
| | - Debabrata Biswas
- Department
of Chemistry, Alipurduar University, Alipurduar 736122, West Bengal, India
| | - Kausik Kumar Paul
- Department
of Chemistry, Alipurduar University, Alipurduar 736122, West Bengal, India
| | - Mahendra Nath Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| |
Collapse
|
14
|
Ιnclusion Complexes of Magnesium Phthalocyanine with Cyclodextrins as Potential Photosensitizing Agents. Bioengineering (Basel) 2023; 10:bioengineering10020244. [PMID: 36829738 PMCID: PMC9951963 DOI: 10.3390/bioengineering10020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
In this work, the preparation of inclusion complexes, (ICs) using magnesium phthalocyanine (MgPc) and various cyclodextrins (β-CD, γ-CD, HP-β-CD, Me-β-CD), using the kneading method is presented. Dynamic light scattering (DLS) indicated that the particles in dispersion possessed mean size values between 564 to 748 nm. The structural characterization of the ICs by infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy provides evidence of the formation of the ICs. The release study of the MgPc from the different complexes was conducted at pH 7.4 and 37 °C, and indicated that a rapid release ("burst effect") of ~70% of the phthalocyanine occurred in the first 20 min. The kinetic model that best describes the release profile is the Korsmeyer-Peppas. The photodynamic therapy studies against the squamous carcinoma A431 cell line indicated a potent photosensitizing activity of MgPc (33% cell viability after irradiation for 3 min with 18 mW/cm2), while the ICs also presented significant activity. Among the different ICs, the γ-CD-MgPc IC exhibited the highest photokilling capacity under the same conditions (cell viability 26%). Finally, intracellular localization studies indicated the enhanced cellular uptake of MgPc after incubation of the cells with the γ-CD-MgPc complex for 4 h compared to MgPc in its free form.
Collapse
|
15
|
Formulation of Multicomponent Chrysin-Hydroxy Propyl β Cyclodextrin-Poloxamer Inclusion Complex Using Spray Dry Method: Physicochemical Characterization to Cell Viability Assessment. Pharmaceuticals (Basel) 2022; 15:ph15121525. [PMID: 36558976 PMCID: PMC9788470 DOI: 10.3390/ph15121525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
The work aimed to enhance chrysin (CHR) water solubility, dissolution, and in vitro antibacterial as well as cell viability. Chrysin binary, as well as ternary inclusion complex, were prepared using the spray drying method. The influence of an auxiliary component (poloxamer; PLX) was also assessed after being incorporated into the chrysin HP βCD complex (CHR-BC) and formed as a chrysin ternary complex (CHR-TC). The phase solubility investigation was carried out in order to assess the complexation efficiency and stability constant. The samples were assessed for the dissolution test, physicochemical evaluation, antibacterial activity, and cell viability tests were also assessed. The results of the phase solubility investigation showed that the stability constant for the binary system (268 M-1) was lower than the ternary system (720 M-1). The complex stability was validated by the greater stability constant value. The dissolution results showed that pure CHR had a limited release of 32.55 ± 1.7% in 60 min, while prepared CHR-TC and CHR-BC both demonstrated maximum CHR releases of 99.03 ± 2.34% and 71.95 ±2.1%, respectively. The dissolution study's findings revealed that the release of CHR was much improved over that of pure CHR. A study using a scanning electron microscope showed that CHR-TC contains more agglomerated and amorphous components. The higher conversion of crystalline CHR into an amorphous form is responsible for the structural alterations that are observed. After complexation, the distinctive peaks of pure CHR changed due to the complexation with HP βCD and PLX. The antimicrobial and cell viability results revealed improved antimicrobial activity as well as a lower IC50 value than pure CHR against the tested anticancer cell line (MCF7).
Collapse
|
16
|
De Gaetano F, Cristiano MC, Paolino D, Celesti C, Iannazzo D, Pistarà V, Iraci N, Ventura CA. Bicalutamide Anticancer Activity Enhancement by Formulation of Soluble Inclusion Complexes with Cyclodextrins. Biomolecules 2022; 12:1716. [PMID: 36421730 PMCID: PMC9687945 DOI: 10.3390/biom12111716] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 08/27/2023] Open
Abstract
Bicalutamide (BCL) is a nonsteroidal antiandrogen drug that represents an alternative to castration in the treatment of prostate cancer, due to its relatively long half-life and tolerable side effects. However, it possesses a very low water solubility that can affect its oral bioavailability. In this work, we developed inclusion complexes of BCL with the highly soluble hydroxypropyl-β-cyclodextrin (HP-β-CyD) and sulfobutylether-β-cyclodextrin (SBE-β-CyD) to increase the water solubility and anticancer activity of BCL. The inclusion complexes were prepared using the freeze-drying method and were then characterized in a solid state via differential scanning calorimetry and X-ray analysis and in solution via phase-solubility studies and UV-vis and NMR spectroscopy. The BCL/HP-β-CyD and BCL/SBE-β-CyD inclusion complexes were amorphous and rapidly dissolved in water. Both the 1H-NMR spectra and molecular modeling studies confirmed the penetration of the 2-(trifluoromethyl)benzonitrile ring of BCL within the cavity of both cyclodextrins (CyDs). Due to the consistent improvement of the water solubility of BCL, the inclusion complexes showed higher antiproliferative activity toward the human prostate androgen-independent cell lines, DU-145 and PC-3, with respect to free BCL. These results demonstrate the ability of HP-β-CyD and SBE-β-CyD to complex BCL, permitting the realization of liquid formulations with potentially high oral bioavailability and/or possible parenteral administration.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Maria Chiara Cristiano
- Department of Clinical and Experimental Medicine, University ‘Magna Græcia’ of Catanzaro, I-88100 Catanzaro, Italy
| | - Donatella Paolino
- Department of Clinical and Experimental Medicine, University ‘Magna Græcia’ of Catanzaro, I-88100 Catanzaro, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, I-98125 Messina, Italy
| | - Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy
| | - Venerando Pistarà
- Department of Pharmaceutical and Health Sciences, University of Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| |
Collapse
|
17
|
De Gaetano F, d’Avanzo N, Mancuso A, De Gaetano A, Paladini G, Caridi F, Venuti V, Paolino D, Ventura CA. Chitosan/Cyclodextrin Nanospheres for Potential Nose-to-Brain Targeting of Idebenone. Pharmaceuticals (Basel) 2022; 15:ph15101206. [PMID: 36297318 PMCID: PMC9612377 DOI: 10.3390/ph15101206] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Idebenone (IDE) is a powerful antioxidant that is potentially active towards cerebral diseases, but its low water solubility and fast first pass metabolism reduce its accumulation in the brain, making it ineffective. In this work, we developed cyclodextrin-based chitosan nanospheres (CS NPs) as potential carriers for nose-to-brain targeting of IDE. Sulfobutylether-β-cyclodextrin (SBE-β-CD) was used as a polyanion for chitosan (CS) and as a complexing agent for IDE, permitting its encapsulation into nanospheres (NPs) produced in an aqueous solution. Overloading NPs were obtained by adding the soluble IDE/hydroxypropyl-β-CD (IDE/HP-β-CD) inclusion complex into the CS or SBE-β-CD solutions. We obtained homogeneous CS NPs with a hydrodynamic radius of about 140 nm, positive zeta potential (about +28 mV), and good encapsulation efficiency and drug loading, particularly for overloaded NPs. A biphasic release of IDE, finished within 48 h, was observed from overloaded NPs, whilst non-overloaded CS NPs produced a prolonged release, without a burst effect. In vitro biological studies showed the ability of CS NPs to preserve the antioxidant activity of IDE on U373 culture cells. Furthermore, Fourier transform infrared spectroscopy (FT-IR) demonstrated the ability of CS NPs to interact with the excised bovine nasal mucosa, improving the permeation of the drug and potentially favoring its accumulation in the brain.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Nicola d’Avanzo
- Department of Pharmacy, University “G. D’annunzio” of Chieti-Pescara, Via dei Vestini, 31, I-66100 Chieti, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., I-88100 Catanzaro, Italy
| | - Anna De Gaetano
- Department of Life Sciences, University of Modena, Via Dei Campi, 287, 41125 Modena, Italy
| | - Giuseppe Paladini
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Francesco Caridi
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., I-88100 Catanzaro, Italy
- Correspondence: (D.P.); (C.A.V.); Tel.: +39-0961-369-4211 (D.P.); +39-090-6766508 (C.A.V.)
