1
|
Yang P, Chen YX, Wang TT, Huang XS, Zhan RT, Yang JF, Ma DM. Nudix hydrolase WvNUDX24 is involved in borneol biosynthesis in Wurfbainia villosa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1218-1231. [PMID: 38323895 DOI: 10.1111/tpj.16669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
Borneol, camphor, and bornyl acetate are highly promising monoterpenoids widely used in medicine, flavor, food, and chemical applications. Bornyl diphosphate (BPP) serves as a common precursor for the biosynthesis of these monoterpenoids. Although bornyl diphosphate synthase (BPPS) that catalyzes the cyclization of geranyl diphosphate (GPP) to BPP has been identified in multiple plants, the enzyme responsible for the hydrolysis of BPP to produce borneol has not been reported. Here, we conducted in vitro and in vivo functional characterization to identify the Nudix hydrolase WvNUDX24 from W. villosa, which specifically catalyzes the hydrolysis of BPP to generate bornyl phosphate (BP), and then BP forms borneol under the action of phosphatase. Subcellular localization experiments indicated that the hydrolysis of BPP likely occurs in the cytoplasm. Furthermore, site-directed mutagenesis experiments revealed that four critical residues (R84, S96, P98, and G99) for the hydrolysis activity of WvNUDX24. Additionally, the functional identification of phosphatidic acid phosphatase (PAP) demonstrated that WvPAP5 and WvPAP10 were able to hydrolyze geranylgeranyl diphosphate (GGPP) and farnesyl diphosphate (FPP) to generate geranylgeranyl phosphate (GGP) and farnesyl phosphate (FP), respectively, but could not hydrolyze BPP, GPP, and neryl diphosphate (NPP) to produce corresponding monophosphate products. These findings highlight the essential role of WvNUDX24 in the first step of BPP hydrolysis to produce borneol and provide genetic elements for the production of BPP-related terpenoids through plant metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Peng Yang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| | - Yuan-Xia Chen
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tian-Tian Wang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xue-Shuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| | - Ruo-Ting Zhan
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jin-Fen Yang
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Dong-Ming Ma
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
2
|
Ducker C, French S, Pathak M, Taylor H, Sainter A, Askem W, Dreveny I, Santana AEG, Pickett JA, Oldham NJ. Characterisation of geranylgeranyl diphosphate synthase from the sandfly Lutzomyia longipalpis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 161:104001. [PMID: 37619821 DOI: 10.1016/j.ibmb.2023.104001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/02/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Leishmaniasis is a debilitating and often fatal neglected tropical disease. Males from sub-populations of the Leishmania-harbouring sandfly, Lutzomyia longipalpis, produce the diterpene sex and aggregation pheromone, sobralene, for which geranylgeranyl diphosphate (GGPP) is the likely isoprenoid precursor. We have identified a GGPP synthase (lzGGPPS) from L. longipalpis, which was recombinantly expressed in bacteria and purified for functional and kinetic analysis. In vitro enzymatic assays using LC-MS showed that lzGGPPS is an active enzyme, capable of converting substrates dimethylallyl diphosphate (DMAPP), (E)-geranyl diphosphate (GPP), (E,E)-farnesyl diphosphate (FPP) with co-substrate isopentenyl diphosphate (IPP) into (E,E,E)-GGPP, while (Z,E)-FPP was also accepted with low efficacy. Comparison of metal cofactors for lzGGPPS highlighted Mg2+ as most efficient, giving increased GGPP output when compared against other divalent metal ions tested. In line with previously characterised GGPPS enzymes, GGPP acted as an inhibitor of lzGGPPS activity. The molecular weight in solution of lzGGPPS was determined to be ∼221 kDa by analytical SEC, suggesting a hexameric assembly, as seen in the human enzyme, and representing the first assessment of GGPPS quaternary structure in insects.
