1
|
Yuan M, Zhang Y, Zuo N, Lei H, Zhao X, Xu Y. Association of oxidative balance score with blood pressure, all-cause and cardiovascular disease mortality among hypertensive patients: a prospective study. J Hypertens 2025; 43:492-503. [PMID: 39823643 DOI: 10.1097/hjh.0000000000003931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/08/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVE The oxidative balance score (OBS) has emerged as a novel marker for assessing oxidative stress status. This study aimed to investigate the association of OBS with systolic blood pressure (SBP), diastolic blood pressure (DBP), all-cause, and cardiovascular disease mortality in hypertensive patients. METHODS We conducted an analysis of data from 7602 hypertensive patients from the National Health and Nutrition Examination Survey (NHANES) 2005-2018. Multiple linear regression, Cox proportional hazards models, Kaplan-Meier survival curves, restricted cubic spline, and subgroup analysis were used to examine the association between OBS and SBP, DBP, estimated pulse wave velocity (ePWV), and mortality risk. RESULTS The results showed that individuals in the highest OBS quartile (27 ≤ OBS ≤ 40) had a significant 2.41 mmHg reduction in SBP compared to the lowest quartile (5 ≤ OBS ≤ 15) ( Ptrend < 0.001). Compared to the lowest quartile, individuals in the highest OBS quartile had a 29% lower risk of all-cause mortality and a 44% lower risk of cardiovascular disease mortality ( Ptrend < 0.001). This inverse association persisted irrespective of antihypertensive medication use. OBS is inversely associated with SBP, all-cause, and cardiovascular disease mortality in hypertensive patients. CONCLUSION This finding provides new evidence and suggestions for those with poor blood pressure control and low OBS (<15) to adjust their diet and lifestyle reasonably.
Collapse
Affiliation(s)
- Menghan Yuan
- Medical School of Chinese PLA
- Senior Department of Cardiology, the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Yingyue Zhang
- Medical School of Chinese PLA
- Senior Department of Cardiology, the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Nina Zuo
- Medical School of Chinese PLA
- Senior Department of Cardiology, the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Haoying Lei
- Medical School of Chinese PLA
- Senior Department of Cardiology, the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Xuming Zhao
- Medical School of Chinese PLA
- Senior Department of Cardiology, the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Yong Xu
- Medical School of Chinese PLA
- Senior Department of Cardiology, the Sixth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Huang S, Lu Y, Fang W, Huang Y, Li Q, Xu Z. Neurodegenerative diseases and neuroinflammation-induced apoptosis. Open Life Sci 2025; 20:20221051. [PMID: 40026360 PMCID: PMC11868719 DOI: 10.1515/biol-2022-1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/30/2024] [Accepted: 12/27/2024] [Indexed: 03/05/2025] Open
Abstract
Neuroinflammation represents a critical pathway in the brain for the clearance of foreign bodies and the maintenance of homeostasis. When the neuroinflammatory process is dysregulate, such as the over-activation of microglia, which results in the excessive accumulation of free oxygen and inflammatory factors in the brain, among other factors, it can lead to an imbalance in homeostasis and the development of various diseases. Recent research has indicated that the development of numerous neurodegenerative diseases is closely associated with neuroinflammation. The pathogenesis of neuroinflammation in the brain is intricate, involving alterations in numerous genes and proteins, as well as the activation and inhibition of signaling pathways. Furthermore, excessive inflammation can result in neuronal cell apoptosis, which can further exacerbate the extent of the disease. This article presents a summary of recent studies on the relationship between neuronal apoptosis caused by excessive neuroinflammation and neurodegenerative diseases. The aim is to identify the link between the two and to provide new ideas and targets for exploring the pathogenesis, as well as the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shi Huang
- School of Clinical Medicine, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Yaxin Lu
- School of Pharmaceutical Sciences, Wannan Medical College,
241002, Wuhu, Anhui, China
| | - Wanzhen Fang
- School of Stomatology, Wannan Medical College,
241002, Wuhu, Anhui, China
| | - Yanjiao Huang
- Human Anatomy Experimental Training Center, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Qiang Li
- Human Anatomy Experimental Training Center, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Zhiliang Xu
- Department of Human Anatomy, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Basic Research and Translation of Aging-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, China
