1
|
Brdar I, Racetin A, Jeličić I, Vukojević K, Vučković L, Ljutić D, Saraga-Babić M, Filipović N. Expression of Autophagy Markers LC3B, LAMP2A, and GRP78 in the Human Kidney during Embryonic, Early Fetal, and Postnatal Development and Their Significance in Diabetic Kidney Disease. Int J Mol Sci 2024; 25:9152. [PMID: 39273100 PMCID: PMC11394701 DOI: 10.3390/ijms25179152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Autophagy is the primary intracellular degradation system, and it plays an important role in many biological and pathological processes. Studies of autophagy involvement in developmental processes are important for understanding various processes. Among them are fibrosis, degenerative diseases, cancer development, and metastasis formation. Diabetic kidney disease is one of the main causes of chronic kidney disease and end-stage renal failure. The aim of this study was to investigate the immunohistochemical expression patterns of LC3B, LAMP2A, and GRP78 during different developmental stages of early-developing human kidneys and in samples from patients with type II diabetes mellitus. During the 7/8th DW, moderate expression of LC3B and LAMP2A and strong expression of GRP78 were found in the mesonephric glomeruli and tubules. In the 9/10th DW, the expression of LC3B and LAMP2A was even more pronounced in the mesonephric tubules. LC3B, LAMP2A, and GRP78 immunoreactivity was also found in the paramesonephric and mesonephric ducts and was stronger in the 9/10th DW compared with the 7/8th DW. In addition, the expression of LC3B, LAMP2A, and GRP78 also appeared in the mesenchyme surrounding the paramesonephric duct in the 9/10th DW. In the 15/16th DW, the expression of LC3B in the glomeruli was weak, that of LAMP2A was moderate, and that of GRP78 was strong. In the tubuli, the expression of LC3B was moderate, while the expression of LAMP2A and GRP78 was strong. The strongest expression of LC3B, LAMP2A, and GRP78 was observed in the renal medullary structures, including developing blood vessels. In postnatal human kidneys, the most extensive LC3B, LAMP2A, and GRP78 expression in the cortex was found in the epithelium of the proximal convoluted tubules, with weak to moderate expression in the glomeruli. The medullary expression of LC3B was weak, but the expression of LAMP2A and GRP78 was the strongest in the medullary tubular structures. Significantly lower expression of LC3B was found in the glomeruli of the diabetic patients in comparison with the nondiabetic patients, but there was no difference in the expression of LC3B in the tubule-interstitial compartment. The expression of LAMP2A was significantly higher in the tubule-interstitial compartments of the diabetic patients in comparison with the nondiabetic patients, while its expression did not differ in the glomeruli. Extensive expression of GRP78 was found in the glomeruli and the tubule-interstitial compartments, but there was no difference in the expression between the two groups of patients. These data give us new information about the expression of LC3B, LAMP2A, and GRP78 during embryonic, fetal, and early postnatal development. The spatiotemporal expression of LC3B, LAMP2A, and GRP78 indicates the important role of autophagy during the early stages of renal development. In addition, our data suggest a disturbance in autophagy processes in the glomeruli and tubuli of diabetic kidneys as an important factor in the pathogenesis of diabetic kidney disease.
Collapse
Affiliation(s)
- Ivan Brdar
- Emergency Department, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Ivo Jeličić
- Internal Medicine Department, Nephrology and Haemodialysis Division, University Hospital of Split, Šoltanska 1, 21000 Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
- Department of Anatomy, School of Medicine, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina
| | - Ljiljana Vučković
- Clinic for Pathology and Citology, Clinical Center of Montenegro, 81101 Podgorica, Montenegro
- Department of Histology and Embryology, Medical Faculty, University of Montenegro, 81101 Podgorica, Montenegro
| | - Dragan Ljutić
- Internal Medicine Department, Nephrology and Haemodialysis Division, University Hospital of Split, Šoltanska 1, 21000 Split, Croatia
| | - Mirna Saraga-Babić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| |
Collapse
|
2
|
Chen X, Yuan S, Mi L, Long Y, He H. Pannexin1: insight into inflammatory conditions and its potential involvement in multiple organ dysfunction syndrome. Front Immunol 2023; 14:1217366. [PMID: 37711629 PMCID: PMC10498923 DOI: 10.3389/fimmu.2023.1217366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
Sepsis represents a global health concern, and patients with severe sepsis are at risk of experiencing MODS (multiple organ dysfunction syndrome), which is associated with elevated mortality rates and a poorer prognosis. The development of sepsis involves hyperactive inflammation, immune disorder, and disrupted microcirculation. It is crucial to identify targets within these processes to develop therapeutic interventions. One such potential target is Panx1 (pannexin-1), a widely expressed transmembrane protein that facilitates the passage of molecules smaller than 1 KDa, such as ATP. Accumulating evidence has implicated the involvement of Panx1 in sepsis-associated MODS. It attracts immune cells via the purinergic signaling pathway, mediates immune responses via the Panx1-IL-33 axis, promotes immune cell apoptosis, regulates blood flow by modulating VSMCs' and vascular endothelial cells' tension, and disrupts microcirculation by elevating endothelial permeability and promoting microthrombosis. At the level of organs, Panx1 contributes to inflammatory injury in multiple organs. Panx1 primarily exacerbates injury and hinders recovery, making it a potential target for sepsis-induced MODS. While no drugs have been developed explicitly against Panx1, some compounds that inhibit Panx1 hemichannels have been used extensively in experiments. However, given that Panx1's role may vary during different phases of sepsis, more investigations are required before interventions against Panx1 can be applied in clinical. Overall, Panx1 may be a promising target for sepsis-induced MODS. Nevertheless, further research is needed to understand its complex role in different stages of sepsis fully and to develop suitable pharmaceutical interventions for clinical use.