Collapse
Affiliation(s)
- Charles Ducker
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Stanley French
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Monika Pathak
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Harry Taylor
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Adam Sainter
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - William Askem
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ingrid Dreveny
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | - John A Pickett
- School of Chemistry, Cardiff University, Main Building, Park Pl, Cardiff, CF10 3AT, UK
| | - Neil J Oldham
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
3
|
Alkafaas SS, Abdallah AM, Hussien AM, Bedair H, Abdo M, Ghosh S, Elkafas SS, Apollon W, Saki M, Loutfy SA, Onyeaka H, Hessien M. A study on the effect of natural products against the transmission of B.1.1.529 Omicron. Virol J 2023; 20:191. [PMID: 37626376 PMCID: PMC10464336 DOI: 10.1186/s12985-023-02160-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The recent outbreak of the Coronavirus pandemic resulted in a successful vaccination program launched by the World Health Organization. However, a large population is still unvaccinated, leading to the emergence of mutated strains like alpha, beta, delta, and B.1.1.529 (Omicron). Recent reports from the World Health Organization raised concerns about the Omicron variant, which emerged in South Africa during a surge in COVID-19 cases in November 2021. Vaccines are not proven completely effective or safe against Omicron, leading to clinical trials for combating infection by the mutated virus. The absence of suitable pharmaceuticals has led scientists and clinicians to search for alternative and supplementary therapies, including dietary patterns, to reduce the effect of mutated strains. MAIN BODY This review analyzed Coronavirus aetiology, epidemiology, and natural products for combating Omicron. Although the literature search did not include keywords related to in silico or computational research, in silico investigations were emphasized in this study. Molecular docking was implemented to compare the interaction between natural products and Chloroquine with the ACE2 receptor protein amino acid residues of Omicron. The global Omicron infection proceeding SARS-CoV-2 vaccination was also elucidated. The docking results suggest that DGCG may bind to the ACE2 receptor three times more effectively than standard chloroquine. CONCLUSION The emergence of the Omicron variant has highlighted the need for alternative therapies to reduce the impact of mutated strains. The current review suggests that natural products such as DGCG may be effective in binding to the ACE2 receptor and combating the Omicron variant, however, further research is required to validate the results of this study and explore the potential of natural products to mitigate COVID-19.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Heba Bedair
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mahmoud Abdo
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
| | - Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, 66050, General Escobedo, Nuevo León, Mexico
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
4
|
Suffys S, Richard G, Burgeon C, Werrie PY, Haubruge E, Fauconnier ML, Goffin D. Characterization of Aroma Active Compound Production during Kombucha Fermentation: Towards the Control of Sensory Profiles. Foods 2023; 12:foods12081657. [PMID: 37107452 PMCID: PMC10138291 DOI: 10.3390/foods12081657] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Since the sensorial profile is the cornerstone for the development of kombucha as a beverage with mass market appeal, advanced analytical tools are needed to gain a better understanding of the kinetics of aromatic compounds during the fermentation process to control the sensory profiles of the drink. The kinetics of volatile organic compounds (VOCs) was determined using stir bar sorptive extraction-gas chromatography-mass spectrometry, and odor-active compounds were considered to estimate consumer perception. A total of 87 VOCs were detected in kombucha during the fermentation stages. The synthesis of mainly phenethyl alcohol and isoamyl alcohol probably by Saccharomyces genus led to ester formation. Moreover, the terpene synthesis occurring at the beginning of fermentation (Δ-3-carene, α-phellandrene, γ-terpinene, m- and p-cymene) could be related to yeast activity as well. Principal component analysis identified classes that allowed the major variability explanation, which are carboxylic acids, alcohols, and terpenes. The aromatic analysis accounted for 17 aroma-active compounds. These changes in the evolution of VOCs led to flavor variations: from citrus-floral-sweet notes (geraniol and linalool domination), and fermentation brought intense citrus-herbal-lavender-bergamot notes (α-farnesene). Finally, sweet-floral-bready-honey notes dominated the kombucha flavor (2-phenylethanol). As this study allowed to estimate kombucha sensory profiles, an insight for the development of new drinks by controlling the fermentation process was suggested. Such a methodology should allow a better control and optimization of their sensory profile, which could in turn lead to greater consumer acceptance.
