1
|
Wang B, Cheng P, Jin B, Jiang Y, Wang Q, Xu H. Effect of Tryptophan Restriction in the Therapy of Irritable Bowel Syndrome: a Systematic Review. Int J Gen Med 2024; 17:4141-4151. [PMID: 39308964 PMCID: PMC11414632 DOI: 10.2147/ijgm.s474525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Background & Aims The metabolic pathways of tryptophan (TRP) have been implicated in the pathophysiology of irritable bowel syndrome (IBS), positing that the strategic modulation of TRP consumption may exert regulatory effects on serotonin levels, consequently altering the clinical manifestation of IBS. This systematic review was meticulously orchestrated to evaluate the effect of TRP restriction on IBS. Methods A comprehensive search of the MEDLINE/PubMed, Cochrane Library, and Embase databases was conducted. Controlled trials that compared the efficacy of TRP restriction in IBS patients were scrutinized. The primary outcomes were gastrointestinal symptoms, quality of life, and pain, whereas the secondary outcomes included anxiety, mood, and safety. The risk of bias was meticulously assessed according to the guidelines recommended by the Cochrane Collaboration. Results A total of five trials, enrolling 135 participants, were incorporated into the qualitative synthesis. Low-TRP intake attenuated gastrointestinal discomfort and enhanced psychological well-being in IBS patients, while the effects of acute TRP depletion were controversial. Safety data from one randomized controlled trial reported no occurrence of adverse events. Conclusion This systematic review suggests that moderating, rather than depleting, TRP intake may potentially be a feasible and safe adjunctive treatment for patients with IBS. Future research incorporating a high-quality study design and consensus on clinical outcome measurements for IBS is warranted.
Collapse
Affiliation(s)
- Ben Wang
- Department of Gastroenterology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, People’s Republic of China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Peilin Cheng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Bingjie Jin
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Ying Jiang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Qingcai Wang
- Department of Gastroenterology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, People’s Republic of China
| | - Hongwei Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| |
Collapse
|
2
|
Ye Z, Yang S, Lu L, Zong M, Fan L, Kang C. Unlocking the potential of the 3-hydroxykynurenine/kynurenic acid ratio: a promising biomarker in adolescent major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01815-x. [PMID: 38819463 DOI: 10.1007/s00406-024-01815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/19/2024] [Indexed: 06/01/2024]
Abstract
Metabolites disruptions in tryptophan (TRP) and kynurenine pathway (KP) are believed to disturb neurotransmitter homeostasis and contribute to depressive symptoms. This study aims to investigate serum levels of KP metabolites in adolescent major depressive disorder (AMDD), and examine their relationship with depression severities. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze serum levels of TRP, kynurenic acid (KYNA), kynurenine (KYN), and 3-hydroxy-kynurenine (3-HK) in 143 AMDD participants and 98 healthy controls (HC). Clinical data, including Children's Depression Inventory (CDI) scores, were collected and analyzed using statistical methods, such as ANOVA, logistic regression, Receiver operating characteristic curve analysis and a significance level of p < 0.05 was used for all analyses. AMDD showed significantly decreased serum levels of KYNA (-25.5%), KYN (-14.2%), TRP (-11.0%) and the KYNA/KYN ratio (-11.9%) compared to HC (p < 0.01). Conversely, significant increases were observed in 3-HK levels (+50.4%), the 3-HK/KYNA ratio (+104.3%) and the 3-HK/KYN ratio (+93.0%) (p < 0.01). Logistic regression analysis identified increased level of 3-HK as a contributing factor to AMDD, while increased level of KYNA acted as a protective factor against AMDD. The 3-HK/KYNA ratio demonstrated an area under the curve (AUC) of 0.952. This study didn't explore AMDD's inflammatory status and its metabolites relationship explicitly. These findings indicate that metabolites of TRP and KP may play a crucial role in the pathogenesis of AMDD, emphasizing the potential of the 3-HK/KYNA ratio as a laboratory biomarker for early detection and diagnosis of AMDD.
Collapse
Affiliation(s)
- Zhihan Ye
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Shuran Yang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Liu Lu
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Ming Zong
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Lieying Fan
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Chuanyuan Kang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China.
| |
Collapse
|
3
|
Arrabal-Gómez C, Beltran-Casanueva R, Hernández-García A, Bayolo-Guanche JV, Barbancho-Fernández MA, Serrano-Castro PJ, Narváez M. Enhancing Cognitive Functions and Neuronal Growth through NPY1R Agonist and Ketamine Co-Administration: Evidence for NPY1R-TrkB Heteroreceptor Complexes in Rats. Cells 2024; 13:669. [PMID: 38667284 PMCID: PMC11049095 DOI: 10.3390/cells13080669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This study investigates the combined effects of the neuropeptide Y Y1 receptor (NPY1R) agonist [Leu31-Pro34]NPY at a dose of 132 µg and Ketamine at 10 mg/Kg on cognitive functions and neuronal proliferation, against a backdrop where neurodegenerative diseases present an escalating challenge to global health systems. Utilizing male Sprague-Dawley rats in a physiological model, this research employed a single-dose administration of these compounds and assessed their impact 24 h after treatment on object-in-place memory tasks, alongside cellular proliferation within the dorsal hippocampus dentate gyrus. Methods such as the in situ proximity ligation assay and immunohistochemistry for proliferating a cell nuclear antigen (PCNA) and doublecortin (DCX) were utilized. The results demonstrated that co-administration significantly enhanced memory consolidation and increased neuronal proliferation, specifically neuroblasts, without affecting quiescent neural progenitors and astrocytes. These effects were mediated by the potential formation of NPY1R-TrkB heteroreceptor complexes, as suggested by receptor co-localization studies, although further investigation is required to conclusively prove this interaction. The findings also highlighted the pivotal role of brain-derived neurotrophic factor (BDNF) in mediating these effects. In conclusion, this study presents a promising avenue for enhancing cognitive functions and neuronal proliferation through the synergistic action of the NPY1R agonist and Ketamine, potentially via NPY1R-TrkB heteroreceptor complex formation, offering new insights into therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Carlos Arrabal-Gómez
- NeuronLab, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29071 Málaga, Spain; (C.A.-G.); (M.A.B.-F.)
- Facultad de Psicología, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29071 Málaga, Spain
- Unit of Neurology, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga, 29010 Málaga, Spain
- Vithas Málaga, Grupo Hospitalario Vithas, 29016 Málaga, Spain
| | - Rasiel Beltran-Casanueva
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; (R.B.-C.); (A.H.-G.); (J.V.B.-G.)
- Receptomics and Brain Disorders Lab, Edificio Lopez-Peñalver, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29071 Málaga, Spain
| | - Aracelis Hernández-García
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; (R.B.-C.); (A.H.-G.); (J.V.B.-G.)
- Receptomics and Brain Disorders Lab, Edificio Lopez-Peñalver, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29071 Málaga, Spain
| | - Juan Vicente Bayolo-Guanche
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; (R.B.-C.); (A.H.-G.); (J.V.B.-G.)
- Receptomics and Brain Disorders Lab, Edificio Lopez-Peñalver, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29071 Málaga, Spain
| | - Miguel Angel Barbancho-Fernández
- NeuronLab, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29071 Málaga, Spain; (C.A.-G.); (M.A.B.-F.)
| | - Pedro Jesús Serrano-Castro
- NeuronLab, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29071 Málaga, Spain; (C.A.-G.); (M.A.B.-F.)
- Unit of Neurology, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga, 29010 Málaga, Spain
- Vithas Málaga, Grupo Hospitalario Vithas, 29016 Málaga, Spain
| | - Manuel Narváez
- NeuronLab, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29071 Málaga, Spain; (C.A.-G.); (M.A.B.-F.)
- Unit of Neurology, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga, 29010 Málaga, Spain
- Vithas Málaga, Grupo Hospitalario Vithas, 29016 Málaga, Spain
| |
Collapse
|
4
|
Li Y, Wang L, Huang J, Zhang P, Zhou Y, Tong J, Chen W, Gou M, Tian B, Li W, Luo X, Tian L, Hong LE, Li CSR, Tan Y. Serum neuroactive metabolites of the tryptophan pathway in patients with acute phase of affective disorders. Front Psychiatry 2024; 15:1357293. [PMID: 38680780 PMCID: PMC11046465 DOI: 10.3389/fpsyt.2024.1357293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Background Many studies showed disrupted tryptophan metabolism in patients with affective disorders. The aims of this study were to explore the differences in the metabolites of tryptophan pathway (TP) and the relationships between TP metabolites and clinical symptoms, therapeutic effect in patients with bipolar disorder with acute manic episode (BD-M), depressive episode (BD-D) and major depressive disorder (MDD). Methods Patients with BD-M (n=52) and BD-D (n=39), MDD (n=48) and healthy controls (HCs, n=49) were enrolled. The serum neuroactive metabolites levels of the TP were measured by liquid chromatography-tandem mass spectrometry. Hamilton Depression Scale-17 item (HAMD-17) and Young Mania Rating Scale (YMRS) were used to evaluate depressive and manic symptoms at baseline and after 8 weeks of antidepressants, mood stabilizers, some also received antipsychotic medication. Results The levels of tryptophan (TRP) and kynurenic acid (KYNA) were significantly lower and the ratios of tryptophan/kynurenine (TRP/KYN), 5-hydroxytryptamine/tryptophan (5-HT/TRP), quinolinic acid/kynurenic acid (QUIN/KYNA) were higher in BD-M, BD-D, MDD vs. HC. The levels of QUIN and the ratios of QUIN/KYNA were higher in BD-M than in BD-D, MDD, and HCs. The 5-hydroxyindoleacetic acid (5-HIAA) levels of patients with MDD were significantly higher than those in BD-M and BD-D. Binary logistic regression analysis showed the lower peripheral KYNA, the higher the QUIN level, and the higher the risk of BD-M; the lower peripheral KYNA and the higher KYN/TRP and 5-HT/TRP, the higher the risk of BD-D; and the lower the peripheral KYNA level and the higher the KYN/TRP and 5-HT/TRP, the higher the risk of MDD. Correlation analysis, showing a significant association between tryptophan metabolites and improvement of clinical symptoms, especially depression symptoms. Conclusions Patients with affective disorders had abnormal tryptophan metabolism, which involved in 5-HT and kynurenine pathway (KP) sub-pathway. Tryptophan metabolites might be potential biomarkers for affective disorders and some metabolites have been associated with remission of depressive symptoms.