| |
Collapse
|
3
|
Wang Y, Gao P, Wu Z, Jiang B, Wang Y, He Z, Zhao B, Tian X, Gao H, Cai L, Li W. Exploring the therapeutic potential of Chinese herbs on comorbid type 2 diabetes mellitus and Parkinson's disease: A mechanistic study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119095. [PMID: 39537117 DOI: 10.1016/j.jep.2024.119095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) and Parkinson's disease (PD) are chronic conditions that affect the aging population, with increasing prevalence globally. The rising prevalence of comorbidity between these conditions, driven by demographic shifts, severely impacts the quality of life of patients, posing a significant burden on healthcare resources. Chinese herbal medicine has been used to treat T2DM and PD for millennia. Pharmacological studies have demonstrated that medicinal herbs effectively lower blood glucose levels and exert neuroprotective effects, suggesting their potential as adjunctive therapy for concurrent management of T2DM and PD. AIM OF THE STUDY To elucidate the shared mechanisms underlying T2DM and PD, particularly focusing on the potential mechanisms by which medicinal herbs (including herbal formulas, single herbs, and active compounds) may treat these diseases, to provide valuable insights for developing therapeutics targeting comorbid T2DM and PD. MATERIALS AND METHODS Studies exploring the mechanisms underlying T2DM and PD, as well as the treatment of these conditions with medicinal herbs, were extracted from several electronic databases, including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure (CNKI). RESULTS Numerous studies have shown that inflammation, oxidative stress, insulin resistance, impaired autophagy, gut microbiota dysbiosis, and ferroptosis are shared mechanisms underlying T2DM and PD mediated through the NLRP3 inflammasome, NF-κB, MAPK, Keap1/Nrf2/ARE, PI3K/AKT, AMPK/SIRT1, and System XC--GSH-GPX4 signaling pathways. Thirty-four medicinal herbs, including 2 herbal formulas, 4 single herbs, and 28 active compounds, have been reported to potentially exert anti-T2DM and anti-PD effects by targeting these shared mechanisms. CONCLUSIONS Traditional Chinese medicine effectively combats T2DM and PD through shared pathological mechanisms, highlighting their potential for application in treating these comorbid conditions.
Collapse
Affiliation(s)
- Yan Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Pengpeng Gao
- Department of Preventive Treatment, Ningxia Integrated Chinese and Western Medicine Hospital, Yinchuan, 750004, China
| | - Zicong Wu
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Zhaxicao He
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Bing Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xinyun Tian
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Han Gao
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Li Cai
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Wentao Li
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
4
|
Fornari Laurindo L, Fornari Laurindo L, Dogani Rodrigues V, da Silva Camarinha Oliveira J, Leme Boaro B, Cressoni Araújo A, Landgraf Guiguer E, Rucco Penteado Detregiachi C, Maria Cavallari Strozze Catharin V, Federighi Baisi Chagas E, Cavallari Strozze Catharin V, Direito R, Barbalho SM. Evaluating the effects of seed oils on lipid profile, inflammatory and oxidative markers, and glycemic control of diabetic and dyslipidemic patients: a systematic review of clinical studies. Front Nutr 2025; 12:1502815. [PMID: 39996006 PMCID: PMC11849496 DOI: 10.3389/fnut.2025.1502815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
Diabetes mellitus and dyslipidemia are significant health concerns that elevate the risk of cardiovascular disease and other metabolic disorders, necessitating effective management strategies. Recent research has highlighted the potential role of dietary fats, particularly seed oils, in influencing health outcomes in these conditions. This systematic review evaluates the impact of seed oils on lipid profiles, inflammatory and oxidative markers, and glycemic control in patients with diabetes and dyslipidemia. A comprehensive search across databases, including PubMed, Scopus, Web of Science, Cochrane Library, and Google Scholar, identified studies focusing on the effects of seed oils. The studies include randomized controlled, parallel-design, double-blind, placebo-controlled, and open-label studies published in English. The quality of the studies was assessed through a detailed review process, and data were extracted to evaluate the effects of seed oils on key metabolic markers. The review included 11 studies demonstrating that seed oils derived from canola, flaxseed, and sesame seeds can positively influence lipid profiles and glycemic control while potentially modulating oxidative stress markers. The findings suggest that seed oils may benefit in managing diabetes and dyslipidemia, although the results are sometimes inconsistent. This review provides valuable insights for dietary recommendations and therapeutic strategies, highlighting the need for further research to clarify the role of seed oils in metabolic health.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
- Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Lívia Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
| | | | - Beatriz Leme Boaro
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Virgínia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Eduardo Federighi Baisi Chagas
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Vitor Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Lisbon, Portugal
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, Brazil
- UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| |
Collapse
|
5
|
Feng BY, Chen PL, Yan L, Huang WF, Li CF, Yi LT, Xu GH. Long-term Pu-erh tea alleviates inflammatory bowel disease via the regulation of intestinal microbiota and maintaining the intestinal mucosal barrier. Food Sci Biotechnol 2025; 34:743-755. [PMID: 39958166 PMCID: PMC11822139 DOI: 10.1007/s10068-024-01696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 02/18/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal condition with increasing global prevalence. Current therapies are limited, leading to exploration of novel treatments like Pu-erh tea, a fermented tea recognized for its health benefits. This study shows that long-term consumption of Pu-erh tea significantly reduces IBD symptoms in DSS-induced mice by moderating inflammation and enhancing oxidative responses in the colon. Pu-erh tea notably increases the abundance of specific gut microbiota, particularly enhancing Firmicutes, Bacteroidota, and Proteobacteria phyla, and raising levels of Lactobacillus and Muribaculaceae genera. Key species such as Lactobacillus johnsonii, Lactobacillus reuteri, and Lactobacillus murinus also showed increased abundance. Additionally, Pu-erh tea helps restore the integrity of the intestinal barrier. These findings highlight the potential of Pu-erh tea as a complementary dietary strategy for IBD, potentially improving disease management and patient outcomes through its effects on the intestinal microbiota and mucosal barrier. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01696-9.
Collapse
Affiliation(s)
- Bi-Yun Feng
- Fujian University of Traditional Chinese Medicine College of Pharmacy, Fuzhou, 350108 Fujian People’s Republic of China
- Xiamen Medicine Research Institute, Xiamen, 361008 Fujian People’s Republic of China
| | - Pei-Lu Chen
- Fujian University of Traditional Chinese Medicine College of Pharmacy, Fuzhou, 350108 Fujian People’s Republic of China
- Xiamen Medicine Research Institute, Xiamen, 361008 Fujian People’s Republic of China
| | - Ling Yan
- Fujian University of Traditional Chinese Medicine College of Pharmacy, Fuzhou, 350108 Fujian People’s Republic of China
- Xiamen Medicine Research Institute, Xiamen, 361008 Fujian People’s Republic of China
| | - Wei-Feng Huang
- Department of Gastroenterology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003 Fujian People’s Republic of China
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361009 Fujian People’s Republic of China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021 Fujian People’s Republic of China
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, 361021 Fujian People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021 Fujian People’s Republic of China
| | - Guang-Hui Xu
- Fujian University of Traditional Chinese Medicine College of Pharmacy, Fuzhou, 350108 Fujian People’s Republic of China
- Xiamen Medicine Research Institute, Xiamen, 361008 Fujian People’s Republic of China
- Xiamen Key Laboratory of Natural Medicine Research and Development, Xiamen, 361021 Fujian People’s Republic of China
| |
Collapse
|
6
|
Sun Y, Pu Z, Zhao H, Deng Y, Zhang J, Li S, Jiang Y, Sun M, Zhu J, Alam A, Ma D, Han R. Vitamin D can mitigate sepsis-associated neurodegeneration by inhibiting exogenous histone-induced pyroptosis and ferroptosis: Implications for brain protection and cognitive preservation. Brain Behav Immun 2025; 124:40-54. [PMID: 39566666 DOI: 10.1016/j.bbi.