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
- Correspondence: (D.P.); (C.A.V.); Tel.: +39-0961-369-4211 (D.P.); +39-090-6766508 (C.A.V.)
| |
Collapse
|
18
|
Karimi S, Namazi H. Targeted co-delivery of doxorubicin and methotrexate to breast cancer cells by a pH-sensitive biocompatible polymeric system based on β-cyclodextrin crosslinked glycodendrimer with magnetic ZnO core. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Celitan E, Gruskiene R, Kavleiskaja T, Sereikaite J. β-Carotene - 2-hydroxypropyl-β-cyclodextrin complexes coated with pectin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Leonardi AA, Sciuto EL, Lo Faro MJ, Morganti D, Midiri A, Spinella C, Conoci S, Irrera A, Fazio B. Molecular Fingerprinting of the Omicron Variant Genome of SARS-CoV-2 by SERS Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2134. [PMID: 35807972 PMCID: PMC9268696 DOI: 10.3390/nano12132134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 02/01/2023]
Abstract
The continuing accumulation of mutations in the RNA genome of the SARS-CoV-2 virus generates an endless succession of highly contagious variants that cause concern around the world due to their antibody resistance and the failure of current diagnostic techniques to detect them in a timely manner. Raman spectroscopy represents a promising alternative to variants detection and recognition techniques, thanks to its ability to provide a characteristic spectral fingerprint of the biological samples examined under all circumstances. In this work we exploit the surface-enhanced Raman scattering (SERS) properties of a silver dendrite layer to explore, for the first time to our knowledge, the distinctive features of the Omicron variant genome. We obtain a complex spectral signal of the Omicron variant genome where the fingerprints of nucleobases in nucleosides are clearly unveiled and assigned in detail. Furthermore, the fractal SERS layer offers the presence of confined spatial regions in which the analyte remains trapped under hydration conditions. This opens up the prospects for a prompt spectral identification of the genome in its physiological habitat and for a study on its activity and variability.
Collapse
Affiliation(s)
- Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.)
- CNR-IMM Catania University, Istituto per la Microelettronica e Microsistemi, Via S. Sofia 64, 95123 Catania, Italy
| | - Emanuele Luigi Sciuto
- Lab SENS CNR, Beyond NANO, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.L.S.); (C.S.); (S.C.)
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy;
| | - Maria Josè Lo Faro
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.)
- CNR-IMM Catania University, Istituto per la Microelettronica e Microsistemi, Via S. Sofia 64, 95123 Catania, Italy
| | - Dario Morganti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy;
| | - Angelina Midiri
- Dipartimento di Patologia Umana, Università di Messina, Via Consolare Valeria 1, (Azienda Ospedaliera Universitaria Policlinico “G. Martino”), 98125 Messina, Italy;
| | - Corrado Spinella
- Lab SENS CNR, Beyond NANO, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.L.S.); (C.S.); (S.C.)
- CNR-IMM Istituto per la Microelettronica e Microsistemi, Zona Industriale, VIII Strada 5, 95121 Catania, Italy
| | - Sabrina Conoci
- Lab SENS CNR, Beyond NANO, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.L.S.); (C.S.); (S.C.)
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy;
- CNR-IMM Istituto per la Microelettronica e Microsistemi, Zona Industriale, VIII Strada 5, 95121 Catania, Italy
| | - Alessia Irrera
- Lab SENS CNR, Beyond NANO, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.L.S.); (C.S.); (S.C.)
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy
| | - Barbara Fazio
- Lab SENS CNR, Beyond NANO, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.L.S.); (C.S.); (S.C.)
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy
| |
Collapse
|
21
|
Peimanfard S, Zarrabi A, Trotta F, Matencio A, Cecone C, Caldera F. Developing Novel Hydroxypropyl-β-Cyclodextrin-Based Nanosponges as Carriers for Anticancer Hydrophobic Agents: Overcoming Limitations of Host–Guest Complexes in a Comparative Evaluation. Pharmaceutics 2022; 14:pharmaceutics14051059. [PMID: 35631645 PMCID: PMC9147629 DOI: 10.3390/pharmaceutics14051059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
This study aimed to design and fabricate novel hydroxypropyl-β-cyclodextrin-based hypercrosslinked polymers, called nanosponges, as carriers for anticancer hydrophobic agents and compare them with host–guest complexes of hydroxypropyl-β-cyclodextrin, a remarkable solubilizer, to investigate their application in improving the pharmaceutical properties of the flavonoid naringenin, a model hydrophobic nutraceutical with versatile anticancer effects. For this purpose, three new nanosponges, crosslinked with pyromellitic dianhydride, citric acid, and carbonyldiimidazole, were fabricated. The carbonate nanosponge synthesized by carbonyldiimidazole presented the highest naringenin loading capacity (≈19.42%) and exerted significantly higher antiproliferative effects against MCF-7 cancer cells compared to free naringenin. Additionally, this carbonate nanosponge formed a stable nanosuspension, providing several advantages over the naringenin/hydroxypropyl-β-cyclodextrin host–guest complex, including an increase of about 3.62-fold in the loading capacity percentage, sustained released pattern (versus the burst pattern of host–guest complex), and up to an 8.3-fold increase in antiproliferative effects against MCF-7 cancer cells. Both naringenin-loaded carriers were less toxic to L929 murine fibroblast normal cells than MCF-7 cancer cells. These findings suggest that hydroxypropyl-β-cyclodextrin-based carbonate nanosponges could be a good candidate as a drug delivery system with potential applications in cancer treatment.
Collapse
Affiliation(s)
- Shohreh Peimanfard
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran;
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (C.C.); (F.C.)
| | - Ali Zarrabi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran;
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
- Correspondence: or (A.Z.); (F.T.); (A.M.)
| | - Francesco Trotta
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (C.C.); (F.C.)
- Correspondence: or (A.Z.); (F.T.); (A.M.)
| | - Adrián Matencio
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (C.C.); (F.C.)
- Correspondence: or (A.Z.); (F.T.); (A.M.)
| | - Claudio Cecone
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (C.C.); (F.C.)
| | - Fabrizio Caldera
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (C.C.); (F.C.)
| |
Collapse
|
22
|
Preliminary study for the application of Raman spectroscopy for the identification of Leishmania infected dogs. Sci Rep 2022; 12:7489. [PMID: 35523983 PMCID: PMC9076911 DOI: 10.1038/s41598-022-11525-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022] Open
Abstract
Raman spectroscopy is a rapid qualitative and quantitative technique that allows the simultaneous determination of several components in biological fluids. This methodology concerns an alternative technique to distinguish between non-healthy and healthy subjects. Leishmaniasis is a zoonosis of world interest, the most important agent is L. infantum. Dogs are the principal reservoirs affected by a broad spectrum of clinical features. During a clinical exam, blood samples were collected in tubes without anticoagulants, from twenty two dogs. One aliquot was used for serological test for Leishmaniasis, one aliquot was subjected to the Raman spectroscopic analysis. Animals were divided into two groups of equal subjects, Leishmania group (LG) constituted by infected dogs, and control group (CG) constituted by healthy dogs. The acquired spectra were different in the region 1200-1370 cm-1, in which it is possible to distinguish the amide III vibration (~ 1300 cm-1). In LG, an evident shift to the shortwave region is observed in spectral frequencies of the band centered at ~ 1250 cm-1. Our results distinguished between LD group and CG. Further studies are necessary to exclude the effect of metabolic modification due to disease on the recorded spectra changes and to consolidate the achievability of Raman spectroscopy as rapid and less expensive diagnosis of Leishmaniasis.