Collapse
Affiliation(s)
- Yanli Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Leilei Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Ping Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Yanfang Zhou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Wenjin Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Mengzhuang Gou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Wei Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Li Tian
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - L. Elliot Hong
- Louis A. Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan, Hospital, Beijing, China
| |
Collapse
|
5
|
Sánchez-Varo R, López-Salas A, Beltran-Casanueva R, Díaz-Sánchez E, Alvarez-Contino JE, Barbancho-Fernández MA, Serrano-Castro P, Fuxe K, Borroto-Escuela DO, García-Casares N, Narváez M. Enhancement of neurogenesis and cognition through intranasal co-delivery of galanin receptor 2 (GALR2) and neuropeptide Y receptor 1 (NPY1R) agonists: a potential pharmacological strategy for cognitive dysfunctions. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:6. [PMID: 38549164 PMCID: PMC10976774 DOI: 10.1186/s12993-024-00230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/19/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Spatial memory deficits and reduced neuronal survival contribute to cognitive decline seen in the aging process. Current treatments are limited, emphasizing the need for innovative therapeutic strategies. This research explored the combined effects of intranasally co-administered galanin receptor 2 (GALR2) and neuropeptide Y1 receptor (NPY1R) agonists, recognized for their neural benefits, on spatial memory, neuronal survival, and differentiation in adult rats. After intranasal co-delivery of the GALR2 agonist M1145 and a NPY1R agonist to adult rats, spatial memory was tested with the object-in-place task 3 weeks later. We examined neuronal survival and differentiation by assessing BrdU-IR profiles and doublecortin (DCX) labeled cells, respectively. We also used the GALR2 antagonist M871 to confirm GALR2's crucial role in promoting cell growth. RESULTS Co-administration improved spatial memory and increased the survival rate of mature neurons. The positive effect of GALR2 in cell proliferation was confirmed by the nullifying effects of its antagonist. The treatment boosted DCX-labeled newborn neurons and altered dendritic morphology, increasing cells with mature dendrites. CONCLUSIONS Our results show that intranasal co-delivery of GALR2 and NPY1R agonists improves spatial memory, boosts neuronal survival, and influences neuronal differentiation in adult rats. The significant role of GALR2 is emphasized, suggesting new potential therapeutic strategies for cognitive decline.
Collapse
Affiliation(s)
- Raquel Sánchez-Varo
- NeuronLab. Departamento Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA-Plataforma Bionand, Universidad de Malaga, 29071, Malaga, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Alexander López-Salas
- NeuronLab. Departamento Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071, Malaga, Spain
- Receptomics and Brain Disorders Lab, Universidad de Málaga. Facultad de Medicina., Edificio Lopez-Peñalver, Jimenez Fraud 10, 29071, Málaga, Spain
| | - Rasiel Beltran-Casanueva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Receptomics and Brain Disorders Lab, Universidad de Málaga. Facultad de Medicina., Edificio Lopez-Peñalver, Jimenez Fraud 10, 29071, Málaga, Spain
| | - Estela Díaz-Sánchez
- NeuronLab. Departamento Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071, Malaga, Spain
- Vithas Málaga., Vithas Málaga. Grupo Hospitalario Vithas, Málaga, Spain
| | - Jose Erik Alvarez-Contino
- NeuronLab. Departamento Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071, Malaga, Spain
- Receptomics and Brain Disorders Lab, Universidad de Málaga. Facultad de Medicina., Edificio Lopez-Peñalver, Jimenez Fraud 10, 29071, Málaga, Spain
| | - Miguel Angel Barbancho-Fernández
- NeuronLab. Departamento Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA-Plataforma Bionand, Universidad de Malaga, 29071, Malaga, Spain
| | - Pedro Serrano-Castro
- Instituto de Investigación Biomédica de Málaga-IBIMA-Plataforma Bionand, Universidad de Malaga, 29071, Malaga, Spain
- Vithas Málaga., Vithas Málaga. Grupo Hospitalario Vithas, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga, Unit of Neurology, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Dasiel O Borroto-Escuela
- NeuronLab. Departamento Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA-Plataforma Bionand, Universidad de Malaga, 29071, Malaga, Spain
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Receptomics and Brain Disorders Lab, Universidad de Málaga. Facultad de Medicina., Edificio Lopez-Peñalver, Jimenez Fraud 10, 29071, Málaga, Spain
| | - Natalia García-Casares
- NeuronLab. Departamento Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA-Plataforma Bionand, Universidad de Malaga, 29071, Malaga, Spain
- Departamento de Medicina y Dermatología. , Facultad de Medicina. Universidad de Málaga. , Málaga, Spain
| | - Manuel Narváez
- NeuronLab. Departamento Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071, Malaga, Spain.
- Instituto de Investigación Biomédica de Málaga-IBIMA-Plataforma Bionand, Universidad de Malaga, 29071, Malaga, Spain.
- Vithas Málaga., Vithas Málaga. Grupo Hospitalario Vithas, Málaga, Spain.
| |
Collapse
|
6
|
Bian X, Wang Q, Wang Y, Lou S. The function of previously unappreciated exerkines secreted by muscle in regulation of neurodegenerative diseases. Front Mol Neurosci 2024; 16:1305208. [PMID: 38249295 PMCID: PMC10796786 DOI: 10.3389/fnmol.2023.1305208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
The initiation and progression of neurodegenerative diseases (NDs), distinguished by compromised nervous system integrity, profoundly disrupt the quality of life of patients, concurrently exerting a considerable strain on both the economy and the social healthcare infrastructure. Exercise has demonstrated its potential as both an effective preventive intervention and a rehabilitation approach among the emerging therapeutics targeting NDs. As the largest secretory organ, skeletal muscle possesses the capacity to secrete myokines, and these myokines can partially improve the prognosis of NDs by mediating the muscle-brain axis. Besides the well-studied exerkines, which are secreted by skeletal muscle during exercise that pivotally exert their beneficial function, the physiological function of novel exerkines, e.g., apelin, kynurenic acid (KYNA), and lactate have been underappreciated previously. Herein, this review discusses the roles of these novel exerkines and their mechanisms in regulating the progression and improvement of NDs, especially the significance of their functions in improving NDs' prognoses through exercise. Furthermore, several myokines with potential implications in ameliorating ND progression are proposed as the future direction for investigation. Elucidation of the function of exerkines secreted by skeletal muscle in the regulation of NDs advances the understanding of its pathogenesis and facilitates the development of therapeutics that intervene in these processes to cure NDs.
Collapse
Affiliation(s)
- Xuepeng Bian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Qian Wang
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Yibing Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shujie Lou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
7
|
Hu Z, Feng L, Jiang Q, Wang W, Tan B, Tang X, Yin Y. Intestinal tryptophan metabolism in disease prevention and swine production. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:364-374. [PMID: 38058568 PMCID: PMC10695851 DOI: 10.1016/j.aninu.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 12/08/2023]
Abstract
Tryptophan (Trp) is an essential amino acid that cannot be synthesized by animals. It has been characterized into two different isomers, levorotation-Trp (L-Trp) and dextrorotation-Trp (D-Trp), based on their distinct molecule orientation. Intestinal epithelial cells and gut microbiota are involved in metabolizing L-Trp in the gut via the activation of the kynurenine, serotonin, and indole pathways. However, knowledge regarding D-Trp metabolism in the gut remains unclear. In this review, we briefly update the current understanding of intestinal L/D-Trp metabolism and the function of their metabolites in modulating the gut physiology and diseases. Finally, we summarize the effects of Trp nutrition on swine production at different stages, including growth performance in weaned piglets and growing pigs, as well as the reproduction performance in sows.
Collapse
Affiliation(s)
- Zhenguo Hu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410125, China
| | - Luya Feng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wenliang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Bi'e Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiongzhuo Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yulong Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410125, China
| |
Collapse
|
8
|
Brum M, Nieberler M, Kehrwald C, Knopf K, Brunkhorst-Kanaan N, Etyemez S, Allers KA, Bittner RA, Slattery DA, McNeill RV, Reif A, Kittel-Schneider S. Phase-and disorder-specific differences in peripheral metabolites of the kynurenine pathway in major depression, bipolar affective disorder and schizophrenia. World J Biol Psychiatry 2023; 24:564-577. [PMID: 36648064 DOI: 10.1080/15622975.2023.2169348] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Kynurenine, kynurenic and quinolinic acid are important metabolites in tryptophan metabolism. Due to an involvement in glutamatergic neurotransmission and immune response, previous studies have investigated this pathway in mental disorders such as major depressive disorder (MDD), bipolar disorder (BD) or schizophrenia (SCZ). Tryptophan and kynurenine have been shown to be decreased across disorders, hinting at the missing link how inflammation causes neurotoxicity and psychiatric symptoms. The main aim of our study was to investigate if individual catabolites could serve as diagnostic biomarkers for MDD, BD and SCZ. METHODS We measured plasma levels of tryptophan, kynurenine, kynurenic acid, quinolinic acid and ratio of quinolinic acid/kynurenic acid using mass spectrometry in n = 175 participants with acute episodes and after remission, compared with controls. RESULTS Decreased levels of all tryptophan catabolites were found in the whole patient group, driven by the difference between BD and HC. Manic and mixed phase BD individuals displayed significantly lower kynurenine and kynurenic acid levels. We could not find significant differences between disorders. Upon reaching remission, changes in catabolite levels partially normalised. CONCLUSIONS Our data suggests an involvement of the kynurenine pathway in mental disorders, especially BD but disqualifying those metabolites as biomarkers for differential diagnosis.