Collapse
Affiliation(s)
- Sarah Suffys
- Laboratory of Gastronomic Sciences, Gembloux Agro-Bio Tech, Liège University, 5030 Gembloux, Belgium
| | - Gaëtan Richard
- Laboratory of Gastronomic Sciences, Gembloux Agro-Bio Tech, Liège University, 5030 Gembloux, Belgium
| | - Clément Burgeon
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liège University, 5030 Gembloux, Belgium
| | - Pierre-Yves Werrie
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liège University, 5030 Gembloux, Belgium
| | - Eric Haubruge
- Laboratory of Gastronomic Sciences, Gembloux Agro-Bio Tech, Liège University, 5030 Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liège University, 5030 Gembloux, Belgium
| | - Dorothée Goffin
- Laboratory of Gastronomic Sciences, Gembloux Agro-Bio Tech, Liège University, 5030 Gembloux, Belgium
| |
Collapse
|
5
|
The stress-induced metabolites changes in the flavor formation of oolong tea during enzymatic-catalyzed process: A case study of Zhangping Shuixian tea. Food Chem 2022; 391:133192. [PMID: 35597038 DOI: 10.1016/j.foodchem.2022.133192] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/19/2022] [Accepted: 05/07/2022] [Indexed: 11/22/2022]
Abstract
To interpret the environmental stresses induced dynamic changes of volatile and non-volatile constitutes in oolong tea leaves during enzymatic-catalyzed processes (ECP), metabolomic and proteomic studies were carried out using the processed leaf samples collected at the different stages of ECP for Zhangping Shuixian tea manufacture. Non-processed leaves were applied as control. Out of identified 980 non-volatiles and 157 volatiles, 40 non-volatiles and 8 volatiles were screened out as biomarkers, respectively. The integrated analysis on metabolites-proteins showed that phenylpropanoid biosynthesis, flavonoid biosynthesis, and phenylalanine metabolism were significantly enriched and highly correlated to the dynamic changes of key metabolites during ECP stage. A biological pathway network was constructed to illuminate the enzymatic-catalyzed production of critical flavoring compounds, including carbohydrates, amino acids, flavonoids, and volatile phenylpropanoids/benzenoids. The electronic-sensory analyses indicated leaf dehydration and mechanical wounding occurred over the sun-withering and turning-over steps are indispensable to form characteristic flavor of Shuixian tea.
Collapse
|
6
|
Wang F, Zhang B, Wen D, Liu R, Yao X, Chen Z, Mu R, Pei H, Liu M, Song B, Lu L. Chromosome-scale genome assembly of Camellia sinensis combined with multi-omics provides insights into its responses to infestation with green leafhoppers. FRONTIERS IN PLANT SCIENCE 2022; 13:1004387. [PMID: 36212364 PMCID: PMC9539759 DOI: 10.3389/fpls.2022.1004387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
The tea plant (Camellia sinensis) is an important economic crop, which is becoming increasingly popular worldwide, and is now planted in more than 50 countries. Tea green leafhopper is one of the major pests in tea plantations, which can significantly reduce the yield and quality of tea during the growth of plant. In this study, we report a genome assembly for DuyunMaojian tea plants using a combination of Oxford Nanopore Technology PromethION™ with high-throughput chromosome conformation capture technology and used multi-omics to study how the tea plant responds to infestation with tea green leafhoppers. The final genome was 3.08 Gb. A total of 2.97 Gb of the genome was mapped to 15 pseudo-chromosomes, and 2.79 Gb of them could confirm the order and direction. The contig N50, scaffold N50 and GC content were 723.7 kb, 207.72 Mb and 38.54%, respectively. There were 2.67 Gb (86.77%) repetitive sequences, 34,896 protein-coding genes, 104 miRNAs, 261 rRNA, 669 tRNA, and 6,502 pseudogenes. A comparative genomics analysis showed that DuyunMaojian was the most closely related to Shuchazao and Yunkang 10, followed by DASZ and tea-oil tree. The multi-omics results indicated that phenylpropanoid biosynthesis, α-linolenic acid metabolism, flavonoid biosynthesis and 50 differentially expressed genes, particularly peroxidase, played important roles in response to infestation with tea green leafhoppers (Empoasca vitis Göthe). This study on the tea tree is highly significant for its role in illustrating the evolution of its genome and discovering how the tea plant responds to infestation with tea green leafhoppers will contribute to a theoretical foundation to breed tea plants resistant to insects that will ultimately result in an increase in the yield and quality of tea.