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Sepsis-induced neurodegeneration and cognitive dysfunction remain critical challenges worldwide. Vitamin D was reported to reduce neuronal injury and neurotoxicity and its deficiency was associated with neurocognitive disorders. This study investigates the mechanisms by which vitamin D exerts neuroprotective potential against damage-associated molecular patterns (DAMPs), specifically extracellular histones, in sepsis-related brain dysfunction. METHODS The cultured mouse hippocampal neuronal HT22 cells were exposed to 20 µg/ml exogenous histone for 24 h to induce pyroptosis and ferroptosis in the presence or absence of the active form of vitamin D, calcitriol (1 nM). A cecal ligation and puncture mouse sepsis model was used to evaluate histone release and pyroptosis/ferroptosis biomarkers in the brain together with neurobehavioral performance with or without calcitriol treatment (1 µg/kg, i.p. injection) at 24 h or 1 week after sepsis onset. RESULTS In vitro, histone exposure triggered both pyroptosis and ferroptosis in neuronal cells, which was significantly suppressed by calcitriol treatment with the reduced expression of caspase-1 by 38 %, GSDMD by 30 %, ACSL4 by 33 %, and the increased expression of GPX4 by 35 % (n = 6, P < 0.05). Similarly, in vivo, calcitriol treatment inhibited both neuronal pyroptosis and ferroptosis by reducing expression of pyroptosis marker, GSDMD/NeuN (11.6 ± 1.2 % vs. 19.4 ± 1.1 %) and increasing expression of ferroptosis marker, GPX4/NeuN (21.4 ± 1.7 % vs. 13.5 ± 1.1 %), in the brain of septic mice (n = 6, P < 0.01). In addition, calcitriol increased survival rate (72 % vs. 41 %) and ameliorated cognitive dysfunction of septic mice (n = 8-13, P < 0.05). CONCLUSIONS This study demonstrates that vitamin D exerts a neuroprotective effect against sepsis by attenuating histone-induced pyroptosis and ferroptosis. These findings highlight the potential therapeutic role of vitamin D supplementation in mitigating brain dysfunction associated with sepsis which needs for further investigation.
Collapse
Affiliation(s)
- Yibing Sun
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zhuonan Pu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Yuxuan Deng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Jing Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Shiwei Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Yingying Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Ming Sun
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Jinpiao Zhu
- Perioperative and Systems Medicine Laboratory, Department of Anesthesiology and Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, PR China
| | - Azeem Alam
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK; Perioperative and Systems Medicine Laboratory, Department of Anesthesiology and Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, PR China.
| | - Ruquan Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
7
|
Bahari H, Shahraki Jazinaki M, Aghakhani L, Amini MR, Noushzadeh Z, Khodashahi R, Malekahmadi M. Crocin Supplementation on Inflammation and Oxidative Stress: A Systematic Review and Meta-Analysis. Phytother Res 2025; 39:465-479. [PMID: 39632602 DOI: 10.1002/ptr.8380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Saffron is the dried stigma of Crocus sativus L. flowers. The yellow-orange color of saffron comes from crocin, a water-soluble carotenoid that can be ingested. Crocin is known for its anti-inflammatory and antioxidant potential. It is believed to affect inflammation and oxidative stress, making it a promising therapeutic option. However, research on its impact is inconclusive. This meta-analysis aimed to assess the benefits of crocin supplementation and its specific effects on inflammation and oxidative stress markers. A comprehensive search of the literature was conducted up to February 2024 in PubMed/Medline, Scopus, and Web of Science to find suitable randomized clinical trials (RCTs). All participants were adults who were supplemented with crocin as part of the study intervention. The selected trials were subjected to heterogeneity tests using the I 2 statistic. Random effects models were examined based on the heterogeneity tests, and the pooled data were calculated as weighted mean differences (WMD) with a 95% confidence interval (CI). Of the 519 papers that remain after duplications were removed, 13 eligible RCTs were included in the present meta-analysis. Our findings indicated that crocin supplementation significantly reduced c-reactive protein (CRP) levels (SMD: -0.50; 95%CI: -0.86 to -0.13; p = 0.008), tumor necrosis factor-α (TNF-α) (SMD: -1.96; 95%CI: -2.72 to -1.19; p < 0.001), and interleukin-6 (IL-6) (SMD: -3.52; 95%CI: -6.84 to -0.20; p = 0.03). Also, crocin supplementation led to a significant increase in total antioxidant capacity (TAC) (SMD: 1.48; 95%CI: 0.52 to 2.43; p = 0.002). Overall effect size showed that crocin intake failed to change the erythrocyte sedimentation rate (ESR) and malondialdehyde (MDA) levels significantly. Crocin reduces inflammatory markers and increases TAC. The effect of crocin on inflammatory markers was greater in a dose ≥ 30 mg/day and an intervention duration ≥ 12 weeks. However, more studies are needed for definitive conclusions.