Collapse
Affiliation(s)
- Murielle Brum
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
| | - Matthias Nieberler
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Christopher Kehrwald
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
| | - Katrin Knopf
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
| | - Nathalie Brunkhorst-Kanaan
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
| | - Semra Etyemez
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
- Current: Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kelly A Allers
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Robert A Bittner
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
- Ernst Struengmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
| | - Rhiannon V McNeill
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University of Frankfurt, Frankfurt, Germany
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
9
|
Verma S, Ambatwar R, Datusalia AK, Khatik GL. Convenient One-Pot Synthesis of Kynurenic Acid Ethyl Ester and Exploration to Direct Synthesis of Neuroprotective Kynurenic Acid and Amide Derivatives. J Org Chem 2023; 88:10494-10500. [PMID: 37463064 DOI: 10.1021/acs.joc.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Kynurenic acid (KYNA) is an endogenous molecule, which is a non-selective antagonist of ionotropic glutamate receptors and has been found to have neuroprotective activity. A supplement of KYNA may be applicable for the treatment of neurodegenerative disease, but it does not cross the blood-brain barrier due to its polar nature. Therefore, its different esters and amide derivatives were explored as a prodrug, which can cross blood-brain barrier and transform into KYNA in situ. However, many esters and amide derivatives of KYNA are synthesized via coupling reaction or multi-step synthesis using different organic or metallic catalysts. Herein, we developed a novel one-pot, catalyst-free, convenient synthesis of KYNA ethyl esters using aniline and diethyl acetylene dicarboxylate in DMF under heating. We also explored the synthesis of KYNA and KYNA amide derivative in a simple manner with overall good yields via hydrolysis and condensation, respectively.
Collapse
Affiliation(s)
- Swati Verma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli NIPER, Raebareli, Uttar Pradesh 226002, India
| | - Ramesh Ambatwar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli NIPER, Raebareli, Uttar Pradesh 226002, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli NIPER, Raebareli, Uttar Pradesh 226002, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli NIPER, Raebareli, Uttar Pradesh 226002, India
| |
Collapse
|
10
|
Battaglia MR, Di Fazio C, Battaglia S. Activated Tryptophan-Kynurenine metabolic system in the human brain is associated with learned fear. Front Mol Neurosci 2023; 16:1217090. [PMID: 37575966 PMCID: PMC10416643 DOI: 10.3389/fnmol.2023.1217090] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Affiliation(s)
- Maria Rita Battaglia
- Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola, Bologna, Italy
| | - Chiara Di Fazio
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
| | - Simone Battaglia
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
- Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
11
|
Corrigan M, O'Rourke A, Moran B, Fletcher J, Harkin A. Inflammation in the pathogenesis of depression: a disorder of neuroimmune origin. Neuronal Signal 2023; 7:NS20220054. [PMID: 37457896 PMCID: PMC10345431 DOI: 10.1042/ns20220054] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
There are several hypotheses concerning the underlying pathophysiological mechanisms of major depression, which centre largely around adaptive changes in neuronal transmission and plasticity, neurogenesis, and circuit and regional connectivity. The immune and endocrine systems are commonly implicated in driving these changes. An intricate interaction of stress hormones, innate immune cells and the actions of soluble mediators of immunity within the nervous system is described as being associated with the symptoms of depression. Bridging endocrine and immune processes to neurotransmission and signalling within key cortical and limbic brain circuits are critical to understanding depression as a disorder of neuroimmune origins. Emergent areas of research include a growing recognition of the adaptive immune system, advances in neuroimaging techniques and mechanistic insights gained from transgenic animals. Elucidation of glial-neuronal interactions is providing additional avenues into promising areas of research, the development of clinically relevant disease models and the discovery of novel therapies. This narrative review focuses on molecular and cellular mechanisms that are influenced by inflammation and stress. The aim of this review is to provide an overview of our current understanding of depression as a disorder of neuroimmune origin, focusing on neuroendocrine and neuroimmune dysregulation in depression pathophysiology. Advances in current understanding lie in pursuit of relevant biomarkers, as the potential of biomarker signatures to improve clinical outcomes is yet to be fully realised. Further investigations to expand biomarker panels including integration with neuroimaging, utilising individual symptoms to stratify patients into more homogenous subpopulations and targeting the immune system for new treatment approaches will help to address current unmet clinical need.
Collapse
Affiliation(s)
- Myles Corrigan
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- Transpharmation Ireland, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Aoife M. O'Rourke
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Jean M. Fletcher
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
12
|
Khayyat YM, Abdul Wahab RA, Natto NK, Al Wafi AA, Al Zahrani AA. Impact of anxiety and depression on the swallowing process among patients with neurological disorders and head and neck neoplasia: systemic review. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2023; 59:75. [DOI: 10.1186/s41983-023-00674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/23/2023] [Indexed: 09/25/2023] Open
Abstract
Abstract
Background
Dysphagia is associated with depression and anxiety due to the severity, impact of symptoms itself or secondary to the underlying cause. This is more recognizable to brain diseases that has consequences common to the neural supply of the swallowing act and the cognition and behavior. Limited data are available to explore, quantitate and monitor these neurological outcomes. Our aim of this research to review the literature pertinent to depressive disorders, anxiety, and/or the quality of life (QoL) and psychological well-being. Search of Medline and Google Scholar databases for relevant articles had revealed a total of 1568 citations; 30 articles met the inclusion and exclusion criteria.
Results
Data about the direct effect of dysphagia on psychiatric aspects are limited. Studies of the relationship between severity of dysphagia and depressive symptoms demonstrated that several evaluation tools are available for objective and subjective assessment. The severity and progression of dysphagia was significantly associated with increased depressive symptoms.
Conclusion
Dysphagia is associated with and positively correlated to depression and anxiety scores observed in Parkinson disease (PD), multiple sclerosis (MS) and stroke. Similar association is observed in patients with head and neck cancer, tongue cancer and oral cancer. A bidirectional positive correlation exists with a vicious circle that loops between dysphagia and psychological disease. Moreover, the severity of dysphagia shows correlation with depression and/or anxiety scores (Fig. 1, Graphical abstract).
Graphical Abstract
Collapse
|
13
|
Liu H, Liu N, Chong ST, Boon Yau EK, Ahmad Badayai AR. Effects of acceptance and commitment therapy on cognitive function: A systematic review. Heliyon 2023; 9:e14057. [PMID: 36938399 PMCID: PMC10015206 DOI: 10.1016/j.heliyon.2023.e14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Cognitive function is essential for daily activities. Acceptance and commitment therapy (ACT) may improve cognitive function by enhancing psychological flexibility, but the underlying mechanism is unknown. This systematic review evaluated the effectiveness of ACT on cognitive function. Seven research databases (PubMed, ProQuest Dissertations and Theses, Web of Science, EBSCOhost, CNKI, Scopus, Wanfang) were searched to collect articles with trials published in English and Chinese. After applying inclusion and exclusion criteria, we identified 12 studies published between 1994 and 2022 that included a combined total of 904 participants. Among the included studies were within-group (N = 3) and randomized controlled trial (RCT, N = 9) study designs. Outcome measures included cognitive scales and behavioral measurements. Of the 12 articles, 10 studies showed improvements in certain domains of cognitive function due indirectly to ACT intervention. We found that the ability of ACT intervention to promote psychological flexibility is due to its transdiagnostic nature. Also, the effects of the ACT intervention were observed in multiple cognitive domains: attention, subjective cognitive function, executive function, and memory. In conclusion, cognitive trainers could consider practicing ACT as part of their strategy to enhance an individual's psychological flexibility and cognitive function.
Collapse
Affiliation(s)
- Haihong Liu
- Centre for Research in Psychology and Human Well-Being, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, Bangi, 43600, Malaysia
- Department of Psychology, Chengde Medical University, Chengde, 067000, China
- Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde, 067000, China
| | - Nan Liu
- Department of Psychology, Chengde Medical University, Chengde, 067000, China
| | - Sheau Tsuey Chong
- Centre for Research in Psychology and Human Well-Being, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, Bangi, 43600, Malaysia
- Counselling Psychology Programme, Secretariat of Postgraduate Studies, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, Bangi, 43600,Malaysia
- Corresponding author. Faculty of Social Sciences and Humanities Universiti Kebangsaan Malaysia, Bangi, 43600, Malaysia.
| | - Eugene Koh Boon Yau
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, 43400, Malaysia
| | - Abdul Rahman Ahmad Badayai
- Centre for Research in Psychology and Human Well-Being, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, Bangi, 43600, Malaysia
| |
Collapse
|
14
|
Díaz-Sánchez E, López-Salas A, Mirchandani-Duque M, Alvarez-Contino JE, Sánchez-Pérez JA, Fuxe K, Borroto-Escuela DO, García-Casares N, Narváez M. Decreased medial prefrontal cortex activity related to impaired novel object preference task performance following GALR2 and Y1R agonists intranasal infusion. Biomed Pharmacother 2023; 161:114433. [PMID: 36848750 DOI: 10.1016/j.biopha.2023.114433] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
Different brain regions' interactions have been implicated in relevant neurological diseases, such as major depressive disorder (MDD), anxiety disorders, age-dependent cognitive decline, Alzheimer's disease (AD) and addiction. We aim to explore the role of the medial prefrontal cortex (mPFC) in the Neuropeptide Y (NPY) and Galanin (GAL) interaction since we have demonstrated specific NPY and GAL interactions in brain areas related to these brain diseases. We performed GALR2 and Y1R agonists intranasal infusion and analyzed the mPFC activation through c-Fos expression. To assess the associated cellular mechanism we studied the formation of Y1R-GALR2 heteroreceptor complexes with in situ proximity ligation assay (PLA) and the expression of the brain-derived neurotrophic factor (BDNF). Moreover, the functional outcome of the NPY and GAL interaction on the mPFC was evaluated in the novel object preference task. We demonstrated that the intranasal administration of both agonists decrease the medial prefrontal cortex activation as shown with the c-Fos expression. These effects were mediated by the decreased formation of Y1R-GALR2 heteroreceptor complexes without affecting the BDNF expression. The functional outcome of this interaction was related to an impaired performance on the novel object preference task. Our data may suggest the translational development of new heterobivalent agonist pharmacophores acting on Y1R-GALR2 heterocomplexes in the medial prefrontal cortex for the novel therapy on neurodegenerative and psychiatric diseases. DATA SHARING AND DATA ACCESSIBILITY: The data that support the findings of this study are openly available in Institutional repository of the University of Malaga (RIUMA) and from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Estela Díaz-Sánchez
- Laboratorio NeuronLab. Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Malaga 29071, Spain; Vithas Málaga. Grupo Hospitalario Vithas, Málaga, Spain.
| | - Alexander López-Salas
- Laboratorio NeuronLab. Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Malaga 29071, Spain.
| | - Marina Mirchandani-Duque
- Laboratorio NeuronLab. Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Malaga 29071, Spain.
| | - Jose Erik Alvarez-Contino
- Laboratorio NeuronLab. Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Malaga 29071, Spain.
| | - Jose Andrés Sánchez-Pérez
- Instituto de Investigación Biomédica de Málaga, Unit of Psychiatry, Hospital Universitario Virgen de la Victoria, Spain.