Collapse
Affiliation(s)
- Fen Wang
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
| | - Baohui Zhang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Center), Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Di Wen
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Rong Liu
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Xinzhuan Yao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
- College of Tea Science, Guizhou University, Guiyang, China
| | - Zhi Chen
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Ren Mu
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Huimin Pei
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Baoxing Song
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Litang Lu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
- College of Tea Science, Guizhou University, Guiyang, China
| |
Collapse
|
7
|
Qiao D, Tang M, Jin L, Mi X, Chen H, Zhu J, Liu S, Wei C. A monoterpene synthase gene cluster of tea plant (Camellia sinensis) potentially involved in constitutive and herbivore-induced terpene formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 184:1-13. [PMID: 35613521 DOI: 10.1016/j.plaphy.2022.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Monoterpenes and sesquiterpenes are the most abundant volatiles in tea plants and have dual functions in aroma quality formation and defense responses in tea plants. Terpene synthases (TPS) are the key enzymes for the synthesis of terpenes in plants; however, the functions of most of them in tea plants are still unknown. In this study, six putative terpene biosynthesis gene clusters were identified from the tea plant genome. Then we cloned three new TPS-b subfamily genes, CsTPS08, CsTPS10 and CsTPS58. In vitro enzyme assays showed that CsTPS08 and CsTPS58 are two multiple-product terpene synthases, with the former synthesizing linalool as the main product, and β-myrcene, α-phellandrene, α-terpinolene, D-limonene, cis-β-ocimene, trans-β-ocimene and (4E,6Z)-allo-ocimene as minor products are also detected, while the latter catalyzing the formation of α-pinene and D-limonene using GPP as the substrate. No product of CsTPS10 was detected in the prokaryotic expression system, but geraniol production was detected when transiently expressed in tobacco leaves. CsTPS08 and CsTPS10 are two functional members of a monoterpene synthase gene cluster, which were significantly induced during both Ectropis oblique feeding and fresh leaf spreading treatments, suggesting that they have dual functions involved in tea plant pest defense and tea aroma quality regulation. In addition, the differences in their expression levels in different tea plant cultivars provide a possibility for the subsequent screening of tea plant resources with a specific aroma flavor. Our results deepen the understanding of terpenoid synthesis in tea plants.
Collapse
Affiliation(s)
- Dahe Qiao
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, Guizhou, 550006, China
| | - Mengsha Tang
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Ling Jin
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Hongrong Chen
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.