Collapse
Affiliation(s)
- Hossein Bahari
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ladan Aghakhani
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Noushzadeh
- Department of Physical Education and Sport Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Rozita Khodashahi
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Malekahmadi
- Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Antioxidant Therapies in the Treatment of Multiple Sclerosis. Biomolecules 2024; 14:1266. [PMID: 39456199 PMCID: PMC11506420 DOI: 10.3390/biom14101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Several studies have proposed a potential role for oxidative stress in the development of multiple sclerosis (MS). For this reason, it seems tentative to think that treatment with antioxidant substances could be useful in the treatment of this disease. In this narrative review, we provide a summary of the current findings on antioxidant treatments, both in experimental models of MS, especially in experimental autoimmune encephalomyelitis (EAE) and in the cuprizone-induced demyelination model, and clinical trials in patients diagnosed with MS. Practically all the antioxidants tested in experimental models of MS have shown improvement in clinical parameters, in delaying the evolution of the disease, and in improving histological and biochemical parameters, including decreased levels of markers of inflammation and oxidative stress in the central nervous system and other tissues. Only a few clinical trials have been carried out to investigate the potential efficacy of antioxidant substances in patients with MS, most of them in the short term and involving a short series of patients, so the results of these should be considered inconclusive. In this regard, it would be desirable to design long-term, randomized, multicenter clinical trials with a long series of patients, assessing several antioxidants that have demonstrated efficacy in experimental models of MS.
Collapse
Grants
- PI18/00540 Fondo de Investigación Sanitaria, Instituto de Salud Carlos, Madrid, Spain
- PI21/01683 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Madrid, Spain
- IB20134 Junta de Extremadura, Mérida, Spain
- GR21073 Junta de Extremadura, Mérida, Spain
Collapse
Affiliation(s)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
9
|
Lan Y, Wang M, Yuan H, Xu H. Catechins counteracted hepatotoxicity induced by cadmium through Keap1-Nrf2 pathway regulation. FOOD BIOSCI 2024; 61:104593. [DOI: 10.1016/j.fbio.2024.104593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Espada-Rubio S, Agúndez JAG. Oxidative Stress and Migraine. Mol Neurobiol 2024; 61:8344-8360. [PMID: 38499906 DOI: 10.1007/s12035-024-04114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
The pathogenesis of migraine is not completely understood, but inflammation and oxidative stress seem to be involved, according to data from an experimental model of the disease. This narrative review summarizes data from studies on oxidative stress markers in migraine patients, case-control association studies on the possible association of candidate genes related to oxidative stress with the risk for migraine, studies showing the presence of oxidative stress in experimental models of migraine, and studies on the efficacy of antioxidant drugs in migraine therapy. Many studies have addressed the value of concentrations of prooxidant and antioxidant substances or the activity of antioxidant enzymes in different tissues (mainly in serum/plasma or in blood cells) as possible biomarkers for migraine, being thiobarbituric acid (TBA) reactive substances (TBARS) such as malonyl dialdehyde acid (MDA) and 4-hydroxynonenal, and nitric oxide (this at least during migraine attacks in patients with migraine with aura (MWA) the most reliable. In addition, the possible usefulness of antioxidant treatment is not well established, although preliminary short-term studies suggest a beneficial action of some of them such as Coenzyme Q10 and riboflavin. Both topics require further prospective, multicenter studies with a long-term follow-up period involving a large number of migraine patients and controls.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, Ronda del Sur 10, 28500, Madrid, Spain.