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden.
| | - Dasiel O Borroto-Escuela
- Laboratorio NeuronLab. Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Malaga 29071, Spain; Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden; Department of Biomolecular Science, Section of Physiology, University of Urbino, Urbino 61029, Italy.
| | - Natalia García-Casares
- Laboratorio NeuronLab. Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Malaga 29071, Spain.
| | - Manuel Narváez
- Laboratorio NeuronLab. Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Malaga 29071, Spain; Vithas Málaga. Grupo Hospitalario Vithas, Málaga, Spain; Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden.
| |
Collapse
|
15
|
Nasiri E, Khalilzad M, Hakimzadeh Z, Isari A, Faryabi-Yousefabad S, Sadigh-Eteghad S, Naseri A. A comprehensive review of attention tests: can we assess what we exactly do not understand? THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2023. [DOI: 10.1186/s41983-023-00628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
AbstractAttention, as it is now defined as a process matching data from the environment to the needs of the organism, is one of the main aspects of human cognitive processes. There are several aspects to attention including tonic alertness (a process of intrinsic arousal that varies by minutes to hours), phasic alertness (a process that causes a quick change in attention as a result of a brief stimulus), selective attention (a process differentiating multiple stimuli), and sustained attention (a process maintaining persistence of response and continuous effort over an extended period). Attention dysfunction is associated with multiple disorders; therefore, there has been much effort in assessing attention and its domains, resulting in a battery of tests evaluating one or several attentional domains; instances of which are the Stroop color-word test, Test of Everyday Attention, Wisconsin Card Sorting Test, and Cambridge Neuropsychological Test Automated Battery. These tests vary in terms of utilities, range of age, and domains. The role of attention in human life and the importance of assessing it merits an inclusive review of the efforts made to assess attention and the resulting tests; Here we highlight all the necessary data regarding neurophysiological tests which assess human attentive function and investigates the evolution of attention tests over time. Also, the ways of assessing the attention in untestable patients who have difficulty in reading or using a computer, along with the lack of ability to comprehend verbal instructions and executive tasks, are discussed. This review can be of help as a platform for designing new studies to researchers who are interested in working on attention and conditions causing deficits in this aspect of body function, by collecting and organizing information on its assessment.
Collapse
|
16
|
Yang C, Liao C, Zhao J, Guan Q, Wang G, Han Q. Dysregulation of tryptophan metabolism and distortion of cell signaling after oral exposure to ethanol and Kynurenic acid. Gene 2023; 852:147061. [PMID: 36423775 DOI: 10.1016/j.gene.2022.147061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Kynurenic acid (KYNA), an unavoidable tryptophan metabolite during fermentation is naturally blended with alcohol in all alcoholic beverages. Thus, alcohol drinking inevitably results in co-intake of KYNA. Effects of alcohol or KYNA on human health have been widely studied. However, the combined effects of both remain unknown. Here we report that alcohol and KYNA have a synergistic impact of on global gene expression, especially the gene sets related to tryptophan metabolism and cell signaling. Adult mice were exposed to alcohol (ethanol) and/or KYNA daily for a week. Transcriptomes of the brain, kidney and liver were profiled via bulk RNA sequencing. Results indicate that while KYNA alone largely promotes, and alcohol alone mostly inhibits gene expression, alcohol and KYNA co-administration has a stronger inhibition of global gene expression. Tryptophan metabolism is severely skewed towards kynurenine pathway by decreasing tryptophan hydroxylase 2 and increasing tryptophan dioxygenase. Quantification of tryptophan metabolic enzymes corroborates the transcriptional changes of these enzymes. Furthermore, the co-administration greatly enhances the GnRH signaling pathway. This research provides critical data to better understand the effects of alcohol and KYNA in mix on human health.
Collapse
Affiliation(s)
- Cihan Yang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China.
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| | - Jianguo Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| | - Qingfeng Guan
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| | - Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
17
|
Alvarez‐Contino JE, Díaz‐Sánchez E, Mirchandani‐Duque M, Sánchez‐Pérez JA, Barbancho MA, López‐Salas A, García‐Casares N, Fuxe K, Borroto‐Escuela DO, Narváez M. GALR2 and Y1R agonists intranasal infusion enhanced adult ventral hippocampal neurogenesis and antidepressant-like effects involving BDNF actions. J Cell Physiol 2023; 238:459-474. [PMID: 36599082 PMCID: PMC10952952 DOI: 10.1002/jcp.30944] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/28/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
Dysregulation of adult hippocampal neurogenesis is linked to major depressive disorder (MDD), with more than 300 million people diagnosed and worsened by the COVID-19 pandemic. Accumulating evidence for neuropeptide Y (NPY) and galanin (GAL) interaction was shown in various limbic system regions at molecular-, cellular-, and behavioral-specific levels. The purpose of the current work was to evaluate the proliferating role of GAL2 receptor (GALR2) and Y1R agonists interaction upon intranasal infusion in the ventral hippocampus. We studied their hippocampal proliferating actions using the proliferating cell nuclear antigen (PCNA) on neuroblasts or stem cells and the expression of the brain-derived neurothrophic factor (BDNF). Moreover, we studied the formation of Y1R-GALR2 heteroreceptor complexes and analyzed morphological changes in hippocampal neuronal cells. Finally, the functional outcome of the NPY and GAL interaction on the ventral hippocampus was evaluated in the forced swimming test. We demonstrated that the intranasal infusion of GALR2 and the Y1R agonists promotes neuroblasts proliferation in the dentate gyrus of the ventral hippocampus and the induction of the neurotrophic factor BDNF. These effects were mediated by the increased formation of Y1R-GALR2 heteroreceptor complexes, which may mediate the neurites outgrowth observed on neuronal hippocampal cells. Importantly, BDNF action was found necessary for the antidepressant-like effects after GALR2 and the Y1R agonists intranasal administration. Our data may suggest the translational development of new heterobivalent agonist pharmacophores acting on Y1R-GALR2 heterocomplexes in the ventral hippocampus for the novel therapy of MDD or depressive-affecting diseases.
Collapse
Affiliation(s)
- Jose Erik Alvarez‐Contino
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Estela Díaz‐Sánchez
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
- Grupo Hospitalario VithasVithas MálagaMálagaSpain
| | - Marina Mirchandani‐Duque
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Jose Andrés Sánchez‐Pérez
- Unit of Psychiatry, Instituto de Investigación Biomédica de MálagaHospital Universitario Virgen de la VictoriaMálagaSpain
| | - Miguel A. Barbancho
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Alexander López‐Salas
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Natalia García‐Casares
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Kjell Fuxe
- Department of NeuroscienceKarolinska InstituteStockholmSweden
| | - Dasiel O. Borroto‐Escuela
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
- Department of NeuroscienceKarolinska InstituteStockholmSweden
- Department of Biomolecular Science, Section of PhysiologyUniversity of UrbinoUrbinoItaly
| | - Manuel Narváez
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
- Grupo Hospitalario VithasVithas MálagaMálagaSpain
- Department of NeuroscienceKarolinska InstituteStockholmSweden
| |
Collapse
|
18
|
Yilmaz NS, Sen B, Karadag RF, Aslan S, Ekmekci Ertek I, Bozkurt A, Cicek S, Bolu A, Ucar H, Kocak C, Cevik C, Bukan N. A kynurenine pathway enzyme aminocarboxymuconate-semialdehyde decarboxylase may be involved in treatment-resistant depression, and baseline inflammation status of patients predicts treatment response: a pilot study. J Neural Transm (Vienna) 2022; 129:1513-1526. [PMID: 36334154 DOI: 10.1007/s00702-022-02553-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
The kynurenine pathway (KP) and inflammation are substantial in depression pathogenesis. Although there is a crosstalk between the KP, inflammation, and neurotrophic factors, few studies examine these topics together. Novel medications may be developed by clarifying dysregulations related to inflammation, KP, and neurotrophic factors in treatment-resistant depression (TRD). We aimed to evaluate the serum levels of KP metabolites, proinflammatory biomarkers, and brain-derived neurotrophic factor (BDNF) in healthy controls (HC) and the patients with TRD whose followed up with three different treatments. Moreover, the effect of electroconvulsive therapy (ECT) and repetitive transcranial magnetic stimulation (rTMS) on biomarkers was investigated. Study groups comprised a total of 30 unipolar TRD patients consisting of three separate patient groups (ECT = 8, rTMS = 10, pharmacotherapy = 12), and 9 HC. The decision to administer only pharmacotherapy or ECT/rTMS besides pharmacotherapy was given independently of this research by psychiatrists. Blood samples and symptom scores were obtained three times for patients. At baseline, quinolinic acid (QUIN) was higher in the patients with TRD compared to HC, whereas picolinic acid (PIC), PIC/QUIN, and PIC/3-hydroxykynurenine were lower. Baseline interleukin-6 (IL-6), and high-sensitivity C-reactive protein (hsCRP) were higher in nonresponders and non-remitters. ECT had an acute effect on cytokines. In the rTMS group, tumor necrosis factor-α (TNF-α) decreased in time. PIC, QUIN, and aminocarboxymuconate-semialdehyde decarboxylase (ACMSD) enzyme may play a role in TRD pathogenesis, and have diagnostic potential. rTMS and ECT have modulatory effects on low-grade inflammation seen in TRD. Baseline inflammation severity is predictive in terms of response and remission in depression.