| |
Collapse
|
8
|
Zhou H, Wang S, Xie HF, Liu G, Shamala LF, Pang J, Zhang Z, Ling TJ, Wei S. Cytosolic Nudix Hydrolase 1 Is Involved in Geranyl β-Primeveroside Production in Tea. FRONTIERS IN PLANT SCIENCE 2022; 13:833682. [PMID: 35646040 PMCID: PMC9131077 DOI: 10.3389/fpls.2022.833682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Geraniol is a potent tea odorant and exists mainly as geranyl glycoside in Camellia sinensis. Understanding the mechanisms of geraniol biosynthesis at molecular levels in tea plants is of great importance for practical improvement of tea aroma. In this study, geraniol and its glycosides from tea plants were examined using liquid chromatography coupled with mass spectrometry. Two candidate geraniol synthase (GES) genes (CsTPS) and two Nudix hydrolase genes (CsNUDX1-cyto and CsNUDX1-chlo) from the tea genome were functionally investigated through gene transcription manipulation and gene chemical product analyses. Our data showed that in tea leaves, levels of geranyl β-primeveroside were dramatically higher than those of geranyl β-glucoside, while free geraniol was undetectable in this study. A tempo-spatial variation of geranyl β-primeveroside abundance in tea plants existed, with high levels in young and green tissues and low levels in mature or non-green tissues. Cytosolic CsNUDX1-cyto showed higher hydrolysis activity of geranyl-pyrophosphate to geranyl-monophosphate (GP) in vitro than did chloroplastidial CsNUDX1-chlo. A transgenic study revealed that expression of CsNUDX1-cyto resulted in significantly more geranyl β-primeveroside in transgenic Nicotiana benthamiana compared with non-transgenic wild-type, whereas expression of CsNUDX1-chlo had no effect. An antisense oligo-deoxynucleotide study confirmed that suppression of CsNUDX1-cyto transcription in tea shoots led to a significant decrease in geranyl β-primeveroside abundance. Additionally, CsNUDX1-cyto transcript levels and geranyl β-primeveroside abundances shared the same tempo-spatial patterns in different organs in the tea cultivar "Shucha Zao," indicating that CsNUDX1-cyto is important for geranyl β-primeveroside formation in tea plants. Results also suggested that neither of the two candidate GES genes in tea plants did not function as GES in transgenic N. benthamiana. All our data indicated that CsNUDX1-cyto is involved in geranyl β-primeveroside production in tea plants. Our speculation about possible conversion from the chemical product of CsNUDX1-cyto to geranyl β-primeveroside in plants was also discussed.
Collapse
Affiliation(s)
- Hanchen Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan, China
| | - Shijie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Hao-Fen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Guofeng Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Henan Provincial Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, China
| | - Lubobi Ferdinand Shamala
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Jingyi Pang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zhengzhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Tie-Jun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
9
|
Al Dawsari MM, Alam P. Disruption impact of citronella and menthol insecticides on adults behavior and hemocytes morphology in the red palm weevil Rhynchophorus ferrugineus "Oliver" (Coleoptera: Curculionidae). Sci Prog 2022; 105:368504221079437. [PMID: 35188836 PMCID: PMC10358468 DOI: 10.1177/00368504221079437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
This study was conducted to evaluate some terpenes effect on the behavior and immune function of hemocytes in adults of the red palm weevil Rhynchophorus ferrugineus. Six individual different terpenes these are: (±)-menthol, B-citronellol, ( + )-3-carene, (R)- ( + )- limonene, citronella oil and orange terpenes. The results revealed significant differences between the terpenes used on the olfactory response on this insect, in that half of the compounds were very attractive while the other half were repellant to them. This behavior study results with olfactometer citronella oil exhibited an 80% attraction response rate for both sexes, while menthol exhibited a 60% attraction response rate for females and 100% for males. By contrast, menthol had a more significant effect on adults than citronella, lethal concentration at 50 scale (LC50) values of 1.03, 0.89, and 0.9 mg, and LC95 values of 5.09, 2.01, and 1.59 mg, after 24, 48 and 72 h, respectively. For citronella oil, the LC50 values were 2.09, 1.76, and 1.70 mg after 24, 48, and 72 h, and the LC95 values were 5.5, 3.7, and 1.5 mg after 24, 48 and 72h, were noted. In the present study, the effects of citronella and methanol insecticides were observed on six types of hemocytes namely prohemocytes, granulocytes, plasmatocytes, oenocytes, coagulocytes and spherulocytes. Both citronella oil and menthol had a histopathological effect on the hemocytes of the adult red palm weevil, specifically, on the cell membrane, cytoplasm, and nucleus. The findings also revealed that the vacuoles in some hemocytes, specifically, the prohemocytes, plasmatocytes, and granulocytes were more sensitive than those in other hemocytes, which remained unaffected by the treatment.The effects of citronella and menthol on RPW immunity were demonstrated in this study, and this information may be applied to their usage in integrated pest control at sub-lethal dosages.