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, Ronda del Sur 10, 28500, Madrid, Spain
| | - Elena García-Martín
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | - Silvina Espada-Rubio
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, Ronda del Sur 10, 28500, Madrid, Spain
| | - José A G Agúndez
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| |
Collapse
|
11
|
Manosalva C, Bahamonde C, Soto F, Leal V, Ojeda C, Cortés C, Alarcón P, Burgos RA. Linoleic Acid Induces Metabolic Reprogramming and Inhibits Oxidative and Inflammatory Effects in Keratinocytes Exposed to UVB Radiation. Int J Mol Sci 2024; 25:10385. [PMID: 39408715 PMCID: PMC11476445 DOI: 10.3390/ijms251910385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Linoleic acid (LA), the primary ω-6 polyunsaturated fatty acid (PUFA) found in the epidermis, plays a crucial role in preserving the integrity of the skin's water permeability barrier. Additionally, vegetable oils rich in LA have been shown to notably mitigate ultraviolet (UV) radiation-induced effects, including the production of reactive oxygen species (ROS), cellular damage, and skin photoaging. These beneficial effects are primarily ascribed to the LA in these oils. Nonetheless, the precise mechanisms through which LA confers protection against damage induced by exposure to UVB radiation remain unclear. This study aimed to examine whether LA can restore redox and metabolic equilibria and to assess its influence on the inflammatory response triggered by UVB radiation in keratinocytes. Flow cytometry analysis unveiled the capacity of LA to diminish UVB-induced ROS levels in HaCaT cells. GC/MS-based metabolomics highlighted significant metabolic changes, especially in carbohydrate, amino acid, and glutathione (GSH) metabolism, with LA restoring depleted GSH levels post-UVB exposure. LA also upregulated PI3K/Akt-dependent GCLC and GSS expression while downregulating COX-2 expression. These results suggest that LA induces metabolic reprogramming, protecting against UVB-induced oxidative damage by enhancing GSH biosynthesis via PI3K/Akt signaling. Moreover, it suppresses UVB-induced COX-2 expression in HaCaT cells, making LA treatment a promising strategy against UVB-induced oxidative and inflammatory damage.
Collapse
Affiliation(s)
- Carolina Manosalva
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Claudio Bahamonde
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Franco Soto
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Vicente Leal
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - César Ojeda
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Carmen Cortés
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile (R.A.B.)
| | - Rafael A. Burgos
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile (R.A.B.)
| |
Collapse
|
12
|
Fernández-Villa D, Aguilar MR, Rojo L. Europium-tannic acid nanocomplexes devised for bone regeneration under oxidative or inflammatory environments. J Mater Chem B 2024; 12:7153-7170. [PMID: 38952270 DOI: 10.1039/d4tb00697f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Europium ions (Eu3+) are gaining attention in the field of regenerative medicine due to increasing evidence of their osteogenic properties. However, inflammatory and oxidative environments present in many bone diseases, such as osteoporosis or rheumatoid arthritis, are known to hinder this regenerative process. Herein, we describe a straightforward synthetic procedure to prepare Eu3+-tannic acid nanocomplexes (EuTA NCs) with modulable physicochemical characteristics, as well as antioxidant, anti-inflammatory, and osteogenic properties. EuTA NCs were rationally synthesized to present different contents of Eu3+ on their structure to evaluate the effect of the cation on the biological properties of the formulations. In all the cases, EuTA NCs were stable in distilled water at physiological pH, had a highly negative surface charge (ζ ≈ -25.4 mV), and controllable size (80 < Dh < 160 nm). In vitro antioxidant tests revealed that Eu3+ complexation did not significantly alter the total radical scavenging activity (RSA) of TA but enhanced its ability to scavenge H2O2 and ferrous ions, thus improving its overall antioxidant potential. At the cellular level, EuTA NCs reduced the instantaneous toxicity of high concentrations of free TA, resulting in better antioxidant (13.3% increase of RSA vs. TA) and anti-inflammatory responses (17.6% reduction of nitric oxide production vs. TA) on cultures of H2O2- and LPS-stimulated macrophages, respectively. Furthermore, the short-term treatment of osteoblasts with EuTA NCs was found to increase their alkaline phosphatase activity and their matrix mineralization capacity. Overall, this simple and tunable platform is a potential candidate to promote bone growth in complex environments by simultaneously targeting multiple pathophysiological mechanisms of disease.