Collapse
Affiliation(s)
- Niyazi Samet Yilmaz
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey.
| | - Bayram Sen
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | | - Selcuk Aslan
- Department of Psychiatry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Irem Ekmekci Ertek
- Department of Psychiatry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Aruz Bozkurt
- Department of Psychiatry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Saba Cicek
- Department of Psychiatry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Abdullah Bolu
- Department of Psychiatry, Health Sciences University Gulhane Training and Research Hospital, Ankara, Turkey
| | - Huseyin Ucar
- Department of Psychiatry, Health Sciences University Gulhane Training and Research Hospital, Ankara, Turkey
| | - Cemal Kocak
- Republic of Turkey Ministry of Health, General Directorate of Public Health, Ankara, Turkey
| | - Cemal Cevik
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Neslihan Bukan
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
19
|
Kim K, Hwang G, Cho YH, Kim EJ, Woang JW, Hong CH, Son SJ, Roh HW. Relationships of Physical Activity, Depression, and Sleep with Cognitive Function in Community-Dwelling Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15655. [PMID: 36497729 PMCID: PMC9737085 DOI: 10.3390/ijerph192315655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
This cross-sectional, observational study aimed to integrate the analyses of relationships of physical activity, depression, and sleep with cognitive function in community-dwelling older adults using a single model. To this end, physical activity, sleep, depression, and cognitive function in 864 community-dwelling older adults from the Suwon Geriatric Mental Health Center were assessed using the International Physical Activity Questionnaire, Montgomery-Asberg Depression Rating Scale, Pittsburgh Sleep Quality Index, and Mini-Mental State Examination for Dementia Screening, respectively. Their sociodemographic characteristics were also recorded. After adjusting for confounders, multiple linear regression analysis was performed to investigate the effects of physical activity, sleep, and depression on cognitive function. Models 4, 5, 7, and 14 of PROCESS were applied to verify the mediating and moderating effects of all variables. Physical activity had a direct effect on cognitive function (effect = 0.97, p < 0.01) and indirect effect (effect = 0.36; confidence interval: 0.18, 0.57) through depression. Moreover, mediated moderation effects of sleep were confirmed in the pathways where physical activity affects cognitive function through depression (F-coeff = 13.37, p < 0.001). Furthermore, these relationships differed with age. Thus, the associations among physical activity, depression, and sleep are important in interventions for the cognitive function of community-dwelling older adults. Such interventions should focus on different factors depending on age.
Collapse
Affiliation(s)
- Kahee Kim
- Department of Psychiatry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Gyubeom Hwang
- Department of Psychiatry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yong Hyuk Cho
- Department of Psychiatry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Eun Jwoo Kim
- Suwon Geriatric Mental Health Center, Suwon 16499, Republic of Korea
| | - Ji Won Woang
- Suwon Geriatric Mental Health Center, Suwon 16499, Republic of Korea
| | - Chang Hyung Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sang Joon Son
- Department of Psychiatry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Suwon Geriatric Mental Health Center, Suwon 16499, Republic of Korea
| | - Hyun Woong Roh
- Department of Psychiatry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Suwon Geriatric Mental Health Center, Suwon 16499, Republic of Korea
| |
Collapse
|
20
|
Sultan S. Translating neuroimaging changes to neuro-endophenotypes of autistic spectrum disorder: a narrative review. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract
Background
Autism-spectrum disorder is a neurodevelopmental disorder with heterogeneity in etiopathogenesis and clinical presentation. Neuroanatomical and neurophysiological abnormalities may represent neural endophenotypes for autism spectrum disorders which may help identify subgroups of patients seemingly similar in clinical presentation yet different in their pathophysiological underpinnings. Furthermore, a thorough understanding of the pathophysiology of disease can pave the way to effective treatments, prevention, and prognostic predictions. The aim of this review is to identify the predominant neural endophenotypes in autism-spectrum disorder. The evidence was researched at the following electronic databases: Pubmed, PsycINFO, Scopus, Web of Science, and EMBASE.
Results
Enlarged brain, especially frontotemporal cortices have been consistently reported by structural neuroimaging, whereas functional neuroimaging has revealed frontotemporal dysconnectivity.
Conclusions
Regrettably, many of these findings have not been consistent. Therefore, translating these findings into neural endophenotype is by far an attempt in its budding stage. The structural and functional neuroimaging changes may represent neural endophenotypes unique to autism-spectrum disorder. Despite inconsistent results, a clinically meaningful finding may require combined efforts of autism-spectrum-disorder researchers focused on different aspects of basic, genetic, neuroimaging, and clinical research.
Collapse
|
21
|
Patil V, Madgi M, Kiran A. Early prediction of Alzheimer's disease using convolutional neural network: a review. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AbstractIn this paper, a comprehensive review on Alzheimer's disease (AD) is carried out, and an exploration of the two machine learning (ML) methods that help to identify the disease in its initial stages. Alzheimer's disease is a neurocognitive disorder occurring in people in their early onset. This disease causes the person to suffer from memory loss, unusual behavior, and language problems. Early detection is essential for developing more advanced treatments for AD. Machine learning (ML), a subfield of Artificial Intelligence (AI), uses various probabilistic and optimization techniques to help computers learn from huge and complicated data sets. To diagnose AD in its early stages, researchers generally use machine learning. The survey provides a broad overview of current research in this field and analyses the classification methods used by researchers working with ADNI data sets. It discusses essential research topics such as the data sets used, the evaluation measures employed, and the machine learning methods used. Our presentation suggests a model that helps better understand current work and highlights the challenges and opportunities for innovative and useful research. The study shows which machine learning method holds best for the ADNI data set. Therefore, the focus is given to two methods: the 18-layer convolutional network and the 3D convolutional network. Hence, CNNs with multi-layered fetch more accurate results as compared to 3D CNN. The work also contributes to the use of the ADNI data set, where the classification of training and testing samples is divided with such a number that brings the highest accuracy achieved with 18-layer CNN. The work concentrates on the early prediction of Alzheimer's disease with machine learning methods. Thus, the accuracy achieved is 98% for 18-layer CNN.
Collapse
|
22
|
Battaglia S, Cardellicchio P, Di Fazio C, Nazzi C, Fracasso A, Borgomaneri S. Stopping in (e)motion: Reactive action inhibition when facing valence-independent emotional stimuli. Front Behav Neurosci 2022; 16:998714. [PMID: 36248028 PMCID: PMC9561776 DOI: 10.3389/fnbeh.2022.998714] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/05/2022] [Indexed: 01/31/2023] Open
Abstract
Emotions are able to impact our ability to control our behaviors. However, it is not clear whether emotions play a detrimental or an advantageous effect on action control and whether the valence of the emotional stimuli differently affects such motor abilities. One way to measure reactive inhibitory control is the stop-signal task (SST), which estimates the ability to cancel outright a response to the presentation of a stop signal by means of the stop signal reaction times (SSRT). Impaired as well as facilitated action control has been found when faced with emotional stimuli such as stop signals in SSTs and mixed results were observed for positive versus negative stimuli. Here, we aimed to investigate these unresolved issues more deeply. Action control capabilities were tested in 60 participants by means of a SST, in which the stop signals were represented by a fearful and a happy body posture together with their neutral counterpart. Results showed that both positive and negative body postures enhanced the ability to suppress an ongoing action compared to neutral body postures. These results demonstrate that emotional valence-independent emotional stimuli facilitate action control and suggest that emotional stimuli may trigger increased sensory representation and/or attentional processing that may have promote stop-signal processing and hence improved inhibitory performance.
Collapse
Affiliation(s)
- Simone Battaglia
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
- Department of Psychology, University of Turin, Turin, Italy
- *Correspondence: Simone Battaglia,
| | - Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Chiara Di Fazio
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
| | - Claudio Nazzi
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
| | - Alessio Fracasso
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Sara Borgomaneri
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
- Sara Borgomaneri,
| |
Collapse
|
23
|
Kowalczyk M, Kowalczyk E, Galita G, Majsterek I, Talarowska M, Popławski T, Kwiatkowski P, Lichota A, Sienkiewicz M. Association of Polymorphic Variants in Argonaute Genes with Depression Risk in a Polish Population. Int J Mol Sci 2022; 23:ijms231810586. [PMID: 36142498 PMCID: PMC9500920 DOI: 10.3390/ijms231810586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Argonaute (AGO) proteins, through their key role in the regulation of gene expression, participate in many biological processes, including cell differentiation, proliferation, death and DNA repair. Accurate regulation of gene expression appears to be important for the proper development of complex neural circuits. Loss of AGO proteins is known to lead to early embryonic mortality in mice with various malformations, including anomalies of the central nervous system. Single-nucleotide polymorphisms (SNPs) of AGO genes can lead to deregulation of the processes in which AGO proteins are involved. The contribution of different SNPs in depression has been extensively studied. However, there are hardly any studies on the contribution of AGO genes. The aim of our research was to assess the relationship between the occurrence of depression and the presence of SNPs in genes AGO1 (rs636882) and AGO2 (rs4961280; rs2292779; rs2977490) in a Polish population. One hundred and one subjects in the study group were diagnosed with recurrent depressive disorder by a psychiatrist. The control group comprised 117 healthy subjects. Study participants performed the HDRS (Hamilton Depression Scale) test to confirm or exclude depression and assess severity. The frequency of polymorphic variants of genes AGO1 (rs636882) and AGO2 (rs4961280; rs2292779; rs2977490) was determined using TaqMan SNP genotyping assays and the TaqMan universal PCR master mix, no AmpErase UNG. The rs4961280/AGO2 polymorphism was associated with a decrease in depression occurrence in the codominant (OR = 0.51, p = 0.034), dominant (OR = 0.49, p = 0.01), and overdominant (OR = 0.58, p = 0.049) models. Based on the obtained results, we found that the studied patients demonstrated a lower risk of depression with the presence of the polymorphic variant of the rs4961280/AGO2 gene—genotype C/A and C/A-A/A.