Collapse
Affiliation(s)
- Mona Mohammed Al Dawsari
- Department of Biology, College of Science and Humanities in AL-Kharj, Prince Sattam bin Abdulaziz University, Kingdom of Saudi Arabia, 11942
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in AL-Kharj, Prince Sattam bin Abdulaziz University, Kingdom of Saudi Arabia, 11942
| |
Collapse
|
10
|
Singla RK, He X, Chopra H, Tsagkaris C, Shen L, Kamal MA, Shen B. Natural Products for the Prevention and Control of the COVID-19 Pandemic: Sustainable Bioresources. Front Pharmacol 2021; 12:758159. [PMID: 34925017 PMCID: PMC8671886 DOI: 10.3389/fphar.2021.758159] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
Background: The world has been unprecedentedly hit by a global pandemic which broke the record of deadly pandemics that faced humanity ever since its existence. Even kids are well-versed in the terminologies and basics of the SARS-CoV-2 virus and COVID-19 now. The vaccination program has been successfully launched in various countries, given that the huge global population of concern is still far behind to be vaccinated. Furthermore, the scarcity of any potential drug against the COVID-19-causing virus forces scientists and clinicians to search for alternative and complementary medicines on a war-footing basis. Aims and Objectives: The present review aims to cover and analyze the etiology and epidemiology of COVID-19, the role of intestinal microbiota and pro-inflammatory markers, and most importantly, the natural products to combat this deadly SARS-CoV-2 virus. Methods: A primary literature search was conducted through PubMed and Google Scholar using relevant keywords. Natural products were searched from January 2020 to November 2020. No timeline limit has been imposed on the search for the biological sources of those phytochemicals. Interactive mapping has been done to analyze the multi-modal and multi-target sources. Results and Discussion: The intestinal microbiota and the pro-inflammatory markers that can serve the prognosis, diagnosis, and treatment of COVID-19 were discussed. The literature search resulted in yielding 70 phytochemicals and ten polyherbal formulations which were scientifically analyzed against the SARS-CoV-2 virus and its targets and found significant. Retrospective analyses led to provide information about 165 biological sources that can also be screened if not done earlier. Conclusion: The interactive analysis mapping of biological sources with phytochemicals and targets as well as that of phytochemical class with phytochemicals and COVID-19 targets yielded insights into the multitarget and multimodal evidence-based complementary medicines.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xuefei He
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | | | - Li Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Rahmani S, Azimi S. Fumigant toxicity of three Satureja species on tomato leafminers, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). TOXIN REV 2021. [DOI: 10.1080/15569543.2020.1767651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Shima Rahmani
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Solmaz Azimi
- Department of Plant Protection, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
12
|
Naskar S, Roy C, Ghosh S, Mukhopadhyay A, Hazarika LK, Chaudhuri RK, Roy S, Chakraborti D. Elicitation of biomolecules as host defense arsenals during insect attacks on tea plants (Camellia sinensis (L.) Kuntze). Appl Microbiol Biotechnol 2021; 105:7187-7199. [PMID: 34515843 DOI: 10.1007/s00253-021-11560-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022]
Abstract
The most consumed and economically important beverage plant, tea (Camellia sinensis), and its pests have coevolved so as to maintain the plant-insect interaction. In this review, findings of different research groups on pest responsive tolerance mechanisms that exist in tea manifested through the production of secondary metabolites and their inducers are presented. The phytochemicals of C. sinensis have been categorized into volatiles, nonvolatiles, enzymes, and phytohormones for convenience. Two types of pests, namely the piercing-sucking pests and chewing pests, are associated with tea. Both the insect groups can trigger the production of those metabolites and inducers through several primary and secondary biosynthetic pathways. These induced