1
|
Bozó R, Flink LB, Ambrus B, Ghaffarinia A, Koncz B, Kui R, Gyulai R, Kemény L, Bata-Csörgő Z. The Expression of Cytokines and Chemokines Potentially Distinguishes Mild and Severe Psoriatic Non-Lesional and Resolved Skin from Healthy Skin and Indicates Different Stages of Inflammation. Int J Mol Sci 2024; 25:11292. [PMID: 39457071 PMCID: PMC11509107 DOI: 10.3390/ijms252011292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
In the psoriatic non-lesional (PS-NL) skin, the tissue environment potentially influences the development and recurrence of lesions. Therefore, we aimed to investigate mechanisms involved in regulating tissue organization in PS-NL skin. Cytokine, chemokine, protease, and protease inhibitor levels were compared between PS-NL skin of patients with mild and severe symptoms and healthy skin. By comparing mild and severe PS-NL vs. healthy skin, differentially expressed cytokines and chemokines suggested alterations in hemostasis-related processes, while protease inhibitors showed no psoriasis severity-related changes. Comparing severe and mild PS-NL skin revealed disease severity-related changes in the expression of proteases, cytokines, and chemokines primarily involving methyl-CpG binding protein 2 (MECP2) and extracellular matrix organization-related mechanisms. Cytokine and chemokine expression in clinically resolved versus healthy skin showed slight interleukin activity, differing from patterns in mild and severe PS-NL skin. Immunofluorescence analysis revealed the severity-dependent nuclear expression pattern of MECP2 and decreased expression of 5-methylcytosine and 5-hydroxymethylcytosine in the PS-NL vs. healthy skin, and in resolved vs. healthy skin. Our results suggest distinct cytokine-chemokine signaling between the resolved and PS-NL skin of untreated patients with varying severities. These results highlight an altered inflammatory response, epigenetic regulation, and tissue organization in different types of PS-NL skin with possibly distinct, severity-dependent para-inflammatory states.
Collapse
Affiliation(s)
- Renáta Bozó
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
- HCEMM-USZ Skin Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Lili Borbála Flink
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
- HCEMM-USZ Skin Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Barbara Ambrus
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
| | - Ameneh Ghaffarinia
- HCEMM-USZ Skin Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Balázs Koncz
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
- HCEMM-BRC Systems Immunology Research Group, H-6726 Szeged, Hungary
| | - Róbert Kui
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
| | - Rolland Gyulai
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
| | - Lajos Kemény
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
- HCEMM-USZ Skin Research Group, University of Szeged, H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, Hungarian Research Network, H-6720 Szeged, Hungary
| | - Zsuzsanna Bata-Csörgő
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
- HCEMM-USZ Skin Research Group, University of Szeged, H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, Hungarian Research Network, H-6720 Szeged, Hungary
| |
Collapse
|
2
|
Lv Y, Yang L, Mao Z, Zhou M, Zhu B, Chen Y, Ding Z, Zhou F, Ye Y. Tetrastigma hemsleyanum polysaccharides alleviate imiquimod-induced psoriasis-like skin lesions in mice by modulating the JAK/STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155917. [PMID: 39153275 DOI: 10.1016/j.phymed.2024.155917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND The pathogenesis of psoriasis involves the interaction between keratinocytes and immune cells, leading to immune imbalance. While most current clinical treatment regimens offer rapid symptom relief, they often come with significant side effects. Tetrastigma hemsleyanum polysaccharides (THP), which are naturally nontoxic, possess remarkable immunomodulatory and anti-inflammatory properties. METHODS In this study, we utilized an imiquimod (IMQ)-induced psoriasis mouse model and a LPS/IL-6-stimulated HaCaT model. The potential and mechanism of action of THP in psoriasis treatment were assessed through methods including Psoriasis Area Severity Index (PASI) scoring, histopathology, flow cytometry, immunoblotting, and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Percutaneous administration of THP significantly alleviated symptoms and manifestations in IMQ-induced psoriatic mice, including improvements in psoriatic skin appearance (erythema, folds, scales), histopathological changes, decreased PASI scores, and spleen index. Additionally, THP suppressed abnormal proliferation of Th17 cells and excessive proliferation and inflammation of keratinocytes. Furthermore, THP exhibited the ability to regulate the JAK/STAT3 signaling pathway. CONCLUSION Findings from in vivo and in vitro studies suggest that THP can inhibit abnormal cell proliferation and excessive inflammation in lesional skin, balance Th17 immune cells, and disrupt the interaction between keratinocytes and Th17 cells. This mechanism of action may involve the modulation of the JAK/STAT3 signaling pathway, offering potential implications for psoriasis treatment.