Collapse
Affiliation(s)
- Mateusz Kowalczyk
- Babinski Memorial Hospital, Aleksandrowska St. 159, 91-229 Lodz, Poland
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Zeligowskiego St. 7/9, 90-752 Lodz, Poland
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Monika Talarowska
- Department of Clinical Psychology and Psychopathology, Institute of Psychology, University of Lodz, Smugowa St. 10/12, 91-433 Lodz, Poland
| | - Tomasz Popławski
- Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich Av. 72, 70-111 Szczecin, Poland
| | - Anna Lichota
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego St. 1, 90-151 Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego St. 1, 90-151 Lodz, Poland
- Correspondence: ; Tel.: +48-42-272-55-60
| |
Collapse
|
24
|
Gong X, Chang R, Zou J, Tan S, Huang Z. The role and mechanism of tryptophan - kynurenine metabolic pathway in depression. Rev Neurosci 2022; 34:313-324. [PMID: 36054612 DOI: 10.1515/revneuro-2022-0047] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/13/2022] [Indexed: 12/22/2022]
Abstract
Major depressive disorder (MDD) is a common mental illness characterized by persistent low mood and anhedonia, normally accompanied with cognitive impairment. Due to its rising incidence and high rate of recurrence and disability, MDD poses a substantial threat to patients' physical and mental health, as well as a significant economic cost to society. However, the etiology and pathogenesis of MDD are still unclear. Chronic inflammation may cause indoleamine-2,3-dioxygenase (IDO) to become overactive throughout the body and brain, resulting in excess quinolinic acid (QUIN) and less kynuric acid (KYNA) in the brain. QUIN's neurotoxicity damages glial cells and neurons, accelerates neuronal apoptosis, hinders neuroplasticity, and causes depression due to inflammation. Therefore, abnormal TRP-KYN metabolic pathway and its metabolites have been closely related to MDD, suggesting changes in the TRP-KYN metabolic pathway might contribute to MDD. In addition, targeting TRP-KYN with traditional Chinese medicine showed promising treatment effects for MDD. This review summarizes the recent studies on the TRP-KYN metabolic pathway and its metabolites in depression, which would provide a theoretical basis for exploring the etiology and pathogenesis of depression.
Collapse
Affiliation(s)
- Xiaoli Gong
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Rui Chang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| | - Ju Zou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| | - Sijie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| | - Zeyi Huang
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China.,Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| |
Collapse
|
25
|
Yang Y, Zhang Q, Yang J, Wang Y, Zhuang K, Zhao C. Possible Association of Nucleobindin-1 Protein with Depressive Disorder in Patients with HIV Infection. Brain Sci 2022; 12:brainsci12091151. [PMID: 36138887 PMCID: PMC9496684 DOI: 10.3390/brainsci12091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Mental disorders linked with dysfunction in the temporal cortex, such as anxiety and depression, can increase the morbidity and mortality of people living with HIV (PLWHA). Expressions of both nucleobindin 1 (NUCB1) and cannabinoid receptor 1 (CNR1) in the neurons have been found to alter in patients with depressive disorder, but whether it is involved in the development of depression in the context of HIV infection is unknown. Objectives To investigate the effects of NUCB1 on depressive disorder among PLWHA and preliminarily explore the underlying molecular mechanisms. Methods: Individuals who were newly HIV diagnosed were assessed on the Hospital Anxiety and Depression scale (HADS). Then SHIV-infected rhesus monkeys were used to investigate the possible involvement of the NUCB1 and the CNR1 protein in depression-like behavior. Results: The prevalence rate of depression among PLWHA was 27.33% (41/150). The mechanism results showing elevated NUCB1 levels in cerebrospinal fluid from HIV-infected patients suffering from depression were confirmed compared to those of HIV-infected patients. Moreover, the immunohistochemical analysis indicated the expression of NUCB1 in the temporal cortex neurons of SHIV-infected monkeys was higher than that of the healthy control. Conversely, CNR1 expression was down-regulated at protein levels. Conclusions: Depression symptoms are common among PLWHA and associate with NUCB1 expression increases, and NUCB1 may be a potential target for depression.
Collapse
Affiliation(s)
- Yun Yang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Qian Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Jing Yang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Yun Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Ke Zhuang
- ABSL-III Laboratory at the Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China
- Correspondence: (K.Z.); (C.Z.)
| | - Changcheng Zhao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
- Correspondence: (K.Z.); (C.Z.)
| |
Collapse
|
26
|
Motion, Relation, and Passion in Brain Physiological and Cognitive Aging. Brain Sci 2022; 12:brainsci12091122. [PMID: 36138858 PMCID: PMC9496869 DOI: 10.3390/brainsci12091122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the current paper was to present important factors for keeping the basic structures of a person’s brain function, i.e., the grey and white matter, intact. Several lines of evidence have shown that motion, relation, and passion are central factors for preserving the neural system in the grey and white matter during ageing. An active lifestyle has shown to contribute to the development of the central nervous system and to contrast brain ageing. Interpersonal relationships, and interactions, have shown to contribute to complex biological factors that benefit the cognitive resilience to decline. Furthermore, the current scientific literature suggests that passion, strong interest, could be the driving factor motivating individuals to learn new things, thus influencing the development and maintenance of the neural functional network over time. The present theoretical perspective paper aims to convey several key messages: (1) brain development is critically affected by lifestyle; (2) physical training allows one to develop and maintain brain structures during ageing, and may be one of the keys for good quality of life as an older person; (3) diverse stimuli are a key factor in maintaining brain structures; (4) motion, relation, and passion are key elements for contrasting the loss of the grey and white matter of the brain.
Collapse
|
27
|
Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan-Kynurenine Metabolic System. Cells 2022; 11:2607. [PMID: 36010683 PMCID: PMC9406499 DOI: 10.3390/cells11162607] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nearly half a century has passed since the discovery of cytoplasmic inheritance of human chloramphenicol resistance. The inheritance was then revealed to take place maternally by mitochondrial DNA (mtDNA). Later, a number of mutations in mtDNA were identified as a cause of severe inheritable metabolic diseases with neurological manifestation, and the impairment of mitochondrial functions has been probed in the pathogenesis of a wide range of illnesses including neurodegenerative diseases. Recently, a growing number of preclinical studies have revealed that animal behaviors are influenced by the impairment of mitochondrial functions and possibly by the loss of mitochondrial stress resilience. Indeed, as high as 54% of patients with one of the most common primary mitochondrial diseases, mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, present psychiatric symptoms including cognitive impairment, mood disorder, anxiety, and psychosis. Mitochondria are multifunctional organelles which produce cellular energy and play a major role in other cellular functions including homeostasis, cellular signaling, and gene expression, among others. Mitochondrial functions are observed to be compromised and to become less resilient under continuous stress. Meanwhile, stress and inflammation have been linked to the activation of the tryptophan (Trp)-kynurenine (KYN) metabolic system, which observably contributes to the development of pathological conditions including neurological and psychiatric disorders. This review discusses the functions of mitochondria and the Trp-KYN system, the interaction of the Trp-KYN system with mitochondria, and the current understanding of the involvement of mitochondria and the Trp-KYN system in preclinical and clinical studies of major neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Masaru Tanaka
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Helga Polyák
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Fanni Tóth
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
28
|
Aral A, Onat M, Aydemir H. Functional outcomes of extended-release methylphenidate and atomoxetine in children: retrospective chart analysis. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00532-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Recent guidelines emphasize the importance of functional outcomes in children with attention-deficit/hyperactivity disorder (ADHD). Here, we assess the functional outcomes of the oral delivery system of osmotic-release methylphenidate (OROS-MPH) and atomoxetine (ATX) from the retrospective review of the chart for the last 2 years in the clinic.
Results
Linear mixed-effects models were performed with outcome measures of difference in ADHD symptoms and functional impairment. After 9–12 weeks, OROS-MPH and ATX were statistically equivalent for total Weiss Functional Impairment Rating Scale-Parent Report (WFIRS-P) scores (difference in slope is β = 0.004, p = 1.000). However, OROS-MPH was superior to ATX in terms of school domain (difference in slope is β = 0.139, p < 0.001); ATX was superior in the family domain (slope difference in slope is β = 0.103, p < 0.001). The other domains of functioning both were not responsive to pharmacotherapy and were similar between the two medications.
Conclusions
Optimal management should monitor functional progress in ADHD beyond the core symptoms. As expected, ADHD medications provide a distinct pattern of functional improvement. Pharmacotherapy alone offers promising and reliable outcomes to improve school and family functions in ADHD. Some functional improvements did not respond to the medication; therefore, many of the techniques derived from behavioral interventions should be considered.