biomolecules can act as insect repellents and most of them are associated with lowering the nutrient quality of plant tissue and increasing the indigestibility in the pest's gut. Moreover, some of them also act as predator attractants of particular pests. The herbivore-induced plant volatiles secreted from tea plants during pest infestation were (E)-nerolidol, α-farnesene, (Z)-3-hexenol, (E)-4,8-dimethyl-1,3,7-nonatriene, indole, benzyl nitrile (BN), linalool, and ocimenes. The nonvolatiles like theaflavin and L-theanine were increased in response to the herbivore attack. Simultaneously, S-adenosyl-L-methionine synthase, caffeine synthase activities were affected, whereas flavonoid synthesis and wax formation were elevated. Defense responsive enzymes like peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, ascorbate peroxidase, and catalase are involved in pest prevention mechanisms. Phytohormones like jasmonic acid, salicylic acid, abscisic acid, and ethylene act as the modulator of the defense system. The objective of this review is to discuss the defensive roles of these metabolites and their inducers against pest infestation in tea with an aim to develop environmentally sustainable pesticides in the future.Key points• Herbivore-induced volatile signals and their effects on neighboring tea plant protection• Stereochemical conversion of volatiles, effects of nonvolatiles, expression of defense-responsive enzymes, and phytohormones due to pest attack• Improved understanding of metabolites for bio-sustainable pesticide development.
Collapse
Affiliation(s)
- Sudipta Naskar
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Chitralekha Roy
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Sanatan Ghosh
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
| | - Ananda Mukhopadhyay
- Entomology Research Unit, Department of Zoology, University of North Bengal, Siliguri, , Darjeeling, 734013, India
| | | | | | - Somnath Roy
- Department of Entomology, Tocklai Tea Research Institute, Tea Research Association, Jorhat, Assam, 785008, India.
| | - Dipankar Chakraborti
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India.
| |
Collapse
|
13
|
Zeng L, Zhou X, Su X, Yang Z. Chinese oolong tea: An aromatic beverage produced under multiple stresses. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Zeng L, Zhou X, Liao Y, Yang Z. Roles of specialized metabolites in biological function and environmental adaptability of tea plant (Camellia sinensis) as a metabolite studying model. J Adv Res 2020; 34:159-171. [PMID: 35024188 PMCID: PMC8655122 DOI: 10.1016/j.jare.2020.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/12/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Background Aim of review Key scientific concepts of review
Collapse
|
15
|
The Biomolecular Spectrum Drives Microbial Biology and Functions in Agri-Food-Environments. Biomolecules 2020; 10:biom10030401. [PMID: 32143510 PMCID: PMC7175317 DOI: 10.3390/biom10030401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 11/17/2022] Open
Abstract
Microbial biomolecules have huge commercial and industrial potential. In nature, biological interactions are mostly associated with biochemical and biological diversity, especially with the discovery of associated biomolecules from microbes. Within cellular or subcellular systems, biomolecules signify the actual statuses of the microorganisms. Understanding the biological prospecting of the diverse microbial community and their complexities and communications with the environment forms a vital basis for active, innovative biotechnological breakthroughs. Biochemical diversity rather than the specific chemicals that has the utmost biological importance. The identification and quantification of the comprehensive biochemical diversity of the microbial molecules, which generally consequences in a diversity of biological functions, has significant biotechnological potential. Beneficial microbes and their biomolecules of interest can assist as potential constituents for the wide-range of natural product-based preparations and formulations currently being developed on an industrial scale. The understanding of the production methods and functions of these biomolecules will contribute to valorisation of agriculture, food bioprocessing and biopharma, and prevent human diseases related to the environment.
Collapse
|