Collapse
Affiliation(s)
- Daniel Fernández-Villa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain
| |
Collapse
|
13
|
Gou F, Lin Q, Tu X, Zhu J, Li X, Chen S, Hu C. Hesperidin Alleviated Intestinal Barrier Injury, Mitochondrial Dysfunction, and Disorder of Endoplasmic Reticulum Mitochondria Contact Sites under Oxidative Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16276-16286. [PMID: 38981046 DOI: 10.1021/acs.jafc.4c02265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
As primary flavonoids extracted from citrus fruits, hesperidin has been attracting attention widely for its capacity to act as antioxidants that are able to scavenge free radicals and reactive oxygen species (ROS). Many factors have made oxidative stress a risk factor for the occurrence of intestinal barrier injury, which is a serious health threat to human beings. However, little data are available regarding the underlying mechanism of hesperidin alleviating intestinal injury under oxidative stress. Recently, endoplasmic reticulum (ER) mitochondria contact sites (ERMCSs) have aroused increasing concerns among scholars, which participate in mitochondrial dynamics and Ca2+ transport. In our experiment, 24 piglets were randomly divided into 4 groups. Piglets in the diquat group and hesperidin + diquat group received an intraperitoneal injection of diquat (10 mg/kg), while piglets in the hesperidin group and hesperidin + diquat group received hesperidin (300 mg/kg) with feed. The results indicated that hesperidin alleviated growth restriction and intestinal barrier injury in piglets compared with the diquat group. Hesperidin ameliorated oxidative stress and restored antioxidant capacity under diquat exposure. The mitochondrial dysfunction was markedly alleviated via hesperidin versus diquat group. Meanwhile, hesperidin alleviated ER stress and downregulated the PERK pathway. Furthermore, hesperidin prevented the disorder of ERMCSs by downregulating the level of ERMCS proteins, decreasing the percentage of mitochondria with ERMCSs/total mitochondria and the ratio of ERMCSs length/mitochondrial perimeter. These results suggested hesperidin could alleviate ERMCS disorder and prevent mitochondrial dysfunction, which subsequently decreased ROS production and alleviated intestinal barrier injury of piglets under oxidative stress.