Collapse
|
23
|
Ali S, Sikdar S, Basak S, Das D, Roy D, Salman Haydar M, Kumar Dakua V, Adhikary P, Mandal P, Nath Roy M. Synthesis of β-Cyclodextrin Grafted Rhombohedral-CuO Antioxidant Nanozyme for Detection of Dopamine and Hexavalent Chromium through off-on Strategy of Peroxidase Mimicking activity. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Wang L, Li S, Cai H, Liu X, Feng T, Zhao X. Preparation and characterisation of ecdysterone/hydroxypropyl-Β-cyclodextrin inclusion complex with enhanced oral and transdermal bioavailability. J Microencapsul 2022; 39:145-155. [PMID: 35311602 DOI: 10.1080/02652048.2022.2056251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To prepare ecdysterone (ES)/hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complex, thus improving the water solubility and bioavailability of ES. Phase-solubility study was performed to study the mass ratio of ES and HP-β-CD. Then, the ES/HP-β-CD inclusion complex was prepared by the solvent evaporation method, and its physicochemical properties were characterised using the SEM, DSC, XRD, 1HNMR and FT-IR. In addition, in vitro dissolution and bioavailability (oral and transdermal) experiments were also conducted. The inclusion complex was formed with ES and HP-β-CD at the mass ratio of 1:1. ES existed in an amorphous form in the inclusion complex. The equilibrium solubility of ES/HP-β-CD inclusion complex in SGF (simulated gastric fluid) and SIF (simulated intestinal fluid) was 50.6 ± 0.11 mg/mL and 75.9 ± 0.38 mg/mL in SGF and SIF, which was 5.93 and 9.96 times higher than that of free ES, respectively. The ES/HP-β-CD inclusion complex had better dissolution ability and transdermal permeability than the free ES. The oral bioavailability and the transdermal bioavailability were respectively increased by 2.97 times and 1.92 times compared with the free ES. These data suggest that the ES/HP-β-CD inclusion complex can be developed as potential pharmaceutical product for future clinical applications.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China.,College of Chemistry, Chemical Engineering and Resource Utilization, Ministry of Education, Northeast Forestry University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, China
| | - Shen Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China.,College of Chemistry, Chemical Engineering and Resource Utilization, Ministry of Education, Northeast Forestry University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, China
| | - Hongda Cai
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China.,College of Chemistry, Chemical Engineering and Resource Utilization, Ministry of Education, Northeast Forestry University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, China
| | - Xiaohu Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China.,College of Chemistry, Chemical Engineering and Resource Utilization, Ministry of Education, Northeast Forestry University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, China
| | - Tongtong Feng
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China.,College of Chemistry, Chemical Engineering and Resource Utilization, Ministry of Education, Northeast Forestry University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, China
| | - Xiuhua Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China.,College of Chemistry, Chemical Engineering and Resource Utilization, Ministry of Education, Northeast Forestry University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, China
| |
Collapse
|
25
|
Acri G, Micali A, D’Angelo R, Puzzolo D, Aragona P, Testagrossa B, Aragona E, Wylegala E, Nowinska A. Raman Spectroscopic Study of Amyloid Deposits in Gelatinous Drop-like Corneal Dystrophy. J Clin Med 2022; 11:jcm11051403. [PMID: 35268494 PMCID: PMC8911144 DOI: 10.3390/jcm11051403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/12/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
The genetic and histopathological features of the cornea of a Polish patient with Gelatinous Drop-like Corneal Dystrophy (GDCD) and the molecular composition with Raman spectroscopy of corneal deposits were examined. A 62 year-old Polish woman was diagnosed with GDCD and underwent penetrating corneal transplant. A blood sample was collected, and genetic analysis was performed. The cornea was processed for light microscopy and Raman analysis. The genetic exam revealed a previously undescribed homozygous 1-base pair deletion in exon 1 of TACSTD2 gene (c.185delT), resulting in a frame shift causing a premature stop codon. When compared with a control cornea, in GDCD cornea stained with PAS evident deposits were present over the anterior stroma, with apple green birefringence under polarized light. Raman spectroscopy showed peculiar differences between normal and GDCD cornea, consisting in peaks either of different height or undetectable in the normal cornea and related to amyloid. The possible causative role of the novel mutation was discussed and Raman spectroscopy as a further morphological tool in the evaluation of corneal dystrophies, characterized by the deposition of abnormal materials, was suggested.
Collapse
Affiliation(s)
- Giuseppe Acri
- Department of Biomedical Sciences, Section of Physics, University of Messina, 98125 Messina, Italy; (G.A.); (B.T.)
| | - Antonio Micali
- Department of Adult and Pediatric Pathology, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-90-2213630
| | - Rosalia D’Angelo
- Department of Biomedical Sciences, Section of Biology and Genetics, University of Messina, 98125 Messina, Italy;
| | - Domenico Puzzolo
- Department of Biomedical Sciences, Section of Histology and Embryology, University of Messina, 98125 Messina, Italy;
| | - Pasquale Aragona
- Department of Biomedical Sciences, Eye Clinic, Regional Referral Center for the Ocular Surface Diseases, University of Messina, 98125 Messina, Italy;
| | - Barbara Testagrossa
- Department of Biomedical Sciences, Section of Physics, University of Messina, 98125 Messina, Italy; (G.A.); (B.T.)
| | - Emanuela Aragona
- Department of Ophthalmology, Scientific Institute San Raffaele, Vita-Salute University, 20132 Milan, Italy;
| | - Edward Wylegala
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-555 Katowice, Poland; (E.W.); (A.N.)
- Ophthalmology Department, Railway Hospital, 40-760 Katowice, Poland
| | - Anna Nowinska
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-555 Katowice, Poland; (E.W.); (A.N.)
| |
Collapse
|
26
|
Solubility and Dissolution Enhancement of Dexibuprofen with Hydroxypropylbetacyclodextrin (HPβCD) and Poloxamers (188/407) Inclusion Complexes: Preparation and In Vitro Characterization. Polymers (Basel) 2022; 14:polym14030579. [PMID: 35160569 PMCID: PMC8838044 DOI: 10.3390/polym14030579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/02/2023] Open
Abstract
The objective of this study was to improve the dissolution and solubility of dexibuprofen (DEX) using hydroxypropyl beta cyclodextrin (HPβCD) inclusion complexes and also to evaluate the effect of presence of hydrophilic polymers on solubilization efficiency of HPβCD. Three different methods (physical trituration, kneading and solvent evaporation) were used to prepare binary inclusion complexes at various drug-to-cyclodextrin weight ratios. An increase in solubility and drug release was observed with the kneading (KN) method at a DEX/HPβCD (1:4) weight ratio. The addition of hydrophilic polymers poloxamer-188 (PXM-188) and poloxamer-407 (PXM-407) at 2.5, 5.0, 10.0 and 20% w/w enhanced the complexation efficiency and solubility of DEX/HPβCD significantly. Fourier-transform infrared (FTIR) analysis revealed that DEX was successfully incorporated into the cyclodextrin cavity. Differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) revealed less crystallinity of the drug and its entrapment in the cyclodextrin molecular cage. The addition of PXM-188 or PXM-407 reduced the strength of the DEX endothermic peak. With the addition of hydrophilic polymers, sharp and intense peaks of DEX disappeared. Finally, it was concluded that PXM-188 at a weight ratio of 10.0% w/w was the best candidate for improving solubility, stability and release rate of DEX.
Collapse
|
27
|
Zafar A, Alruwaili NK, Imam SS, Alsaidan OA, Alharbi KS, Mostafa EM, Musa A, Gilani SJ, Ghoneim MM, Alshehri S, Sultana S, Mohan S. Formulation of ternary genistein β-cyclodextrin inclusion complex: In vitro characterization and cytotoxicity assessment using breast cancer cell line. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Nita LE, Chiriac AP, Ghilan A, Rusu AG, Pamfil D, Rosca I, Mititelu-Tartau L. Alginate enriched with phytic acid for hydrogels preparation. Therapeutic applications. Int J Biol Macromol 2021; 189:335-345. [PMID: 34425119 DOI: 10.1016/j.ijbiomac.2021.08.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
In the last decade, numerous innovative strategies have been used to obtain highly efficient synthetic or semi-synthetic biomaterials. Between these innovative biomaterials, hydrogels occupy a distinct place due to their superior biological and physico-chemical characteristics. Alginate is a natural linear polysaccharide with important physico-chemical and biological properties. Recently, we obtained a new hydrogel based on alginate and phytic acid with improved physico-chemical properties. In the present study, the hydrogels previously obtained were tested in terms of their biological properties and possibilities of use in the biomedical field. For this purpose, the hydrogels were loaded with norfloxacin (NRF), an antibacterial compound utilised in the treatment against Gram-negative and Gram-positive organisms. Unfortunately, NRF has low solubility and permeability. In order to provide protection against loss, but also for enhanced bioavailability, and controlled-release of norfloxacin, a drug inclusion complex with cyclodextrin was realized. The effect of complexation on the release profile was highlighted. The addition of NRF to the hydrogel matrices greatly improved the antibacterial activity of the tested compounds. The presence of CD did not affect the homogeneity of the drug distribution. Changes in the polymeric matrix structure were registered after the incorporation of the drug, which were attributed to the relaxation of the network subsequently to the penetration and diffusion of the drug solution simultaneously with the swelling process. The release of NRF from Alg_PA polymeric network has been successfully modulated by the use of CD as a host molecule.