Collapse
|
29
|
Battaglia S, Cardellicchio P, Di Fazio C, Nazzi C, Fracasso A, Borgomaneri S. The Influence of Vicarious Fear-Learning in “Infecting” Reactive Action Inhibition. Front Behav Neurosci 2022; 16:946263. [PMID: 35941933 PMCID: PMC9355887 DOI: 10.3389/fnbeh.2022.946263] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
Since the dawn of cognitive neuroscience, emotions have been recognized to impact on several executive processes, such as action inhibition. However, the complex interplay between emotional stimuli and action control is not yet fully understood. One way to measure inhibitory control is the stop-signal task (SST), which estimates the ability to cancel outright an action to the presentation of a stop signal by means of the stop-signal reaction times (SSRTs). Impaired as well as facilitated action control has been found when faced with intrinsic emotional stimuli as stop signals in SSTs. Here, we aimed at investigating more deeply the power of negative stimuli to influence our action control, testing the hypothesis that a previously neutral stimulus [i.e., the image of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)], which has been conditioned through vicarious fear learning, has the same impact on reactive action inhibition performance as an intrinsically negative stimulus (i.e., a fearful face or body). Action control capabilities were tested in 90 participants by means of a SST, in which the stop signals were represented by different negative stimuli. Results showed that the SARS-CoV-2 image enhanced the ability to suppress an ongoing action similarly to observing fearful facial expressions or fearful body postures. Interestingly, we found that this effect was predicted by impulsivity traits: for example, the less self-control the participants had, the less they showed emotional facilitation for inhibitory performance. These results demonstrated that vicarious fear learning has a critical impact on cognitive abilities, making a neutral image as threatening as phylogenetically innate negative stimuli and able to impact on our behavioral control.
Collapse
Affiliation(s)
- Simone Battaglia
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
- Department of Psychology, University of Turin, Turin, Italy
- *Correspondence: Simone Battaglia,
| | - Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Chiara Di Fazio
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
| | - Claudio Nazzi
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
| | - Alessio Fracasso
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Sara Borgomaneri
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Sara Borgomaneri,
| |
Collapse
|
30
|
The Role of Tryptophan Dysmetabolism and Quinolinic Acid in Depressive and Neurodegenerative Diseases. Biomolecules 2022; 12:biom12070998. [PMID: 35883554 PMCID: PMC9313172 DOI: 10.3390/biom12070998] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Emerging evidence suggests that neuroinflammation is involved in both depression and neurodegenerative diseases. The kynurenine pathway, generating metabolites which may play a role in pathogenesis, is one of several competing pathways of tryptophan metabolism. The present article is a narrative review of tryptophan metabolism, neuroinflammation, depression, and neurodegeneration. A disturbed tryptophan metabolism with increased activity of the kynurenine pathway and production of quinolinic acid may result in deficiencies in tryptophan and derived neurotransmitters. Quinolinic acid is an N-methyl-D-aspartate receptor agonist, and raised levels in CSF, together with increased levels of inflammatory cytokines, have been reported in mood disorders. Increased quinolinic acid has also been observed in neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and HIV-related cognitive decline. Oxidative stress in connection with increased indole-dioxygenase (IDO) activity and kynurenine formation may contribute to inflammatory responses and the production of cytokines. Increased formation of quinolinic acid may occur at the expense of kynurenic acid and neuroprotective picolinic acid. While awaiting ongoing research on potential pharmacological interventions on tryptophan metabolism, adequate protein intake with appropriate amounts of tryptophan and antioxidants may offer protection against oxidative stress and provide a balanced set of physiological receptor ligands.
Collapse
|
31
|
Pignataro P, Dicarlo M, Zerlotin R, Storlino G, Oranger A, Sanesi L, Lovero R, Buccoliero C, Mori G, Colaianni G, Colucci S, Grano M. Antidepressant Effect of Intermittent Long-Term Systemic Administration of Irisin in Mice. Int J Mol Sci 2022; 23:ijms23147596. [PMID: 35886944 PMCID: PMC9320584 DOI: 10.3390/ijms23147596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 01/27/2023] Open
Abstract
Depression is a psychiatric disorder increasingly diffused worldwide. Evidence suggests that irisin, a myokine secreted by contracting muscle, mediates beneficial effects on several targets, including the brain. Here, the potential antidepressant properties of long-term intermittent systemic irisin administration (100 µg/kg/weekly for 1 month) were evaluated in mice by the Tail Suspension Test (TST), Forced Swim Test (FST), and Open Field Test (OFT). Furthermore, to deepen the molecular pathways underlying irisin treatment, the expression of irisin precursor, neurotrophic/growth factors, and cytokines was analyzed. Irisin treatment significantly decreased the immobility time in the TST and FST, suggesting an antidepressant effect. Additionally, irisin seemed to display an anxiolytic-like effect increasing the time spent in the OFT arena center. These findings were probably due to the modulation of endogenous brain factors as the gene expression of some neurotrophins, such as brain-derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF-1), was upregulated only in irisin-treated mouse brain. Moreover, irisin modulated the expression of some cytokines (IL-1β, IL-4, IL-6, and IL-10). To the best of our knowledge, this is the first study demonstrating that the irisin antidepressant effect may be observed even with a systemic administration in mice. This could pave the way toward intriguing preclinical research in humans.
Collapse
Affiliation(s)
- Patrizia Pignataro
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (M.D.); (G.S.); (L.S.); (S.C.)
- Department of Emergency and Organ Transplantation, University of Bari, 70126 Bari, Italy; (R.Z.); (A.O.); (C.B.); (G.C.); (M.G.)
- Correspondence:
| | - Manuela Dicarlo
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (M.D.); (G.S.); (L.S.); (S.C.)
| | - Roberta Zerlotin
- Department of Emergency and Organ Transplantation, University of Bari, 70126 Bari, Italy; (R.Z.); (A.O.); (C.B.); (G.C.); (M.G.)
| | - Giuseppina Storlino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (M.D.); (G.S.); (L.S.); (S.C.)
| | - Angela Oranger
- Department of Emergency and Organ Transplantation, University of Bari, 70126 Bari, Italy; (R.Z.); (A.O.); (C.B.); (G.C.); (M.G.)
| | - Lorenzo Sanesi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (M.D.); (G.S.); (L.S.); (S.C.)
| | - Roberto Lovero
- Clinical Pathology Unit, Polyclinic of Bari, 70124 Bari, Italy;
| | - Cinzia Buccoliero
- Department of Emergency and Organ Transplantation, University of Bari, 70126 Bari, Italy; (R.Z.); (A.O.); (C.B.); (G.C.); (M.G.)
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy;
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, University of Bari, 70126 Bari, Italy; (R.Z.); (A.O.); (C.B.); (G.C.); (M.G.)
| | - Silvia Colucci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, 70124 Bari, Italy; (M.D.); (G.S.); (L.S.); (S.C.)
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari, 70126 Bari, Italy; (R.Z.); (A.O.); (C.B.); (G.C.); (M.G.)
| |
Collapse
|
32
|
Sujar A, Bayona S, Delgado-Gómez D, Miguélez-Fernández C, Ardoy-Cuadros J, Peñuelas-Calvo I, Baca-García E, Blasco-Fontecilla H. Attention Deficit Hyperactivity Disorder Assessment Based on Patient Behavior Exhibited in a Car Video Game: A Pilot Study. Brain Sci 2022; 12:877. [PMID: 35884684 PMCID: PMC9313446 DOI: 10.3390/brainsci12070877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Symptoms of Attention Deficit Hyperactivity Disorder (ADHD) include excessive activity, difficulty sustaining attention, and inability to act in a reflective manner. Early diagnosis and treatment of ADHD is key but may be influenced by the observation and communication skills of caregivers, and the experience of the medical professional. Attempts to obtain additional measures to support the medical diagnosis, such as reaction time when performing a task, can be found in the literature. We propose an information recording system that allows to study in detail the behavior shown by children already diagnosed with ADHD during a car driving video game. We continuously record the participants' activity throughout the task and calculate the error committed. Studying the trajectory graphs, some children showed uniform patterns, others lost attention from one point onwards, and others alternated attention/inattention intervals. Results show a dependence between the age of the children and their performance. Moreover, by analyzing the positions by age over time using clustering, we show that it is possible to classify children according to their performance. Future studies will examine whether this detailed information about each child's performance pattern can be used to fine-tune treatment.
Collapse
Affiliation(s)
- Aaron Sujar
- Department of Computer Engineering, Universidad Rey Juan Carlos, 28933 Madrid, Spain; (A.S.); (S.B.)
- Department of Psychiatry, Puerta de Hierro University Hospital, Health Research Institute Puerta de Hierro-Segovia de Arana (IDIPHISA), 28222 Majadahonda, Spain;
| | - Sofia Bayona
- Department of Computer Engineering, Universidad Rey Juan Carlos, 28933 Madrid, Spain; (A.S.); (S.B.)