Collapse
Affiliation(s)
- Feiyang Gou
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Lin
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaodian Tu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiang Zhu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Li
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shaokui Chen
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Caihong Hu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Russo C, Santangelo R, Malaguarnera L, Valle MS. The "Sunshine Vitamin" and Its Antioxidant Benefits for Enhancing Muscle Function. Nutrients 2024; 16:2195. [PMID: 39064638 PMCID: PMC11279438 DOI: 10.3390/nu16142195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Pathological states marked by oxidative stress and systemic inflammation frequently compromise the functional capacity of muscular cells. This progressive decline in muscle mass and tone can significantly hamper the patient's motor abilities, impeding even the most basic physical tasks. Muscle dysfunction can lead to metabolic disorders and severe muscle wasting, which, in turn, can potentially progress to sarcopenia. The functionality of skeletal muscle is profoundly influenced by factors such as environmental, nutritional, physical, and genetic components. A well-balanced diet, rich in proteins and vitamins, alongside an active lifestyle, plays a crucial role in fortifying tissues and mitigating general weakness and pathological conditions. Vitamin D, exerting antioxidant effects, is essential for skeletal muscle. Epidemiological evidence underscores a global prevalence of vitamin D deficiency, which induces oxidative harm, mitochondrial dysfunction, reduced adenosine triphosphate production, and impaired muscle function. This review explores the intricate molecular mechanisms through which vitamin D modulates oxidative stress and its consequent effects on muscle function. The aim is to evaluate if vitamin D supplementation in conditions involving oxidative stress and inflammation could prevent decline and promote or maintain muscle function effectively.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Rosa Santangelo
- Department of Medicine and Health Sciences, University of Catania, Via Santa Sofia, 97, 95124 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
15
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Oxidative Stress Markers in Multiple Sclerosis. Int J Mol Sci 2024; 25:6289. [PMID: 38927996 PMCID: PMC11203935 DOI: 10.3390/ijms25126289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The pathogenesis of multiple sclerosis (MS) is not completely understood, but genetic factors, autoimmunity, inflammation, demyelination, and neurodegeneration seem to play a significant role. Data from analyses of central nervous system autopsy material from patients diagnosed with multiple sclerosis, as well as from studies in the main experimental model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), suggest the possibility of a role of oxidative stress as well. In this narrative review, we summarize the main data from studies reported on oxidative stress markers in patients diagnosed with MS and in experimental models of MS (mainly EAE), and case-control association studies on the possible association of candidate genes related to oxidative stress with risk for MS. Most studies have shown an increase in markers of oxidative stress, a decrease in antioxidant substances, or both, with cerebrospinal fluid and serum/plasma malonyl-dialdehyde being the most reliable markers. This topic requires further prospective, multicenter studies with a long-term follow-up period involving a large number of patients with MS and controls.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
16
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
17
|
Clodoveo ML, Muraglia M, Crupi P, Hbaieb RH, De Santis S, Desantis A, Corbo F. The Tower of Babel of Pharma-Food Study on Extra Virgin Olive Oil Polyphenols. Foods 2022; 11:foods11131915. [PMID: 35804731 PMCID: PMC9265897 DOI: 10.3390/foods11131915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Much research has been conducted to reveal the functional properties of extra virgin olive oil polyphenols on human health once EVOO is consumed regularly as part of a balanced diet, as in the Mediterranean lifestyle. Despite the huge variety of research conducted, only one effect of EVOO polyphenols has been formally approved by EFSA as a health claim. This is probably because EFSA’s scientific opinion is entrusted to scientific expertise about food and medical sciences, which adopt very different investigative methods and experimental languages, generating a gap in the scientific communication that is essential for the enhancement of the potentially useful effects of EVOO polyphenols on health. Through the model of the Tower of Babel, we propose a challenge for science communication, capable of disrupting the barriers between different scientific areas and building bridges through transparent data analysis from the different investigative methodologies at each stage of health benefits assessment. The goal of this work is the strategic, distinctive, and cost-effective integration of interdisciplinary experiences and technologies into a highly harmonious workflow, organized to build a factual understanding that translates, because of trade, into health benefits for buyers, promoting EVOOs as having certified health benefits, not just as condiments.
Collapse
Affiliation(s)
- Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (M.L.C.); (P.C.)
| | - Marilena Muraglia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “A. Moro”, 70125 Bari, Italy; (S.D.S.); (F.C.)
- Correspondence:
| | - Pasquale Crupi
- Interdisciplinary Department of Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (M.L.C.); (P.C.)
| | - Rim Hachicha Hbaieb
- Biocatalysis and Industrial Enzymes Group, Laboratory of Microbial Ecology and Technology, Carthage University, National Institute of Applied Sciences and Technology (INSAT), BP 676, Tunis 1080, Tunisia;
| | - Stefania De Santis
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “A. Moro”, 70125 Bari, Italy; (S.D.S.); (F.C.)
| | - Addolorata Desantis
- Department of Soil, Plant and Food Sciences (DISPA), University of Bari “A. Moro”, 70126 Bari, Italy;
| | - Filomena Corbo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “A. Moro”, 70125 Bari, Italy; (S.D.S.); (F.C.)
| |
Collapse
|