Collapse
Affiliation(s)
- Loredana Elena Nita
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry Grigore Ghica Voda Alley 41-A, RO-700487, Iasi, Romania.
| | - Aurica P Chiriac
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry Grigore Ghica Voda Alley 41-A, RO-700487, Iasi, Romania
| | - Alina Ghilan
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry Grigore Ghica Voda Alley 41-A, RO-700487, Iasi, Romania
| | - Alina Gabriela Rusu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry Grigore Ghica Voda Alley 41-A, RO-700487, Iasi, Romania
| | - Daniela Pamfil
- Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry Grigore Ghica Voda Alley 41-A, RO-700487, Iasi, Romania
| | - Irina Rosca
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry Grigore Ghica Voda Alley 41-A, RO-700487, Iasi, Romania
| | | |
Collapse
|
29
|
Synthesis and characterization of inclusion complexes of rosemary essential oil with various β-cyclodextrins and evaluation of their antibacterial activity against Staphylococcus aureus. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Bouattour Y, Neflot-Bissuel F, Traïkia M, Biesse-Martin AS, Frederic R, Yessaad M, Jouannet M, Wasiak M, Chennell P, Sautou V. Cyclodextrins Allow the Combination of Incompatible Vancomycin and Ceftazidime into an Ophthalmic Formulation for the Treatment of Bacterial Keratitis. Int J Mol Sci 2021; 22:ijms221910538. [PMID: 34638878 PMCID: PMC8508691 DOI: 10.3390/ijms221910538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023] Open
Abstract
Ceftazidime (CZ) and vancomycin (VA) are two antibiotics used to treat bacterial keratitis. Due to their physical incompatibility (formation of a precipitate), it is not currently possible to associate both molecules in a single container for ophthalmic administration. We firstly characterized the incompatibility then investigated if 2-hydroxypropyl-beta (HPβCD) and 2-hydroxypropyl-gamma cyclodextrins (HPγCD) could prevent this incompatibility. The impact of pH on the precipitation phenomena was investigated by analysing the supernatant solution of the mixture using high performance liquid chromatography. A characterization of the inclusion of CZ with HPγCD using 1H nuclear magnetic resonance (NMR), and VA with HPβCD using 1H-NMR and a solubility diagram was performed. A design of experiment was built to determine the optimal conditions to obtain a formulation that had the lowest turbidity and particle count. Our results showed that VA and CZ form an equimolar precipitate below pH 7.3. The best formulation obtained underwent an in-vitro evaluation of its antibacterial activity. The impact of HPCDs on incompatibility has been demonstrated through the inclusion of antibiotics and especially VA. The formulation has been shown to be able to inhibit the incompatibility for pH higher than 7.3 and to possess unaltered antibacterial activity.
Collapse
Affiliation(s)
- Yassine Bouattour
- Université Clermont Auvergne, CHU Clermont Ferrand, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France; (Y.B.); (V.S.)
| | - Florent Neflot-Bissuel
- CHU Clermont-Ferrand, Pôle Pharmacie, F-63000 Clermont-Ferrand, France; (F.N.-B.); (M.Y.); (M.J.); (M.W.)
| | - Mounir Traïkia
- Université Clermont Auvergne, CNRS, SIGMA-Clermont, ICCF, F-63000 Clermont-Ferrand, France; (M.T.); (A.-S.B.-M.)
| | - Anne-Sophie Biesse-Martin
- Université Clermont Auvergne, CNRS, SIGMA-Clermont, ICCF, F-63000 Clermont-Ferrand, France; (M.T.); (A.-S.B.-M.)
| | - Robin Frederic
- Université Clermont Auvergne, Inserm U1071, INRA USC2018, F-63000 Clermont-Ferrand, France;
| | - Mouloud Yessaad
- CHU Clermont-Ferrand, Pôle Pharmacie, F-63000 Clermont-Ferrand, France; (F.N.-B.); (M.Y.); (M.J.); (M.W.)
| | - Mireille Jouannet
- CHU Clermont-Ferrand, Pôle Pharmacie, F-63000 Clermont-Ferrand, France; (F.N.-B.); (M.Y.); (M.J.); (M.W.)
| | - Mathieu Wasiak
- CHU Clermont-Ferrand, Pôle Pharmacie, F-63000 Clermont-Ferrand, France; (F.N.-B.); (M.Y.); (M.J.); (M.W.)
| | - Philip Chennell
- Université Clermont Auvergne, CHU Clermont Ferrand, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France; (Y.B.); (V.S.)
- Correspondence:
| | - Valerie Sautou
- Université Clermont Auvergne, CHU Clermont Ferrand, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France; (Y.B.); (V.S.)
| |
Collapse
|
31
|
de Oliveira LC, de Menezes DLB, da Silva VC, Lourenço EMG, Miranda PHS, da Silva MDJA, Lima ES, Júnior VFDV, Marreto RN, Converti A, Barbosa EG, de Lima ÁAN. In Silico Study, Physicochemical, and In Vitro Lipase Inhibitory Activity of α, β-Amyrenone Inclusion Complexes with Cyclodextrins. Int J Mol Sci 2021; 22:9882. [PMID: 34576044 PMCID: PMC8468659 DOI: 10.3390/ijms22189882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
α,β-amyrenone (ABAME) is a triterpene derivative with many biological activities; however, its potential pharmacological use is hindered by its low solubility in water. In this context, the present work aimed to develop inclusion complexes (ICs) of ABAME with γ- and β-cyclodextrins (CD), which were systematically characterized through molecular modeling studies as well as FTIR, XRD, DSC, TGA, and SEM analyses. In vitro analyses of lipase activity were performed to evaluate possible anti-obesity properties. Molecular modeling studies indicated that the CD:ABAME ICs prepared at a 2:1 molar ratio would be more stable to the complexation process than those prepared at a 1:1 molar ratio. The physicochemical characterization showed strong evidence that corroborates with the in silico results, and the formation of ICs with CD was capable of inducing changes in ABAME physicochemical properties. ICs was shown to be a stronger inhibitor of lipase activity than Orlistat and to potentiate the inhibitory effects of ABAME on porcine pancreatic enzymes. In conclusion, a new pharmaceutical preparation with potentially improved physicochemical characteristics and inhibitory activity toward lipases was developed in this study, which could prove to be a promising ingredient for future formulations.
Collapse
Affiliation(s)
- Luana Carvalho de Oliveira
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Danielle Lima Bezerra de Menezes
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Valéria Costa da Silva
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Estela Mariana Guimarães Lourenço
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Paulo Henrique Santana Miranda
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Márcia de Jesus Amazonas da Silva
- Biological Activity Laboratory, Pharmacy Department, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; (M.d.J.A.d.S.); (E.S.L.)
| | - Emerson Silva Lima
- Biological Activity Laboratory, Pharmacy Department, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; (M.d.J.A.d.S.); (E.S.L.)
| | | | | | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, I-16145 Genoa, Italy;
| | - Euzébio Guimaraes Barbosa
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Ádley Antonini Neves de Lima
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| |
Collapse
|
32
|
Yang CY, Huang PH, Tseng CH, Yen FL. Topical Artocarpus communis Nanoparticles Improved the Water Solubility and Skin Permeation of Raw A. communis Extract, Improving Its Photoprotective Effect. Pharmaceutics 2021; 13:pharmaceutics13091372. [PMID: 34575454 PMCID: PMC8469634 DOI: 10.3390/pharmaceutics13091372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 11/16/2022] Open
Abstract
Antioxidants from plant extracts are often used as additives in skincare products to prevent skin problems induced by environmental pollutants. Artocarpus communis methanol extract (ACM) has many biological effects, such as antioxidant, anti-inflammatory, wound healing, and photoprotective effects; however, the poor water solubility of raw ACM has limited its applications in medicine and cosmetics. Topical antioxidant nanoparticles are one of the drug-delivery systems for overcoming the poor water solubility of antioxidants for increasing their skin penetration. The present study demonstrated that ACM-loaded hydroxypropyl-β-cyclodextrin and polyvinylpyrrolidone K30 nanoparticles (AHP) were successfully prepared and could effectively increase the skin penetration of ACM through changing the physicochemical characteristics of raw ACM, including reducing the particle size, increasing the surface area, and inducing amorphous transformation. Our results also revealed that AHP had significantly better antioxidant activity than raw ACM for preventing photocytotoxicity because the AHP formulation increased the cellular uptake of the ACM in UVB-irradiated HaCaT keratinocytes. In conclusion, our results suggest that AHP may be used as a good topical antioxidant nanoparticle for delivering ACM into deep layers of the skin for preventing UVB-induced skin problems.