Collapse
Affiliation(s)
- Yishan Lv
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Liu Yang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Zian Mao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Mingyuan Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Yujian Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China; Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
3
|
Fijałkowska A, Wojtania J, Woźniacka A, Robak E. Psoriasis and Lupus Erythematosus-Similarities and Differences between Two Autoimmune Diseases. J Clin Med 2024; 13:4361. [PMID: 39124628 PMCID: PMC11312967 DOI: 10.3390/jcm13154361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Systemic lupus erythematosus (SLE) and psoriasis (Ps) are two clinically distinct diseases with different pathogenesis. However, recent studies indicate some similarities in both clinical presentation and pathogenetic mechanisms. The coexistence of both entities is very uncommon and has not been fully elucidated. Thus, it remains a diagnostic and therapeutic challenge. In fact, drugs used in SLE can induce psoriatic lesions, whereas phototherapy effective in Ps is an important factor provoking skin lesions in patients with SLE. The aim of this work is to discuss in detail the common pathogenetic elements and the therapeutic options effective in both diseases.
Collapse
Affiliation(s)
| | | | | | - Ewa Robak
- Department of Dermatology and Venereology, Medical University of Lodz, Haller sq. 1, 90-647 Lodz, Poland; (A.F.); (J.W.); (A.W.)
| |
Collapse
|
4
|
Florian TL, Florian IA, Vesa SC, Beni L, Orăsan M. Inflammatory Cytokines and Clinical Outcome Following Biological Therapy in Adult Bio-Naïve Psoriasis Patients. Curr Issues Mol Biol 2024; 46:7719-7729. [PMID: 39057098 PMCID: PMC11276069 DOI: 10.3390/cimb46070457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory cytokines may hold the key to the clinical evolution of psoriasis. The aims of this study are to find a correlation between levels of inflammatory cytokines such as TNF-α, IL-23, IL-17A, and IL-17F and disease duration and severity scores in psoriasis; to test if the decrease in any of the aforementioned cytokines is correlated with an amelioration in disease severity scores; and to analyze if any of the four biologic agents used are linked with a greater decrease in overall cytokine levels. We enrolled 23 adult patients under treatment with ixekizumab, secukinumab, guselkumab, or adalimumab and measured psoriasis disease severity scores PASI (Psoriasis Area Severity Index) and DLQI (Dermatology Life Quality Index), as well as the levels of the aforementioned cytokines at the start of therapy and after 3 months of continuous treatment. Inclusion criteria were the presence of psoriasis, age above 18 years and the need to initiate biological therapy (lack of response to standard treatment). Biological therapies resulted in an amelioration of PASI and DLQI scores, as well as levels of TNF-α, IL-23 and IL-17F. Disease duration and PASI and DLQI scores did not correlate with cytokine levels except DLQI and IL-23 score, in a paradoxically inversely proportional manner. IL-23, in particular, could be a useful biomarker for checking treatment response in psoriasis.
Collapse
Affiliation(s)
- Teodora-Larisa Florian
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Ioan-Alexandru Florian
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Stefan Cristian Vesa
- Department of Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 23 Marinescu Street, 400337 Cluj-Napoca, Romania;
| | - Lehel Beni
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Meda Orăsan
- Department of Pathophysiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
5
|
Korneev A, Peshkova M, Koteneva P, Gundogdu A, Timashev P. Modulation of the skin and gut microbiome by psoriasis treatment: a comprehensive systematic review. Arch Dermatol Res 2024; 316:374. [PMID: 38850443 DOI: 10.1007/s00403-024-03024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 06/10/2024]
Abstract
The microbiome is intricately linked to the development of psoriasis, serving as both a potential cause and consequence of the psoriatic process. In recent years, there has been growing interest among psoriasis researchers in exploring how psoriasis treatments affect the skin and gut microbiome. However, a comprehensive evaluation of the impact of modern treatment approaches on the microbiome has yet to be conducted. In this systematic review, we analyze studies investigating alterations in the skin and gut microbiome resulting from psoriasis treatment, aiming to understand how current therapies influence the role of the microbiome in psoriasis development. The systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. PubMed and Scopus databases were searched for eligible studies from the inception dates until July 5, 2023. Study selection, data extraction, and risk of bias assessment were carried out by three overlapping pairs of reviewers, resolving any disagreements through consensus. Our analysis of various treatments, including biologics, conventional medications, phototherapy, and probiotics, reveals significant shifts in microbial diversity and abundance. Importantly, favorable treatment outcomes are associated with microbiota alterations that approach those observed in healthy individuals. While the studies reviewed exhibit varying degrees of bias, underscoring the need for further research, this review supports the potential of microbiome modulation as both a preventive and therapeutic strategy for psoriasis patients. The findings underscore the importance of personalized therapeutic approaches, recognizing the profound impact of treatment on the microbiome. They also highlight the promise of probiotics, prebiotics, and dietary interventions in psoriasis management.
Collapse
Affiliation(s)
- Alexander Korneev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991.
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991.