- Center for Computational Simulation, Universidad Politécnica de Madrid, 28040 Boadilla del Monte, Spain
| | | | | | - Juan Ardoy-Cuadros
- Department of Psychology, Faculty of Health Sciences, University Rey Juan Carlos, Avda. Atenas s/n, 28922 Alcorcón, Spain;
| | - Inmaculada Peñuelas-Calvo
- Department of Child and Adolescent Psychiatry, University Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Enrique Baca-García
- Department of Psychiatry, IIS-Jimenez Diaz Foundation, 28040 Madrid, Spain;
- CIBERSAM (Centro de Investigación en Salud Mental), Carlos III Institute of Health, 28029 Madrid, Spain
- Department of Psychiatry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Hilario Blasco-Fontecilla
- Department of Psychiatry, Puerta de Hierro University Hospital, Health Research Institute Puerta de Hierro-Segovia de Arana (IDIPHISA), 28222 Majadahonda, Spain;
- CIBERSAM (Centro de Investigación en Salud Mental), Carlos III Institute of Health, 28029 Madrid, Spain
- Department of Psychiatry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- ITA Mental Health, 28043 Madrid, Spain
| |
Collapse
|
33
|
Tanaka M, Vécsei L. Editorial of Special Issue ‘Dissecting Neurological and Neuropsychiatric Diseases: Neurodegeneration and Neuroprotection’. Int J Mol Sci 2022; 23:ijms23136991. [PMID: 35805990 PMCID: PMC9266548 DOI: 10.3390/ijms23136991] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Masaru Tanaka
- ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
34
|
Jamshed L, Debnath A, Jamshed S, Wish JV, Raine JC, Tomy GT, Thomas PJ, Holloway AC. An Emerging Cross-Species Marker for Organismal Health: Tryptophan-Kynurenine Pathway. Int J Mol Sci 2022; 23:6300. [PMID: 35682980 PMCID: PMC9181223 DOI: 10.3390/ijms23116300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Tryptophan (TRP) is an essential dietary amino acid that, unless otherwise committed to protein synthesis, undergoes metabolism via the Tryptophan-Kynurenine (TRP-KYN) pathway in vertebrate organisms. TRP and its metabolites have key roles in diverse physiological processes including cell growth and maintenance, immunity, disease states and the coordination of adaptive responses to environmental and dietary cues. Changes in TRP metabolism can alter the availability of TRP for protein and serotonin biosynthesis as well as alter levels of the immune-active KYN pathway metabolites. There is now considerable evidence which has shown that the TRP-KYN pathway can be influenced by various stressors including glucocorticoids (marker of chronic stress), infection, inflammation and oxidative stress, and environmental toxicants. While there is little known regarding the role of TRP metabolism following exposure to environmental contaminants, there is evidence of linkages between chemically induced metabolic perturbations and altered TRP enzymes and KYN metabolites. Moreover, the TRP-KYN pathway is conserved across vertebrate species and can be influenced by exposure to xenobiotics, therefore, understanding how this pathway is regulated may have broader implications for environmental and wildlife toxicology. The goal of this narrative review is to (1) identify key pathways affecting Trp-Kyn metabolism in vertebrates and (2) highlight consequences of altered tryptophan metabolism in mammals, birds, amphibians, and fish. We discuss current literature available across species, highlight gaps in the current state of knowledge, and further postulate that the kynurenine to tryptophan ratio can be used as a novel biomarker for assessing organismal and, more broadly, ecosystem health.
Collapse
Affiliation(s)
- Laiba Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| | - Amrita Debnath
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| | - Shanza Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| | - Jade V. Wish
- Department of Chemistry, Centre for Oil and Gas Research and Development (COGRAD), University of Manitoba, 586 Parker Building, 144 Dysart Rd., Winnipeg, MB R3T 2N2, Canada; (J.V.W.); (G.T.T.)
| | - Jason C. Raine
- Quesnel River Research Centre, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada;
| | - Gregg T. Tomy
- Department of Chemistry, Centre for Oil and Gas Research and Development (COGRAD), University of Manitoba, 586 Parker Building, 144 Dysart Rd., Winnipeg, MB R3T 2N2, Canada; (J.V.W.); (G.T.T.)
| | - Philippe J. Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada;
| | - Alison C. Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| |
Collapse
|
35
|
Mirchandani-Duque M, Barbancho MA, López-Salas A, Alvarez-Contino JE, García-Casares N, Fuxe K, Borroto-Escuela DO, Narváez M. Galanin and Neuropeptide Y Interaction Enhances Proliferation of Granule Precursor Cells and Expression of Neuroprotective Factors in the Rat Hippocampus with Consequent Augmented Spatial Memory. Biomedicines 2022; 10:1297. [PMID: 35740319 PMCID: PMC9219743 DOI: 10.3390/biomedicines10061297] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Dysregulation of hippocampal neurogenesis is linked to several neurodegenereative diseases, where boosting hippocampal neurogenesis in these patients emerges as a potential therapeutic approach. Accumulating evidence for a neuropeptide Y (NPY) and galanin (GAL) interaction was shown in various limbic system regions at molecular-, cellular-, and behavioral-specific levels. The purpose of the current work was to evaluate the role of the NPY and GAL interaction in the neurogenic actions on the dorsal hippocampus. We studied the Y1R agonist and GAL effects on: hippocampal cell proliferation through the proliferating cell nuclear antigen (PCNA), the expression of neuroprotective and anti-apoptotic factors, and the survival of neurons and neurite outgrowth on hippocampal neuronal cells. The functional outcome was evaluated in the object-in-place task. We demonstrated that the Y1R agonist and GAL promote cell proliferation and the induction of neuroprotective factors. These effects were mediated by the interaction of NPYY1 (Y1R) and GAL2 (GALR2) receptors, which mediate the increased survival and neurites' outgrowth observed on neuronal hippocampal cells. These cellular effects are linked to the improved spatial-memory effects after the Y1R agonist and GAL co-injection at 24 h in the object-in-place task. Our results suggest the development of heterobivalent agonist pharmacophores, targeting Y1R-GALR2 heterocomplexes, therefore acting on the neuronal precursor cells of the DG in the dorsal hippocampus for the novel therapy of neurodegenerative cognitive-affecting diseases.
Collapse
Affiliation(s)
- Marina Mirchandani-Duque
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
| | - Miguel A. Barbancho
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
| | - Alexander López-Salas
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
| | - Jose Erik Alvarez-Contino
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
| | - Natalia García-Casares
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden;
| | - Dasiel O. Borroto-Escuela
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden;
- Department of Biomolecular Science, Section of Physiology, University of Urbino, 61029 Urbino, Italy
| | - Manuel Narváez
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden;
| |
Collapse
|
36
|
Tanaka M, Spekker E, Szabó Á, Polyák H, Vécsei L. Modelling the neurodevelopmental pathogenesis in neuropsychiatric disorders. Bioactive kynurenines and their analogues as neuroprotective agents-in celebration of 80th birthday of Professor Peter Riederer. J Neural Transm (Vienna) 2022; 129:627-642. [PMID: 35624406 DOI: 10.1007/s00702-022-02513-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
Following introduction of the monoamine oxidase type B inhibitor selegiline for the treatment of Parkinson's disease (PD), discovery of the action mechanism of Alzheimer's disease-modifying agent memantine, the role of iron in PD, and the loss of electron transport chain complex I in PD, and development of the concept of clinical neuroprotection, Peter Riederer launched one of the most challenging research project neurodevelopmental aspects of neuropsychiatric disorders. The neurodevelopmental theory holds that a disruption of normal brain development in utero or during early life underlies the subsequent emergence of neuropsychiatric symptoms during later life. Indeed, the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition and the International Classification of Diseases, 11th Revision categorize autism spectrum disorder and attention deficit hyperactivity disorder in neurodevelopmental disorders (NDDs). More and more evidence, especially from preclinical studies, is revealing that neurodevelopmental pathology is not limited to the diagnostic class above, but also contributes to the development of other psychiatric disorders such as schizophrenia, bipolar disorder, and obsessive-compulsive disorder as well as neurodegenerative diseases such as PD and Huntington's disease. Preclinical animal research is taking a lead in understanding the pathomechanisms of NDDs, searching for novel targets, and developing new neuroprotective agents against NDDs. This narrative review discusses emerging evidence of the neurodevelopmental etiology of neuropsychiatric disorders, recent advances in modelling neurodevelopmental pathogenesis, potential strategies of clinical neuroprotection using novel kynurenine metabolites and analogues, and future research direction for NDDs.
Collapse
Affiliation(s)
- Masaru Tanaka
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, 6725, Szeged, Hungary
| | - Eleonóra Spekker
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, 6725, Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-György Medical School, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - Helga Polyák
- Department of Neurology, Albert Szent-György Medical School, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, 6725, Szeged, Hungary. .,Department of Neurology, Albert Szent-György Medical School, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary.
| |
Collapse
|
37
|
Sellitto M, Terenzi D, Starita F, di Pellegrino G, Battaglia S. The Cost of Imagined Actions in a Reward-Valuation Task. Brain Sci 2022; 12:582. [PMID: 35624971 PMCID: PMC9139426 DOI: 10.3390/brainsci12050582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/26/2023] Open
Abstract
Growing evidence suggests that humans and other animals assign value to a stimulus based not only on its inherent rewarding properties, but also on the costs of the action required to obtain it, such as the cost of time. Here, we examined whether such cost also occurs for mentally simulated actions. Healthy volunteers indicated their subjective value for snack foods while the time to imagine performing the action to obtain the different stimuli was manipulated. In each trial, the picture of one food item and a home position connected through a path were displayed on a computer screen. The path could be either large or thin. Participants first rated the stimulus, and then imagined moving the mouse cursor along the path from the starting position to the food location. They reported the onset and offset of the imagined movements with a button press. Two main results emerged. First, imagery times were significantly longer for the thin than the large path. Second, participants liked significantly less the snack foods associated with the thin path (i.e., with longer imagery time), possibly because the passage of time strictly associated with action imagery discounts the value of the reward. Importantly, such effects were absent in a control group of participants who performed an identical valuation task, except that no action imagery was required. Our findings hint at the idea that imagined actions, like real actions, carry a cost that affects deeply how people assign value to the stimuli in their environment.
Collapse
Affiliation(s)
- Manuela Sellitto
- Centre for Studies and Research in Cognitive Neuroscience, Department of Psychology, University of Bologna, 40126 Bologna, Italy; (M.S.); (F.S.)
- School of Psychology, Bangor University, Bangor LL57 2AS, UK
| | - Damiano Terenzi
- Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), 14558 Potsdam-Rehbrücke, Germany;
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Francesca Starita
- Centre for Studies and Research in Cognitive Neuroscience, Department of Psychology, University of Bologna, 40126 Bologna, Italy; (M.S.); (F.S.)
| | - Giuseppe di Pellegrino
- Centre for Studies and Research in Cognitive Neuroscience, Department of Psychology, University of Bologna, 40126 Bologna, Italy; (M.S.); (F.S.)
| | - Simone Battaglia
- Centre for Studies and Research in Cognitive Neuroscience, Department of Psychology, University of Bologna, 40126 Bologna, Italy; (M.S.); (F.S.)
- School of Psychology, Bangor University, Bangor LL57 2AS, UK
| |
Collapse
|