Collapse
Affiliation(s)
- Chun-Yin Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-Y.Y.); (P.-H.H.)
| | - Pao-Hsien Huang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-Y.Y.); (P.-H.H.)
| | - Chih-Hua Tseng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-Y.Y.); (P.-H.H.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
- Department of Pharmacy, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 801, Taiwan
- Correspondence: (C.-H.T.); (F.-L.Y.); Tel.: +886-7-312-1101 (ext. 2163) (C.-H.T.); +886-7-312-1101 (ext. 2028) (F.-L.Y.)
| | - Feng-Lin Yen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; (C.-Y.Y.); (P.-H.H.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
- Correspondence: (C.-H.T.); (F.-L.Y.); Tel.: +886-7-312-1101 (ext. 2163) (C.-H.T.); +886-7-312-1101 (ext. 2028) (F.-L.Y.)
| |
Collapse
|
33
|
Development of Chitosan/Cyclodextrin Nanospheres for Levofloxacin Ocular Delivery. Pharmaceutics 2021; 13:pharmaceutics13081293. [PMID: 34452254 PMCID: PMC8400911 DOI: 10.3390/pharmaceutics13081293] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 02/06/2023] Open
Abstract
Levofloxacin (LVF) is an antibacterial drug approved for the treatment of ocular infections. However, due to the low ocular bioavailability, high doses are needed, causing bacterial resistance. Polymeric nanospheres (NPs) loading antibiotic drugs represent the most promising approach to eradicate ocular infections and to treat pathogen resistance. In this study, we have developed chitosan NPs based on sulfobutyl-ether-β-cyclodextrin (CH/SBE-β-CD NPs) for ocular delivery of LVF. CH/SBE-β-CD NPs loading LVF were characterized in terms of encapsulation parameters, morphology, and sizes, in comparison to NPs produced without the macrocycle. Nuclear magnetic resonance and UV–vis spectroscopy studies demonstrated that SBE-β-CD is able to complex LVF and to influence encapsulation parameters of NPs, producing high encapsulation efficiency and LVF loading. The NPs were homogenous in size, with a hydrodynamic radius between 80 and 170 nm and positive zeta potential (ζ) values. This surface property could promote the interaction of NPs with the negatively charged ocular tissue, increasing their residence time and, consequently, LVF efficacy. In vitro, antibacterial activity against Gram-positive and Gram-negative bacteria showed a double higher activity of CH/SBE-β-CD NPs loading LVF compared to the free drug, suggesting that chitosan NPs based on SBE-β-CD could be a useful system for the treatment of ocular infections.
Collapse
|
34
|
Rassu G, Sorrenti M, Catenacci L, Pavan B, Ferraro L, Gavini E, Bonferoni MC, Giunchedi P, Dalpiaz A. Versatile Nasal Application of Cyclodextrins: Excipients and/or Actives? Pharmaceutics 2021; 13:pharmaceutics13081180. [PMID: 34452141 PMCID: PMC8401481 DOI: 10.3390/pharmaceutics13081180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
Cyclodextrins (CDs) are oligosaccharides widely used in the pharmaceutical field. In this review, a detailed examination of the literature of the last two decades has been made to understand the role of CDs in nasal drug delivery systems. In nasal formulations, CDs are used as pharmaceutical excipients, as solubilizers and absorption promoters, and as active ingredients due to their several biological activities (antiviral, antiparasitic, anti-atherosclerotic, and neuroprotective). The use of CDs in nasal formulations allowed obtaining versatile drug delivery systems intended for local and systemic effects, as well as for nose-to-brain transport of drugs. In vitro and in vivo models currently employed are suitable to analyze the effects of CDs in nasal formulations. Therefore, CDs are versatile pharmaceutical materials, and due to the continual synthesis of new CDs derivatives, the research on the new nasal applications is an interesting field evolving in the coming years, to which Italian research will still contribute.
Collapse
Affiliation(s)
- Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy; (G.R.); (E.G.)
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.S.); (L.C.); (M.C.B.)
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.S.); (L.C.); (M.C.B.)
| | - Barbara Pavan
- Department of Neuroscience and Rehabilitation—Section of Physiology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy;
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy;
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy; (G.R.); (E.G.)
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.S.); (L.C.); (M.C.B.)
| | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy; (G.R.); (E.G.)
- Correspondence: ; Tel.: +39-079228754
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy;
| |
Collapse
|
35
|
Acri G, Romano C, Costa S, Pellegrino S, Testagrossa B. Raman Spectroscopy Technique: A Non-Invasive Tool in Celiac Disease Diagnosis. Diagnostics (Basel) 2021; 11:diagnostics11071277. [PMID: 34359362 PMCID: PMC8306584 DOI: 10.3390/diagnostics11071277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
Celiac disease (CD) is diagnosed by a combination of specific serology and typical duodenal lesions. The histological confirmation of CD, mandatory in the majority of patients with suspected CD, is based on invasive and poorly tolerated procedures, such as upper gastrointestinal endoscopy. In this study we propose an alternative and non-invasive methodology able to confirm the diagnosis of CD based on the analysis of serum samples using the Raman spectroscopy technique. Three different bands centered at 1650, 1450 and 1003 cm-1 have been considered and the A1450/A1003 and A1650/A1003 ratios have been computed to discriminate between CD and non-CD subjects. The reliability of the methodology was validated by statistical analysis using receiver operating characteristic (ROC) curves. The Youden index was also determined to obtain optimal cut-off points. The obtained results highlighted that the proposed methodology was able to distinguish between CD and non-CD subjects with 98% accuracy. The optimal cut-off points revealed, for both the A1450/A1003 and A1650/A1003 ratios, high values of sensitivity and specificity (>95.0% and >92.0% respectively), confirming that Raman spectroscopy may be considered a valid alternative to duodenal biopsy and demonstrates spectral changes in the secondary structures of the protein network.
Collapse
Affiliation(s)
- Giuseppe Acri
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, 98125 Messina, Italy
- Correspondence: (G.A.); (B.T.)
| | - Claudio Romano
- Unità Operativa Semplice Dipartimentale Gastroenterologia Pediatrica e Fibrosi Cistica, Azienda, Ospedaliera Universitaria Policlinico G. Martino, Via Consolare Valeria, 98125 Messina, Italy; (C.R.); (S.C.); (S.P.)
| | - Stefano Costa
- Unità Operativa Semplice Dipartimentale Gastroenterologia Pediatrica e Fibrosi Cistica, Azienda, Ospedaliera Universitaria Policlinico G. Martino, Via Consolare Valeria, 98125 Messina, Italy; (C.R.); (S.C.); (S.P.)
| | - Salvatore Pellegrino
- Unità Operativa Semplice Dipartimentale Gastroenterologia Pediatrica e Fibrosi Cistica, Azienda, Ospedaliera Universitaria Policlinico G. Martino, Via Consolare Valeria, 98125 Messina, Italy; (C.R.); (S.C.); (S.P.)
| | - Barbara Testagrossa
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, 98125 Messina, Italy
- Correspondence: (G.A.); (B.T.)
| |
Collapse
|
36
|
Temperature-Dependent Dynamical Evolution in Coum/SBE-β-CD Inclusion Complexes Revealed by Two-Dimensional FTIR Correlation Spectroscopy (2D-COS). Molecules 2021; 26:molecules26123749. [PMID: 34205446 PMCID: PMC8234892 DOI: 10.3390/molecules26123749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023] Open
Abstract
A combination of Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR) and 2D correlation analysis (2D-COS) was applied here for the first time in order to investigate the temperature-dependent dynamical evolution occurring in a particular type of inclusion complex, based on sulfobutylether-β-cyclodextrin (SBE-β-CD) as hosting agent and Coumestrol (7,12-dihydorxcoumestane, Coum), a poorly-soluble active compound known for its anti-viral and anti-oxidant activity. For this purpose, synchronous and asynchronous 2D spectra were calculated in three different wavenumber regions (960-1320 cm-1, 1580-1760 cm-1 and 2780-3750 cm-1) and over a temperature range between 250 K and 340 K. The resolution enhancement provided by the 2D-COS offers the possibility to extract the sequential order of events tracked by specific functional groups of the system, and allows, at the same time, the overcoming of some of the limits associated with conventional 1D FTIR-ATR analysis. Acquired information could be used, in principle, for the definition of an optimized procedure capable to provide high-performance T-sensitive drug carrier systems for different applications.