- Laboratory of the Polymers Synthesis for Medical Applications, Sechenov University, Moscow, Russia, 119991.
| | - Maria Peshkova
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia, 119991
| | - Polina Koteneva
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
- Design Center "Biofactory", Sechenov University, Moscow, Russia, 119991
| | - Aycan Gundogdu
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
- Metagenomics Laboratory, Genome and Stem Cell Center, Erciyes University, 38039, Kayseri, Turkey
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia, 119991
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia, 119991
| |
Collapse
|
6
|
Noor AAM, Nor AKCM, Redzwan NM. The immunological understanding on germinal center B cells in psoriasis. J Cell Physiol 2024; 239:e31266. [PMID: 38578060 DOI: 10.1002/jcp.31266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/16/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
The development of psoriasis is mainly driven by the dysregulation of T cells within the skin, marking a primary involvement of these cells in the pathogenesis. Although B cells are integral components of the immune system, their role in the initiation and progression of psoriasis is not as pivotal as that of T cells. The paradox of B cell suggests that, while it is crucial for adaptive immunity, B cells may contribute to the exacerbation of psoriasis. Numerous ideas proposed that there are potential relationships between psoriasis and B cells especially within germinal centers (GCs). Recent research projected that B cells might be triggered by autoantigens which then induced molecular mimicry to alter B cells activity within GC and generate autoantibodies and pro-inflammatory cytokines, form ectopic GC, and dysregulate the proliferation of keratinocytes. Hence, in this review, we gathered potential evidence indicating the participation of B cells in psoriasis within the context of GC, aiming to enhance our comprehension and advance treatment strategies for psoriasis thus inviting many new researchers to investigate this issue.
Collapse
Affiliation(s)
- Aina Akmal Mohd Noor
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Abdah Karimah Che Md Nor
- Central Research Laboratory, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Norhanani Mohd Redzwan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
7
|
Hsieh CL, Yu SJ, Lai KL, Chao WT, Yen CY. IFN-γ, IL-17A, IL-4, and IL-13: Potential Biomarkers for Prediction of the Effectiveness of Biologics in Psoriasis Patients. Biomedicines 2024; 12:1115. [PMID: 38791078 PMCID: PMC11118157 DOI: 10.3390/biomedicines12051115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Biologics are widely used to treat moderate-to-severe psoriasis. However, we have unmet needs for predicting individual patient responses to biologics before starting psoriasis treatment. We investigate a reliable platform and biomarkers for predicting individual patient responses to biologics. In a cohort study between 2018 and 2023 from a referral center in Taiwan, twenty psoriasis patients with or without psoriatic arthritis who had ever experienced two or more biologics were enrolled. Peripheral blood mononuclear cells obtained from these patients were treated with Streptococcus pyogenes and different biologics. The PASI reduction rate was strongly correlated with the reduction rate in the IL-13 level (p = 0.001) and the ratios of IFN-γ to IL-13 (p < 0.001), IFN-γ to IL-4 (p = 0.019), and IL-17A to IL-13 (p = 0.001). The PASI reduction difference was strongly correlated with the difference in the IFN-γ level (p = 0.002), the difference in the ratios of IFN-γ to IL-4 (p = 0.041), the difference in the ratios of IFN-γ to IL-13 (p = 0.006), the difference in the ratios of IL-17A to IL-4 (p = 0.011), and the difference in the ratios of IL-17A to IL-13 (p = 0.029). The biomarkers IFN-γ, IL-13, IFN-γ/IL4, IFN-γ/IL13, IL-17A/IL-4, and IL-17A/IL-13 are representative of the effectiveness of psoriasis treatment.
Collapse
Affiliation(s)
- Ching-Liang Hsieh
- Chinese Medicine Research Center, China Medical University, Taichung City 404, Taiwan;
- Department of Chinese Medicine, China Medical University Hospital, Taichung City 404, Taiwan
| | - Sheng-Jie Yu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Kuo-Lung Lai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Wei-Ting Chao
- Department of Life Science, Tunghai University, Taichung City 407, Taiwan;
| | - Chung-Yang Yen
- Department of Dermatology, Taichung Veterans General Hospital, Taichung City 407, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Integrated Care Center of Psoriatic Disease, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| |
Collapse
|
8
|