Collapse
Affiliation(s)
| | | | | | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Huaiwu He
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Van Campenhout R, Caufriez A, Tabernilla A, Maerten A, De Boever S, Sanz-Serrano J, Kadam P, Vinken M. Pannexin1 channels in the liver: an open enemy. Front Cell Dev Biol 2023; 11:1220405. [PMID: 37492223 PMCID: PMC10363690 DOI: 10.3389/fcell.2023.1220405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Pannexin1 proteins form communication channels at the cell plasma membrane surface, which allow the transfer of small molecules and ions between the intracellular compartment and extracellular environment. In this way, pannexin1 channels play an important role in various cellular processes and diseases. Indeed, a plethora of human pathologies is associated with the activation of pannexin1 channels. The present paper reviews and summarizes the structure, life cycle, regulation and (patho)physiological roles of pannexin1 channels, with a particular focus on the relevance of pannexin1 channels in liver diseases.
Collapse
|
4
|
Veljačić Visković D, Lozić M, Vukoja M, Šoljić V, Vukojević K, Glavina Durdov M, Filipović N, Lozić B. Spatio-Temporal Expression Pattern of CAKUT Candidate Genes DLG1 and KIF12 during Human Kidney Development. Biomolecules 2023; 13:biom13020340. [PMID: 36830709 PMCID: PMC9953652 DOI: 10.3390/biom13020340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
We aimed to investigate expression of the novel susceptibility genes for CAKUT, DLG1 and KIF12, proposed by a systematic in silico approach, in developing and postnatal healthy human kidneys to provide information about their spatiotemporal expression pattern. We analyzed expression of their protein products by immunohistochemistry and immunofluorescence and quantified relative mRNA levels by RT-qPCR. Statistically significant differences in expression patterns were observed between certain developmental stages. Strong expression of DLG1 was observed in the developing kidney, with a gradual decrease from the first phase of kidney development (Ph1) until the third phase (Ph3), when most nephrons are formed; at later stages, the highest expression was observed in the tubules. KIF12 was highly expressed in the developing structures, especially in Ph1, with a gradual decrease until the postnatal phase, which would indicate a significant role in nephrogenesis. Co-localization of DLG1 and KIF12 was pronounced in Ph1, especially on the apical side of the tubular epithelial cells. Thereafter, their expression gradually became weaker and was only visible as punctate staining in Ph4. The direct association of DLG1 with KIF12 as control genes of normal kidney development may reveal their new functional aspect in renal tubular epithelial cells.
Collapse
Affiliation(s)
| | - Mirela Lozić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21 000 Split, Croatia
- Correspondence: ; Tel.: +385-21-557-800
| | - Martina Vukoja
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
| | - Violeta Šoljić
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
- Faculty of Health Studies, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21 000 Split, Croatia
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
- Faculty of Health Studies, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
- Department of Anatomy, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
- Center for Translational Research in Biomedicine, University of Split School of Medicine, 21 000 Split, Croatia
| | - Merica Glavina Durdov
- Department of Pathology, University Hospital Split, 21 000 Split, Croatia
- School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21 000 Split, Croatia
- Department of Anatomy, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
- Center for Translational Research in Biomedicine, University of Split School of Medicine, 21 000 Split, Croatia
| | - Bernarda Lozić
- Paediatric Diseases Department, University Hospital of Split, Spinčićeva 1, 21 000 Split, Croatia
- School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia
| |
Collapse
|
5
|
Expression of Cell Cycle Markers and Proliferation Factors during Human Eye Embryogenesis and Tumorigenesis. Int J Mol Sci 2022; 23:ijms23169421. [PMID: 36012688 PMCID: PMC9409163 DOI: 10.3390/ijms23169421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
The expression pattern of the markers p19, Ki-67, MSX1, MSX2, PDL1, pRB, and CYCLINA2 was quantitatively and semiquantitatively analyzed in histologic sections of the developing and postnatal human eye at week 8, in retinoblastoma, and in various uveal melanomas post hoc studies by double immunofluorescence. The p19 immunoreactivity characterized retinal and/or choroidal cells in healthy and tumor tissues: expression was lower in the postnatal retina than in the developing retina and retinoblastoma, whereas it was high in epithelioid melanomas. Ki67 expression was high in the developing eye, retinoblastoma, and choroidal melanomas. MSX1 and MSX2 expression was similar in the developing eye and retinoblastoma, whereas it was absent in the postnatal eye. Their different expression was evident between epithelioid and myxoid melanomas. Similarly, PDL1 was absent in epithelioid melanomas, whereas it was highly expressed in developing and tumor tissues. Expression of pRB and CYCA2 was characteristic of developing and tumorous eye samples but not of the healthy postnatal eye. The observed expression differences of the analyzed markers correlate with the origin and stage of cell differentiation of the tissue samples. The fine balance of expression could play a role in both human eye development and ocular tumorigenesis. Therefore, understanding their relationship and interplay could open new avenues for potential therapeutic interventions and a better understanding of the mechanisms underlying the developmental plasticity of the eye and the development of neoplasms.
Collapse
|