Collapse
|
37
|
Gieroba B, Kalisz G, Sroka-Bartnicka A, Płazińska A, Płaziński W, Starek M, Dąbrowska M. Molecular Structure of Cefuroxime Axetil Complexes with α-, β-, γ-, and 2-Hydroxypropyl-β-Cyclodextrins: Molecular Simulations and Raman Spectroscopic and Imaging Studies. Int J Mol Sci 2021; 22:ijms22105238. [PMID: 34063471 PMCID: PMC8156438 DOI: 10.3390/ijms22105238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
The formation of cefuroxime axetil+cyclodextrin (CA+CD) complexes increases the aqueous solubility of CA, improves its physico-chemical properties, and facilitates a biomembrane-mediated drug delivery process. In CD-based tablet formulations, it is crucial to investigate the molecular details of complexes in final pharmaceutical preparation. In this study, Raman spectroscopy and mapping were applied for the detection and identification of chemical groups involved in α-, β-, γ-, and 2-hydroxypropyl-β-CD (2-HP- β-CD)+CA complexation process. The experimental studies have been complemented by molecular dynamics-based investigations, providing additional molecular details of CA+CD interactions. It has been demonstrated that CA forms the guest–host type inclusion complexes with all studied CDs; however, the nature of the interactions is slightly different. It seems that both α- and β-CD interact with furanyl and methoxy moieties of CA, γ-CD forms a more diverse pattern of interactions with CA, which are not observed in other CDs, whereas 2HP-β-CD binds CA with the contribution of hydrogen bonding. Apart from supporting this interpretation of the experimental data, molecular dynamics simulations allowed for ordering the CA+CD binding affinities. The obtained results proved that the molecular details of the host–guest complexation can be successfully predicted from the combination of Raman spectroscopy and molecular modeling.
Collapse
Affiliation(s)
- Barbara Gieroba
- Department of Biopharmacy, Medical University of Lublin, ul. Chodzki 4a, 20-093 Lublin, Poland; (G.K.); (A.S.-B.); (A.P.)
- Correspondence: (B.G.); (W.P.)
| | - Grzegorz Kalisz
- Department of Biopharmacy, Medical University of Lublin, ul. Chodzki 4a, 20-093 Lublin, Poland; (G.K.); (A.S.-B.); (A.P.)
| | - Anna Sroka-Bartnicka
- Department of Biopharmacy, Medical University of Lublin, ul. Chodzki 4a, 20-093 Lublin, Poland; (G.K.); (A.S.-B.); (A.P.)
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| | - Anita Płazińska
- Department of Biopharmacy, Medical University of Lublin, ul. Chodzki 4a, 20-093 Lublin, Poland; (G.K.); (A.S.-B.); (A.P.)
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, ul. Niezapominajek 8, 30-239 Krakow, Poland
- Correspondence: (B.G.); (W.P.)
| | - Małgorzata Starek
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; (M.S.); (M.D.)
| | - Monika Dąbrowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; (M.S.); (M.D.)
| |
Collapse
|
38
|
De Gaetano F, Cristiano MC, Venuti V, Crupi V, Majolino D, Paladini G, Acri G, Testagrossa B, Irrera A, Paolino D, Tommasini S, Ventura CA, Stancanelli R. Rutin-Loaded Solid Lipid Nanoparticles: Characterization and In Vitro Evaluation. Molecules 2021; 26:1039. [PMID: 33669321 PMCID: PMC7920302 DOI: 10.3390/molecules26041039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/23/2022] Open
Abstract
This study was aimed at preparing and characterizing solid lipid nanoparticles loading rutin (RT-SLNs) for the treatment of oxidative stress-induced diseases. Phospholipon 80H® as a solid lipid and Polysorbate 80 as surfactant were used for the SLNs preparation, using the solvent emulsification/diffusion method. We obtained spherical RT-SLNs with low sizes, ranging from 40 to 60 nm (hydrodynamic radius) for the SLNs prepared starting from 2% and 5% (w/w) theoretical amount. All prepared formulations showed negative zeta-potential values. RT was efficiently encapsulated within SLNs, obtaining high encapsulation efficiency and drug content percentages, particularly for SLNs prepared with a 5% theoretical amount of RT. In vitro release profiles and analysis of the obtained data applying different kinetic models revealed Fickian diffusion as the main mechanism of RT release from the SLNs. The morphology of RT-SLNs was characterized by scanning electron microscopy (SEM), whereas the interactions between RT and the lipid matrix were investigated by Raman spectroscopy, evidencing spectral modifications of characteristic bands of RT due to the establishment of new interactions. Finally, antioxidant activity assay on human glioblastoma astrocytoma (U373) culture cells showed a dose-dependent activity for RT-SLNs, particularly at the highest assayed dose (50 μM), whereas the free drug showed the lesser activity.
Collapse
Affiliation(s)
- Federica De Gaetano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (V.C.); (S.T.); (C.A.V.)
| | - Maria Chiara Cristiano
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Catanzaro “Magna Græcia”, Campus Universitario “S. Venuta”, Viale S. Venuta, 88100 Catanzaro, Italy; (M.C.C.); (D.P.)
| | - Valentina Venuti
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (D.M.); (G.P.)
| | - Vincenza Crupi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (V.C.); (S.T.); (C.A.V.)
| | - Domenico Majolino
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (D.M.); (G.P.)
| | - Giuseppe Paladini
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (D.M.); (G.P.)
| | - Giuseppe Acri
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, c/o A.O.U. Policlinico “G. Martino” Via Consolare Valeria 1, 98125 Messina, Italy; (G.A.); (B.T.)
| | - Barbara Testagrossa
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, c/o A.O.U. Policlinico “G. Martino” Via Consolare Valeria 1, 98125 Messina, Italy; (G.A.); (B.T.)
| | - Alessia Irrera
- CNR-IPCF Istituto per i Processi Chimico Fisici, Viale Ferdinando Stagno D’Alcontres 37, 98158 Messina, Italy;
| | - Donatella Paolino
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Catanzaro “Magna Græcia”, Campus Universitario “S. Venuta”, Viale S. Venuta, 88100 Catanzaro, Italy; (M.C.C.); (D.P.)
| | - Silvana Tommasini
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (V.C.); (S.T.); (C.A.V.)
| | - Cinzia Anna Ventura
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (V.C.); (S.T.); (C.A.V.)
| | - Rosanna Stancanelli
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (V.C.); (S.T.); (C.A.V.)
| |
Collapse
|
39
|
Giri BR, Lee J, Lim DY, Kim DW. Docetaxel/dimethyl-β-cyclodextrin inclusion complexes: preparation, in vitro evaluation and physicochemical characterization. Drug Dev Ind Pharm 2021; 47:319-328. [PMID: 33576707 DOI: 10.1080/03639045.2021.1879840] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite the development in novel drug delivery techniques and synthesis of multifunctional excipients, oral delivery of hydrophobic drug like docetaxel (DTX) is still challenging. The present work investigates the inclusion complexation of DTX, and dimethyl-β-cyclodextrin (DM-β-CD) to improve the solubility, dissolution and permeability of the drug. Amongst the native and modified β-cyclodextrins, DM-β-CD showed the highest solubility of DTX. Solid binary inclusion complex (IC) of DTX with DM-β-CD was prepared by solvent evaporation technique and thoroughly characterized for solubility, dissolution, permeability, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (1H NMR). The aqueous solubility and in vitro dissolution rate of DTX/DM-β-CD IC were markedly increased by 76.04- and 3.55-fold compared to free DTX powder. The permeability of DTX/DM-β-CD IC showed similar absorptive permeability but decreased efflux from the absorbed DTX, compared to pure DTX. Further, physicochemical studies of IC revealed the change of crystalline state DTX to its amorphous form. Moreover, FT-IR and 1H NMR results indicate the formation of true inclusion complex between DTX and DM-β-CD at 1:1 molar ratio. Collectively, solid inclusion complexes prepared by spray drying method can be an effective strategy to enhance the biopharmaceutical performance of a highly hydrophobic drug DTX.