Li N, Lee Y, Suh JH, Oh JH, Jin SP, Lee DH, Chung JH. Fucosylation deficiency enhances imiquimod-induced psoriasis-like skin inflammation by promoting CXCL1 expression. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166988. [PMID: 38070583 DOI: 10.1016/j.bbadis.2023.166988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Psoriasis is a multifaceted chronic inflammatory skin disease; however, its underlying molecular mechanisms remain unclear. In this study, we explored the role of fucosylation in psoriasis using an imiquimod-induced psoriasis-like mouse model. ABH antigen and fucosyltransferase 1 (Fut1) expression was reduced in the granular layer of lesional skin of patients with psoriasis. In particular, the blood group H antigen type 2 (H2 antigen)-a precursor of blood group A and B antigens-and FUT1 were highly expressed throughout the spinous layer in both patients with psoriasis and the skin of imiquimod-treated mice. Upon the application of imiquimod, Fut1-deficient mice, which lacked the H2 antigen, exhibited higher clinical scores based on erythema, induration, and scaling than those of wild-type mice. Imiquimod-treated Fut1-deficient mice displayed increased skin thickness, trans-epidermal water loss, and Gr-1+ cell infiltration compared with wild-type mice. Notably, the levels of CXCL1 protein and mRNA were significantly higher in Fut1-deficient mice than those in wild-type mice; however, there were no significant differences in other psoriasis-related markers, such as IL-1β, IL-6, IL-17A, and IL-23. Fut1-deficient primary keratinocytes treated with IL-17A also showed a significant increase in both mRNA and protein levels of CXCL1 compared with IL-17A-treated wild-type primary keratinocytes. Further mechanistic studies revealed that this increased Cxcl1 mRNA in Fut1-deficient keratinocytes was caused by enhanced Cxcl1 mRNA stabilization. In summary, our findings indicated that fucosylation, which is essential for ABH antigen synthesis in humans, plays a protective role in psoriasis-like skin inflammation and is a potential therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Na Li
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Youngae Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joong Heon Suh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seon-Pil Jin
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Institute on Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Kuczyńska M, Moskot M, Gabig-Cimińska M. Insights into Autophagic Machinery and Lysosomal Function in Cells Involved in the Psoriatic Immune-Mediated Inflammatory Cascade. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0005. [PMID: 38409665 DOI: 10.2478/aite-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 02/28/2024]
Abstract
Impaired autophagy, due to the dysfunction of lysosomal organelles, contributes to maladaptive responses by pathways central to the immune system. Deciphering the immune-inflammatory ecosystem is essential, but remains a major challenge in terms of understanding the mechanisms responsible for autoimmune diseases. Accumulating evidence implicates a role that is played by a dysfunctional autophagy-lysosomal pathway (ALP) and an immune niche in psoriasis (Ps), one of the most common chronic skin diseases, characterized by the co-existence of autoimmune and autoinflammatory responses. The dysregulated autophagy associated with the defective lysosomal system is only one aspect of Ps pathogenesis. It probably cannot fully explain the pathomechanism involved in Ps, but it is likely important and should be seriously considered in Ps research. This review provides a recent update on discoveries in the field. Also, it sheds light on how the dysregulation of intracellular pathways, coming from modulated autophagy and endolysosomal trafficking, characteristic of key players of the disease, i.e., skin-resident cells, as well as circulating immune cells, may be responsible for immune impairment and the development of Ps.
Collapse
Affiliation(s)
- Martyna Kuczyńska
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| | - Marta Moskot
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
10
|
Matsuno A, Sumida H, Nakanishi H, Ikeyama Y, Ishii T, Omori I, Saito H, Iwasawa O, Sugimori A, Yoshizaki A, Katoh H, Ishikawa S, Sato S. Keratinocyte proline-rich protein modulates immune and epidermal response in imiquimod-induced psoriatic skin inflammation. Exp Dermatol 2023; 32:2121-2130. [PMID: 37926955 DOI: 10.1111/exd.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
Psoriasis is a persistent inflammatory skin disease thought to arise as a result of the infiltration of inflammatory cells and activation of keratinocytes. Recent advances in basic research and clinical experience revealed that the interleukin (IL)-23/IL-17 axis has been identified as a major immune pathway in psoriasis. However, it remains unclear how keratinocyte factors contribute to the pathology of psoriasis. Keratinocyte proline-rich protein (KPRP) is a proline-rich insoluble protein, which is present in the epidermis and is likely to be involved in the skin barrier function. Here, to investigate the potential roles of KPRP in psoriatic skin inflammation, Kprp-modified mice were applied in the imiquimod (IMQ)-induced skin inflammation model, which develops psoriasis-like epidermal hyperplasia and cutaneous inflammation features. Then, heterozygous knockout (Kprp+/- ) but not homozygous knockout (Kprp-/- ) mice displayed attenuated skin erythema compared to control wild-type mice. In addition, RNA sequencing, quantitative PCR and/or histological analysis detected changes in the expression of several molecules related to psoriatic inflammation or keratinocyte differentiation in Kprp+/- mice, but not Kprp-/- mice. Further analysis exhibited reduced IL-17-producing γδlow T cells and amplified epidermal hyperplasia in Kprp+/- mice, which were implied to be related to decreased expression of β-defensins and increased expression of LPAR1 (Lysophosphatidic acid receptor 1), respectively. Thus, our results imply that KPRP has the potential as a therapeutic target in psoriatic skin inflammation.