Collapse
Affiliation(s)
- Bhupendra Raj Giri
- Vessel-Organ Interaction Research Center (VOICE, MRC), BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Jaehyeok Lee
- Vessel-Organ Interaction Research Center (VOICE, MRC), BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Dong Yu Lim
- College of Pharmacy, Dankook University, Cheon-an, South Korea
| | - Dong Wuk Kim
- Vessel-Organ Interaction Research Center (VOICE, MRC), BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
40
|
Peering into the Kaleidoscope of Cyclodextrins. Biomolecules 2021; 11:biom11010121. [PMID: 33477786 PMCID: PMC7832384 DOI: 10.3390/biom11010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
|
41
|
Gagliardi A, Paolino D, Costa N, Fresta M, Cosco D. Zein- vs PLGA-based nanoparticles containing rutin: A comparative investigation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111538. [DOI: 10.1016/j.msec.2020.111538] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/19/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
|
42
|
Gaber A, Alsanie WF, Kumar DN, Refat MS, Saied EM. Novel Papaverine Metal Complexes with Potential Anticancer Activities. Molecules 2020; 25:molecules25225447. [PMID: 33233775 PMCID: PMC7699950 DOI: 10.3390/molecules25225447] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. Although several potential therapeutic agents have been developed to efficiently treat cancer, some side effects can occur simultaneously. Papaverine, a non-narcotic opium alkaloid, is a potential anticancer drug that showed selective antitumor activity in various tumor cells. Recent studies have demonstrated that metal complexes improve the biological activity of the parent bioactive ligands. Based on those facts, herein we describe the synthesis of novel papaverine–vanadium(III), ruthenium(III) and gold(III) metal complexes aiming at enhancing the biological activity of papaverine drug. The structures of the synthesized complexes were characterized by various spectroscopic methods (IR, UV–Vis, NMR, TGA, XRD, SEM). The anticancer activity of synthesized metal complexes was evaluated in vitro against two types of cancer cell lines: human breast cancer MCF-7 cells and hepatocellular carcinoma HepG-2 cells. The results revealed that papaverine-Au(III) complex, among the synthesized complexes, possess potential antimicrobial and anticancer activities. Interestingly, the anticancer activity of papaverine–Au(III) complex against the examined cancer cell lines was higher than that of the papaverine alone, which indicates that Au-metal complexation improved the anticancer activity of the parent drug. Additionally, the Au complex showed anticancer activity against the breast cancer MCF-7 cells better than that of cisplatin. The biocompatibility experiments showed that Au complex is less toxic than the papaverine drug alone with IC50 ≈ 111µg/mL. These results indicate that papaverine–Au(III) complex is a promising anticancer complex-drug which would make it a suitable candidate for further in vivo investigations.
Collapse
Affiliation(s)
- Ahmed Gaber
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Walaa F. Alsanie
- Department of Clinical Laboratories, College of Applied Medical Sciences, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Deo Nandan Kumar
- Department of Chemistry, Deshbandhu College, University of Delhi, Delhi 110019, India;
| | - Moamen S. Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Chemistry, Faculty of Science, Port Said University, Port Said 42511, Egypt
- Correspondence: (M.S.R.); (E.M.S.)
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
- Correspondence: (M.S.R.); (E.M.S.)
| |
Collapse
|
43
|
Acri G, Testagrossa B, Giudice E, Arfuso F, Piccione G, Giannetto C. Application of Raman Spectroscopy for the Evaluation of Metabolomic Dynamic Analysis in Athletic Horses. J Equine Vet Sci 2020; 96:103319. [PMID: 33349414 DOI: 10.1016/j.jevs.2020.103319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 11/28/2022]
Abstract
Raman spectroscopy is a rapid qualitative and quantitative technique that allows the simultaneous determination of several components, both biomolecules both chemical compounds, in the biological fluids to assess the metabolic status. In this study, the serum composition was evaluated in regularly trained athletic horses using Raman spectroscopy to identify biomarkers of sports performance. Five clinically healthy and regularly trained Italian Saddle horses were subjected to a standardized obstacle course (350 m/minute; eleven 1.25 high jumps) preceded by a warm-up. On the collected sera, at rest, immediately after exercise, 30 minutes, and 1 hour after the end of the exercise Raman measurements were performed using a diode laser with the excitation wavelength of 785 nm. The analysis of the obtained spectra allowed the identification of peaks and bands different in position and intensity among the experimental conditions. The acquired spectra, obtained from horse sera collected during the experimental protocol, were visually similar, except for the large band detected in the 1,250-1,800 cm-1 range. The spectral intensity of the Raman spectrum decreased after training and 30 minutes after the end of exercise respect to the before exercise value, to come to the basal value after 60 minutes the end of the exercise. In conclusion, we can claim the ability of Raman spectroscopy to reveal the metabolic status of horses after physical exercise.
Collapse
Affiliation(s)
- Giuseppe Acri
- Department of BIOMORF, University of Messina, Messina, Italy
| | | | - Elisabetta Giudice
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, Messina, Italy
| | - Francesca Arfuso
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, Messina, Italy.
| | - Claudia Giannetto
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, Messina, Italy
| |
Collapse
|
44
|
Allahyari S, Valizadeh H, Roshangar L, Mahmoudian M, Trotta F, Caldera F, Jelvehgari M, Zakeri-Milani P. Preparation and characterization of cyclodextrin nanosponges for bortezomib delivery. Expert Opin Drug Deliv 2020; 17:1807-1816. [PMID: 32729739 DOI: 10.1080/17425247.2020.1800637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bortezomib (BTZ) as an anticancer drug has been used through the injection pathway. RESEARCH DESIGN AND METHODS Two types of Cyclodextrin nanosponges (CDNSs) were synthesized and studied by DLS, TEM, FTIR, and DSC instruments for BTZ delivery. Both carriers were analyzed for loading efficiencies and in-vitro release. Cell studies and intestinal permeability of selected CDNS were determined using MTT and SPIP method, respectively. RESULTS Both types of CDNSs, encapsulated BTZ in their nano-porous structure, but better loading was shown in CDNS 1:4. FTIR and DSC results proved considerable encapsulation of BTZ into CDNSs. The slow and prolonged release profile was observed for CDNS 1:4 in comparison with CDNS 1:2. Based on in-vitro results, BTZ-CDNS 1:4 was chosen as a selected nanosystem for further analysis. This nontoxic carrier revealed considerable uptake (93.9% in 3 h) against the MCF-7 cell line but indicated higher IC50 in comparison with the plain drug. This carrier also could improve the rat intestinal permeability of BTZ almost 5.8 times. CONCLUSION CDNS 1:4 has the ability to be introduced as a nontoxic carrier for BTZ delivery with its high loading, controlled release manner, high cellular uptake, and permeability improvement characteristics.
Collapse
Affiliation(s)
- Saeideh Allahyari
- Faculty of Pharmacy, Tabriz University of Medical Science , Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Science , Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science , Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center and Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Science , Tabriz, Iran
| | | | | | | | - Mitra Jelvehgari
- Faculty of Pharmacy, Tabriz University of Medical Science , Tabriz, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz, Iran
| |
Collapse
|
45
|
Raman Spectroscopy as Noninvasive Method of Diagnosis of Pediatric Onset Inflammatory Bowel Disease. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196974] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We propose here a spectroscopic method to diagnose and differentiate inflammatory bowel diseases (IBD), such as ulcerative colitis (UC) and Crohn’s disease (CD) with pediatric onset, in a complete noninvasive way without performing any duodenal biopsy. In particular, the Raman technique was applied to proteic extract from fecal samples in order to achieve information about molecular vibrations that can potentially furnish spectral signatures of cellular modifications occurring as a consequence of specific pathologic conditions. The attention was focused on the investigation of the amide I region, quantitatively accounting the spectral changes in the secondary structures by applying deconvolution and curve-fitting. Inflammation is found to give rise to a significant increasing of the nonreducible (trivalent)/reducible (divalent) cross-linking ratio R of the protein network. This parameter revealed an excellent marker in order to distinguish IBD subjects from non-IBD ones, and, among IBD patients, to differentiate between UC and CD. The proposed methodology was validated by statistical analysis using the receiver operating characteristic (ROC) curve.