Collapse
Affiliation(s)
- Ai Matsuno
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hayakazu Sumida
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Scleroderma Center, The University of Tokyo Hospital, Tokyo, Japan
- SLE Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Hirofumi Nakanishi
- Research and Development Division, Rohto Pharmaceutical Company, Osaka, Japan
| | - Yoshifumi Ikeyama
- Research and Development Division, Rohto Pharmaceutical Company, Osaka, Japan
| | - Tsuyoshi Ishii
- Research and Development Division, Rohto Pharmaceutical Company, Osaka, Japan
| | - Issei Omori
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hinako Saito
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Okuto Iwasawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayaka Sugimori
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Shobeiri SS, Dashti M, Pordel S, Rezaee M, Haghnavaz N, Moghadam M, Ansari B, Sankian M. Topical anti-TNF-a ssDNA aptamer decreased the imiquimod induced psoriatic inflammation in BALB/c mice. Cytokine 2023; 172:156406. [PMID: 37879125 DOI: 10.1016/j.cyto.2023.156406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Tumor Necrosis Factor-α (TNF-α) is a pro-inflammatory factor that plays a pivotal role in psoriasis. Due to limitations of monoclonal antibody-based therapies, it is needed to discover new anti-TNF-α factors instead of usual anti-TNF-α monoclonal antibodies. Compared to antibodies, single-stranded DNA or RNA molecules named aptamers, have advantages such as time-saving, less risk for immunogenicity and cost-effectiveness. Therefore, the aim of the present study was to assess the therapeutic effects of T1-T4 dimer anti-TNF-ɑ ssDNA aptamer topical treatment in the imiquimod (IMQ)-induced psoriasis animal model. METHODS 5% IMQ cream was prescribed on the right ear of BALB/c to induce psoriasis model. The hydrogel-containing anti-TNF-ɑ aptamer or treatment control aptamer (anti- Interleukin (IL)17A) was topically prescribed to the mice's ears 10 min before IMQ cream treatment. The psoriasis area severity index (PASI) score was used to evaluate psoriasis intensity. Histopathology analysis was done for mice ears sections. Mass, size, and cell number of mice spleens were measured. The IL-17 level was determined in culture supernatants of axillary lymph node cells using ELISA. The mRNA expression levels of IL-17A, IL-1β, STAT3, and S100a9, were evaluated in mice treated ear with quantitative Real Time-PCR. RESULTS The anti-TNF-ɑ ssDNA aptamer lower doses had significant decrease in IMQ-induced PASI score (p < 0.05). In addition, in these groups, the IL-17A, STAT3, and S100a9 mRNA levels were significantly lower than the IMQ group (p < 0.05). CONCLUSION According to our findings, this aptamer seems to be a prospective candidate for treating psoriatic inflammation especially in lower concentrations.
Collapse
Affiliation(s)
- Saeideh Sadat Shobeiri
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Dashti
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safoora Pordel
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - MohammadAli Rezaee
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Navideh Haghnavaz
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Moghadam
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Ansari
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Draelos ZD, Draelos MM, Lin T, Jacobson A. Fixed-combination halobetasol propionate and tazarotene topical lotion decreases TNF-α and IL-17A levels in psoriatic lesions. J DERMATOL TREAT 2023; 34:2245081. [PMID: 37577786 DOI: 10.1080/09546634.2023.2245081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
OBJECTIVE Fixed-combination halobetasol propionate (0.01%) and tazarotene (0.045%) lotion (HP/TAZ) is approved for the treatment of plaque psoriasis in adults, with a demonstrated efficacy and safety profile in phase 3 trials. This study examined the effect of HP/TAZ on the reduction of tumor necrosis factor alpha (TNF-α) and interleukin 17 A (IL-17A) and its correlation to psoriasis improvement. MATERIALS AND METHODS Ten adults with mild-to-moderate plaque psoriasis and 2 symmetrical plaques self-applied HP/TAZ (treated plaque) or vehicle lotion (untreated plaque) for 12 weeks. At baseline and each study visit (weeks 2, 4, 8, and 12), Investigator's Global Assessment (IGA) score and erythema, scaling, and induration were assessed. Additionally, D-squame tape strips were utilized to quantify TNF-α and IL-17A in target lesions by enzyme-linked immunosorbent assay. RESULTS Significant improvements in mean IGA score in HP/TAZ-treated compared with untreated plaques were evident at week 2 and maintained through week 12 (p < 0.003). HP/TAZ significantly reduced TNF-α levels at weeks 4 through 12 (p < 0.03) and IL-17A levels at weeks 2 through 8 (p < 0.05) in treated compared with untreated plaques. CONCLUSIONS HP/TAZ was highly effective in treating psoriasis plaques and, although HP/TAZ is not a biologic, effectively reduced cytokine-associated inflammatory markers that drive psoriatic disease.