Collapse
|
46
|
Chatzidaki M, Kostopoulou I, Kourtesi C, Pitterou I, Avramiotis S, Xenakis A, Detsi A. β-Cyclodextrin as carrier of novel antioxidants: A structural and efficacy study. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
47
|
Li Z, Wen W, Chen X, Zhu L, Cheng G, Liao Z, Huang H, Ming L. Release Characteristics of an Essential Oil Component Encapsulated with Cyclodextrin Shell Matrices. Curr Drug Deliv 2020; 18:487-499. [PMID: 32735520 DOI: 10.2174/1567201817666200731164902] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/01/2020] [Accepted: 07/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Essential oils are poor aqueous solubility and high volatility compounds. The encapsulation of essential oils with Cyclodextrins (CDs) can protect them from adverse environmental conditions and improve their stability. Therefore, increasing the functional capabilities of essential oils when they were used as additives in pharmaceutical and food systems. Additionally, the release of active compounds is an important issue. However, there were few studies about the effect of different CDs on the release of drugs after encapsulation. Therefore, the information on the study of release models is considerably limited. OBJECTIVE This study aimed to (i) characterize the physico-chemical properties and release behavior of myrcene encapsulated in the four different shell matrices of α-CD, β-CD, γ-CD and 2-hydroxypropyl-β- cyclodextrin (HP-β-CD), which were selected from the perspective of stability, and (ii) determine the release mechanism of myrcene in Inclusion Complexes (ICs). METHODS ICs of myrcene and four CDs were prepared by freeze-drying. The physico-chemical properties of ICs were fully characterized by laser diffraction particle size analyzer, Scanning Electron Microscope (SEM), Fourier-Transform Infrared spectroscopy (FT-IR) and Differential Scanning Calorimeter (DSC). The release behaviors of ICs at 50, 60, 70 and 80 °C were determined and described by zeroorder or first-order kinetics with the Henderson-Pabis, Peppas, Avrami and Page mathematical models. Moreover, the possible binding modes of ICs were identified with molecular modelling technique. RESULTS Firstly, the structure of Particle Size Distribution (PSD), FT-IR, DSC and SEM showed that (i) CDs could effectively encapsulate the myrcene molecules, and (ii) the release kinetics were well simulated by Avrami and Page models. Secondly, the release rates of the ICs experienced an unsteady state in the early stage, and gradually became almost constants period after 20 hours. Except that the release of myrcene in γ-CD/myrcene belonged to the first-order kinetic, the release models of the remaining three ICs belonged to diffusion mode. Thirdly, the calculated binding energies of the optimized structures for α-CD/myrcene, β-CD/myrcene, γ-CD/myrcene, and HP-β-CD/myrcene ICs were -4.28, -3.82, -4.04, and -3.72 kcal/mol, respectively. Finally, the encapsulation of myrcene with α-CD and β-CD was preferable according to the stability and release characteristics. CONCLUSION The encapsulation of myrcene was profoundly affected by the type of CDs, and the stability could be improved by complexation with suitable CDs. The binding behavior between guest and CD molecules, and the release profile of the guest molecules could be effectively explained by the kinetics parameters and molecular modelling. This study can provide an effective basis and guide for screening suitable shell matrices.
Collapse
Affiliation(s)
- Zhe Li
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Traditional Chinese Medicine, Jiangxi Nanchang 330004, China
| | - Wangwen Wen
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Jiangxi Ganzhou, 341000, China
| | - Xulong Chen
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Jiangxi Nanchang 330004, China
| | - Lin Zhu
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Jiangxi Nanchang 330004, China
| | - Genjinsheng Cheng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Jiangxi Ganzhou, 341000, China
| | - Zhenggen Liao
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Jiangxi Nanchang 330004, China
| | - Hao Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Jiangxi Ganzhou, 341000, China
| | - Liangshan Ming
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Traditional Chinese Medicine, Jiangxi Nanchang 330004, China
| |
Collapse
|
48
|
Functionalization of Single and Multi-Walled Carbon Nanotubes with Polypropylene Glycol Decorated Pyrrole for the Development of Doxorubicin Nano-Conveyors for Cancer Drug Delivery. NANOMATERIALS 2020; 10:nano10061073. [PMID: 32486371 PMCID: PMC7353207 DOI: 10.3390/nano10061073] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
A recently reported functionalization of single and multi-walled carbon nanotubes, based on a cycloaddition reaction between carbon nanotubes and a pyrrole derived compound, was exploited for the formation of a doxorubicin (DOX) stacked drug delivery system. The obtained supramolecular nano-conveyors were characterized by wide-angle X-ray diffraction (WAXD), thermogravimetric analysis (TGA), high-resolution transmission electron microscopy (HR-TEM), and Fourier transform infrared (FT-IR) spectroscopy. The supramolecular interactions were studied by molecular dynamics simulations and by monitoring the emission and the absorption spectra of DOX. Biological studies revealed that two of the synthesized nano-vectors are effectively able to get the drug into the studied cell lines and also to enhance the cell mortality of DOX at a much lower effective dose. This work reports the facile functionalization of carbon nanotubes exploiting the "pyrrole methodology" for the development of novel technological carbon-based drug delivery systems.
Collapse
|
49
|
Li W, Ran L, Liu F, Hou R, Zhao W, Li Y, Wang C, Dong J. Preparation and Characterisation of Polyphenol-HP-β-Cyclodextrin Inclusion Complex that Protects Lamb Tripe Protein against Oxidation. Molecules 2019; 24:E4487. [PMID: 31817887 PMCID: PMC6943433 DOI: 10.3390/molecules24244487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
Grape seed extract (GSE) displays strong antioxidant activity, but its instability creates barriers to its applications. Herein, three HP-β-CD/GSE inclusion complexes with host-guest ratios of 1:0.5, 1:1, and 1:2 were successfully prepared by co-precipitation method to improve stability. Successful embedding of GSE in the HP-β-CD cavity was confirmed by fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) analyses. The Autodock Tools 1.5.6 was used to simulate the three-dimensional supramolecular structure of the inclusion complex of 2-hydroxypropyl-β-cyclodextrin and grape seed extract (HP-β-CD/GSE) by molecular docking. The MALDI-TOF-MS technology and chemical database Pubchem, and structural database PDB were combined to reconstitute the three-dimensional structure of target protein. The binding mode of the HP-β-CD/GSE inclusion complex to target protein was studied at the molecular level, and the antioxidant ability of the resulting HP-β-CD/GSE inclusion complexes was investigated by measuring 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. The effects of HP-β-CD/GSE on myofibrillar protein from lamb tripe were also investigated under oxidative conditions. The positions and interactions of the binding sites of HP-β-CD/GSE inclusion complexes and target protein receptors were simulated by molecular docking. The results showed that HP-β-CD/GSE inclusion complexes were successfully prepared, optimally at a molar ratio of 1:2. At low (5 μmol/g) to medium (105 μmol/g) concentrations, HP-β-CD/GSE inclusion complexes decreased the carbonyl content, hydrophobicity, and protein aggregation of myofibrillar protein from lamb tripe, and increased the sulphydryl content. Furthermore, high concentration (155 μmol/g) of HP-β-CD/GSE inclusion complexes promoted protein oxidation.
Collapse
Affiliation(s)
- Wenhui Li
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (W.L.); (L.R.); (R.H.); (Y.L.); (C.W.)
| | - Lidan Ran
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (W.L.); (L.R.); (R.H.); (Y.L.); (C.W.)
| | - Fei Liu
- College of Life and Geography science Kashgar University, Kashi 844006, Xinjiang, China;
| | - Ran Hou
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (W.L.); (L.R.); (R.H.); (Y.L.); (C.W.)
| | - Wei Zhao
- College of Food, Jiangnan University, Wuxi 214122, China;
| | - Yingbiao Li
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (W.L.); (L.R.); (R.H.); (Y.L.); (C.W.)
| | - Chunyan Wang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (W.L.); (L.R.); (R.H.); (Y.L.); (C.W.)
| | - Juan Dong
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (W.L.); (L.R.); (R.H.); (Y.L.); (C.W.)
| |
Collapse
|