Collapse
Affiliation(s)
| | | | - Tina Lin
- Ortho Dermatologics (a division of Bausch Health US, LLC), Bridgewater, NJ, USA
| | - Abby Jacobson
- Ortho Dermatologics (a division of Bausch Health US, LLC), Bridgewater, NJ, USA
| |
Collapse
|
13
|
Cancelliere R, Cosio T, Campione E, Corvino M, D’Amico MP, Micheli L, Signori E, Contini G. Label-free electrochemical immunosensor as a reliable point-of-care device for the detection of Interleukin-6 in serum samples from patients with psoriasis. Front Chem 2023; 11:1251360. [PMID: 38025060 PMCID: PMC10667553 DOI: 10.3389/fchem.2023.1251360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Interleukin-6 (IL-6) plays a crucial role in autoimmunity and chronic inflammation. This study aims to develop a low-cost, simple-to-manufacture, and user-friendly label-free electrochemical point-of-care device for the rapid detection of IL-6 in patients with psoriasis. Precisely, a sandwich-based format immunosensor was developed using two primary antibodies (mAb-IL6 clone-5 and clone-7) and screen-printed electrodes modified with an inexpensive recycling electrochemical enhancing material, called biochar. mAb-IL6 clone-5 was used as a covalently immobilized capture bioreceptor on modified electrodes, and mAb-IL6 clone-7 was used to recognize the immunocomplex (Anti-IL6 clone-5 and IL-6) and form the sandwich. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to conduct electrochemical characterization of the layer-by-layer assembly of the immunosensor, while square wave voltammetry (SWV) was used to perform the sensing. The developed immunosensor demonstrated robust analytical performance in buffer solution, with a wide linear range (LR) by varying from 2 to 250 pg/mL, a good limit of detection (LOD) of 0.78 pg/mL and reproducibility (RSD<7%). In addition, a spectrophotometric ELISA kit was employed to validate the results obtained with the label-free device by analyzing twenty-five serum samples from control and patients affected by psoriasis. A strong correlation in terms of pg/mL concentration of IL-6 was found comparing the two methods, with the advantage for our label-free biosensor of an ease use and a quicker detection time. Based on IL-6 levels, the proposed immunosensor is a dependable, non-invasive screening device capable of predicting disease onset, progression, and treatment efficacy.
Collapse
Affiliation(s)
- Rocco Cancelliere
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Roma, Italy
| | - Terenzio Cosio
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Roma, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Martina Corvino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Roma, Italy
| | - Maria Pia D’Amico
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Roma, Italy
| | - Laura Micheli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Roma, Italy
| | - Emanuela Signori
- Istituto di Farmacologia Traslazionale-CNR (IFT-CNR), Roma, Italy
| | - Giorgio Contini
- Istituto di Struttura Della Materia-CNR (ISM-CNR), Roma, Italy
- Department of Physics, University of Rome Tor Vergata, Roma, Italy
| |
Collapse
|
14
|
Zhuang L, Ma W, Jiao J. Inhibition of Key Glycolytic Enzyme Hexokinase 2 Ameliorates Psoriasiform Inflammation in vitro and in vivo. Clin Cosmet Investig Dermatol 2023; 16:3229-3239. [PMID: 37965102 PMCID: PMC10642575 DOI: 10.2147/ccid.s435624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Purpose Epidermal keratinocytes with an abnormal glucose metabolism have been identified in psoriasis. Hexokinase 2 (HK2) is a crucial enzyme involved in glycolytic metabolic pathways. However, the expression of HK2 and its potential therapeutic effects in psoriasis remains unclear. This study aimed to investigate the expression pattern of HK2 and evaluate its therapeutic effects in psoriasis. Patients and Methods A gene expression dataset (GSE121212) downloaded from the Gene Expression Omnibus (GEO) database was used to examine the expression of HK2 in psoriasis. HK2 RNA and protein expression were investigated in psoriasis vulgaris (n=5) and healthy (n=5) samples. Immunohistochemistry for HK2 was performed on psoriasis vulgaris (n=22) and healthy skin (n=10) samples. Additionally, HaCaT cells were treated with M5 (interleukin [IL]-17A, tumor necrosis factor-α, IL-1α, IL-22, and Oncostatin-M) to induce a psoriatic inflammation cell model. A mouse model of psoriatic inflammation was established using topical 5% imiquimod cream. Psoriasis-like cells and mouse models were treated with the HK2 inhibitor 3-bromopyruvate (3-BrPA). Cell proliferation, glucose consumption, and lactate production were assessed. Furthermore, the activation of nuclear factor-kappa B (NF-Kb) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) was investigated using Western blot analysis. Results According to the GEO dataset, HK2 expression was significantly elevated in psoriasis. Upregulation of HK2 in psoriatic tissues was confirmed by quantitative real-time polymerase chain reaction and Western blotting. The immunohistochemistry score for HK2 was higher in psoriatic lesions than in healthy skin. 3-BrPA inhibited the proliferation and glycolysis of M5-stimulated HaCaT cells. Topical 3-BrPA ameliorated imiquimod-induced psoriasis-like dermatitis. Activation of NF-kB and NLRP3 was downregulated by 3-BrPA treatment. Conclusion Our study revealed that the glycolytic enzyme HK2 was upregulated in psoriasis and that the HK2 inhibitor 3-BrPA exhibited therapeutic effects in psoriasis cell and mouse models.
Collapse
Affiliation(s)
- Le Zhuang
- Department of Dermatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Weiyuan Ma
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Jing Jiao
- Department of Dermatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
15
|
Nowowiejska J, Baran A, Hermanowicz JM, Sieklucka B, Pawlak D, Flisiak I. Tumor Necrosis Factor (TNF) α, Endothelin (ET) 1 and α1-Acid Glycoprotein (AGP) as Potential Urine and Serum Markers of Metabolic Complications in Psoriasis? Dermatol Ther (Heidelb) 2023; 13:2217-2227. [PMID: 37568012 PMCID: PMC10539270 DOI: 10.1007/s13555-023-00992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
INTRODUCTION Psoriasis, one of the most frequent dermatoses, strongly associated with metabolic disorders which increase patients' comorbidity and mortality. Hence, it is essential to look for markers of such complications. Our aim was to assess the clinical utility of urinary tumor necrosis factor alpha (TNFα), endothelin 1 (ET-1) and α1-acid glycoprotein (α1AGP) as well as their serum concentrations as markers of metabolic complications in psoriatics, and to examine the relations of these markers to clinical and demographic parameters. METHODS The study involved 60 patients with plaque psoriasis and 30 volunteers without skin diseases (the control group). Serum and urinary concentrations of TNFα, ET-1 and α1AGP were measured by ELISA. Psoriasis severity was assessed using the psoriasis activity and severity index (PASI). Routine laboratory investigations were additionally performed. RESULTS All serum markers were significantly higher in the patients compared to the controls. TNFα was undetectable in the urine in half of the patients. The urinary ET-1/creatinine concentration ratio was significantly lower in the psoriatics than the controls, whereas the absolute urinary α1AGP was significantly higher and the α1AGP/creatinine ratio was insignificantly different. There was no correlation between serum or urinary markers and PASI. All serum markers were higher in patients with psoriasis lasting less than 15 years. CONCLUSIONS Serum TNFα, ET-1 and α1AGP seem to be useful biomarkers of metabolic syndrome in psoriatics. ET-1 could perhaps become a urinary marker of metabolic disorders in psoriatics, but further studies are required to confirm that a decreased ET-1 concentration in urine is a reliable predictive tool. Increased urinary α1AGP also requires more in-depth research as a potential marker. TNFα urine assessment does not seem to be useful for screening for metabolic disorders in psoriatics. Serum or urinary TNFα, ET-1 and α1AGP do not seem to be associated with psoriasis severity or duration.
Collapse
Affiliation(s)
- Julia Nowowiejska
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland
| | - Anna Baran
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland
| | - Justyna M. Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., 15-089 Bialystok, Poland
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., 15-089 Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., 15-089 Bialystok, Poland
| | - Iwona Flisiak
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland
| |
Collapse
|
16
|
Timis TL, Beni L, Mocan T, Florian IA, Orasan RI. Biologic Therapies Decrease Disease Severity and Improve Depression and Anxiety Symptoms in Psoriasis Patients. Life (Basel) 2023; 13:life13051219. [PMID: 37240864 DOI: 10.3390/life13051219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Psoriasis is an immune-mediated chronic skin disease that is associated with a significant psychological burden. A newer line of therapy is represented by biologic agents. Our study aimed to evaluate the effect of biologic therapies in the treatment of psoriasis concerning both disease severity and psychological comorbidity. MATERIAL AND METHODS We performed a prospective case-control comparison to evaluate the prevalence of depression and anxiety in psoriasis patients and unaffected individuals. All patients were recruited between October 2017 and February 2021. Baseline depression (PHQ-9), anxiety (GAD-7), PASI, and DLQI scores were noted. Then, we evaluated the efficacy of biologic treatment in reducing these scores at 6 months of therapy. Patients were treated with either ixekizumab, secukinumab, guselkumab, certolizumab, ustekinumab, risankizumab, or adalimumab. RESULTS 106 bio-naïve patients with psoriasis and 106 controls without the disease were included in this study. Depression and anxiety were significantly more common among psoriasis patients than in unaffected individuals (p < 0.0001). Female patients presented both depression and anxiety more frequently than men in both case and control groups. Disease severity was significantly associated with worsened depression and anxiety symptoms. Biologic therapy resulted in a significant decrease in all four scores at the 6-month mark for each patient (p < 0.0001). Only an improved PASI correlated significantly with lower depression and anxiety scores (p < 0.005), whereas a decreased DLQI did not (p > 0.955). None of the seven biologic agents used was discovered to be superior. CONCLUSION biologic therapies are effective in decreasing both disease severity and alleviating depression and anxiety symptoms in psoriasis.
Collapse
Affiliation(s)
- Teodora-Larisa Timis
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Lehel Beni
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Teodora Mocan
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ioan-Alexandru Florian
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Remus-Ioan Orasan
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
17
|
Nikam RV, Gowtham M, More PS, Shinde AS. Current and emerging prospects in the psoriatic treatment. Int Immunopharmacol 2023; 120:110331. [PMID: 37210912 DOI: 10.1016/j.intimp.2023.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
Psoriasis is an autoimmune chronic disorder that causes inflammation and a scaly epidermis. The exact pathogenesis of the disease is not known yet. According to the studies, psoriasis is considered an immune-mediated disease. Until now it is believed that genetic and environmental factors are responsible for the disease. There are many comorbidities associated with psoriasis which increases difficulties as patients in some cases get addicted to drugs, alcohol, and smoking which reduces their quality of life. The patient may face social ignorance or suicidal thoughts which may arise in the patient's mind. Due to the undefined trigger of the disease, the treatment is not fully established but by considering the severe impact of the disease researchers are focusing on novel approaches for successful treatment. which has succeeded to a large extent. Here we review pathogenesis, problems faced by psoriatic patients, the need for the development of new treatments over conventional therapies, and the history of psoriatic treatments. We thoroughly focus on emerging treatments like biologics, biosimilars, and small molecules which are now showing more efficacy and safety than conventional treatments. Also, this review article discusses novel approaches which are now in research such as drug repurposing, treatment by stimulation of the vagus nerve, regulation of microbiota, and autophagy for improving disease conditions.
Collapse
Affiliation(s)
- Rutuja Vilas Nikam
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - M Gowtham
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - Pratiksha Sanjay More
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - Anuja Sanjay Shinde
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| |
Collapse
|
18
|
Kuczyńska M, Gabig-Cimińska M, Moskot M. Molecular treatment trajectories within psoriatic T lymphocytes: a mini review. Front Immunol 2023; 14:1170273. [PMID: 37251381 PMCID: PMC10213638 DOI: 10.3389/fimmu.2023.1170273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Multiple biological processes in mammalian cells are implicated in psoriasis (Ps) development and progression, as well as in the pathogenic mechanisms associated with this chronic immune-mediated inflammatory disease (IMID). These refer to molecular cascades contributing to the pathological topical and systemic reactions in Ps, where local skin-resident cells derived from peripheral blood and skin-infiltrating cells originating from the circulatory system, in particular T lymphocytes (T cells), are key actors. The interplay between molecular components of T cell signalling transduction and their involvement in cellular cascades (i.e. throughout Ca2+/CaN/NFAT, MAPK/JNK, PI3K/Akt/mTOR, JAK/STAT pathways) has been of concern in the last few years; this is still less characterised than expected, even though some evidence has accumulated to date identifying them as potential objects in the management of Ps. Innovative therapeutic strategies for the use of compounds such as synthetic Small Molecule Drugs (SMDs) and their various combinations proved to be promising tools for the treatment of Ps via incomplete blocking, also known as modulation of disease-associated molecular tracks. Despite recent drug development having mainly centred on biological therapies for Ps, yet displaying serious limitations, SMDs acting on specific pathway factor isoforms or single effectors within T cell, could represent a valid innovation in real-world treatment patterns in patients with Ps. Of note, due to the intricate crosstalk between intracellular pathways, the use of selective agents targeting proper tracks is, in our opinion, a challenge for modern science regarding the prevention of disease at its onset and also in the prediction of patient response to Ps treatment.
Collapse
Affiliation(s)
| | | | - Marta Moskot
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
19
|
Purzycka-Bohdan D, Nedoszytko B, Zabłotna M, Gleń J, Szczerkowska-Dobosz A, Nowicki RJ. Chemokine Profile in Psoriasis Patients in Correlation with Disease Severity and Pruritus. Int J Mol Sci 2022; 23:13330. [PMID: 36362116 PMCID: PMC9655759 DOI: 10.3390/ijms232113330] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 08/01/2023] Open
Abstract
Psoriasis (PsO) is a chronic, immune-mediated, inflammatory skin disease associated in most cases with pruritus. Chemokines seem to play a significant role in PsO pathogenesis. The aim of the study was to analyse serum concentrations of CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CCL5/RANTES, CCL17/TARC, CCL18/PARC, CCL22/MDC and CXCL8/IL-8, and their correlation with PsO severity and pruritus intensity. The study included 60 PsO patients and 40 healthy volunteers. Serum concentrations of six (CCL2/MCP-1, CCL3/MIP-1α, CCL5/RANTES, CCL17/TARC, CCL18/PARC and CCL22/MDC) out of eight analysed chemokines were significantly elevated in PsO patients; however, they did not correlate with disease severity. The serum level of CCL5/RANTES was significantly higher in patients with the psoriasis area and severity index (PASI) ≥ 15 (p = 0.01). The serum concentration of CCL17/TARC correlated positively with pruritus assessed using the visual analogue scale (VAS) (R = 0.47; p = 0.05). The study indicated CCL17/TARC as a potential biomarker of pruritus intensity in PsO patients. Chemokines appear to be involved in the development of PsO systemic inflammation. Further detailed studies on the interactions between chemokines, proinflammatory cytokines and immune system cells in PsO are required to search for new targeted therapies.
Collapse
Affiliation(s)
- Dorota Purzycka-Bohdan
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland
- Invicta Fertility and Reproductive Centre, Molecular Laboratory, 81-740 Sopot, Poland
| | - Monika Zabłotna
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Jolanta Gleń
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Aneta Szczerkowska-Dobosz
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Roman J. Nowicki
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland
| |
Collapse
|