1
|
Zhang FQ, Chen J, Fan H. Eating for immunity: how diet shapes our defenses. Curr Opin Immunol 2024; 91:102486. [PMID: 39353254 PMCID: PMC11609002 DOI: 10.1016/j.coi.2024.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Emerging studies on the diet-immune axis have uncovered novel dietary immune regulators and identified crucial targets and pathways mediating the crosstalk between specific dietary components and diverse immune cell populations. Here, we discuss the recent discovery and mechanisms by which diet-derived components, such as vitamins, amino acids, fatty acids, and antioxidants, could impact immune cell metabolism, alter signaling pathways, and reprogram the overall cellular responses. We also note crucial considerations that need to be tackled to make these findings clinically relevant, acknowledging that our current understanding often relies on simplified models that may not adequately represent the intricate network of factors influencing the diet-immune axis at the whole organism level. Overall, our growing understanding of how diet shapes our defenses underscores the importance of lifestyle choices and illuminates the potential to fine-tune immune responses through targeted nutritional strategies, thereby fortifying the immune system and bolstering our defenses against diseases.
Collapse
Affiliation(s)
- Freya Q Zhang
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jing Chen
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | - Hao Fan
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
2
|
Rezvani M, Lewis K, Quach S, Iwasawa K, Weihs J, Reza H, Cai Y, Kimura M, Zhang R, Milton Y, Chaturvedi P, Thorner K, Nayak RC, Munera JO, Kramer P, Davis B, Balamurugan A, Ait Ahmed Y, Finke M, Behncke RY, Guillot A, Haegerling R, Polansky J, Bufler P, Cancelas J, Wells J, Yoshimoto M, Takebe T. Fetal Liver-like Organoids Recapitulate Blood-Liver Niche Development and Multipotent Hematopoiesis from Human Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617794. [PMID: 39416072 PMCID: PMC11482964 DOI: 10.1101/2024.10.11.617794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The fetal liver is a hematopoietic organ, hosting a diverse and evolving progenitor population. While human liver organoids derived from pluripotent stem cells (PSCs) mimic aspects of embryonic and fetal development, they typically lack the complex hematopoietic niche and the interaction between hepatic and hematopoietic development. We describe the generation of human Fetal Liver-like Organoids (FLOs), that model human hepato-hematopoietic interactions previously characterized in mouse models. Developing FLOs first integrate a yolk sac-like hemogenic endothelium into hepatic endoderm and mesoderm specification. As the hepatic and hematopoietic lineages differentiate, the FLO culture model establishes an autonomous niche capable of driving subsequent progenitor differentiation without exogenous factors. Consistent with yolk sac-derived waves, hematopoietic progenitor cells (HPCs) within FLOs exhibit multipotency with a preference for myeloid lineage commitment, while retaining fetal B and T cell differentiation potential. We reconstruct in FLOs the embryonic monocyte-to-macrophage and granulocyte immune trajectories within the FLO microenvironment and assess their functional responses in the liver niche. In vivo, FLOs demonstrate a liver engraftment bias of hematopoietic cells, recapitulating a key phenomenon of human hematopoietic ontogeny. Our findings highlight the intrinsic capacity of liver organoids to support hematopoietic development, establishing FLOs as a platform for modeling and manipulating human blood-liver niche interactions during critical stages of development and disease.
Collapse
|
3
|
Tsai YS, Yeh HT, Chen MS, Chang HJ, Lin WC, Sheu SM. ClinOleic Impairs ROS Production and Phagocytosis in M1 Macrophages Without Affecting M1 Differentiation. Cell Biochem Biophys 2024; 82:2355-2361. [PMID: 38856832 DOI: 10.1007/s12013-024-01346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Lipid emulsions are the primary source of calories and fatty acids that are used to provide essential energy and nutrients to patients suffering from severe intestinal failure and critical illness. However, their use has been linked to adverse effects on patient outcomes, notably affecting immune defenses and inflammatory responses. ClinOleic is a lipid emulsion containing a mixture of olive oil and soybean oil (80:20). The effect of ClinOleic on the differentiation of M1 macrophages remains unclear. In this study, we isolated human monocytes and added ClinOleic to differentiation culture media to investigate whether it affects monocyte polarization into M1 macrophages and macrophage functions, such as reactive oxygen species (ROS) production and phagocytosis. ROS production was stimulated by live S. aureus and detected with L-012, a chemiluminescence emission agent. Phagocytic capacity was assayed using pHrodo™ Green S. aureus Bioparticles® Conjugate. We found that M1 cell morphology, surface markers (CD80 and CD86), and M1-associated cytokines (TNF-α and IL-6) did not significantly change upon incubation with ClinOleic during M1 polarization. However, S. aureus-triggered ROS production was significantly lower in M1 macrophages differentiated with ClinOleic than in those not treated with ClinOleic. The inhibitory effect of ClinOleic on macrophage function also appeared in the phagocytosis assay. Taken together, these findings reveal that ClinOleic has a limited impact on the M1 differentiation phenotype but obviously reduces ROS production and phagocytosis.
Collapse
Affiliation(s)
- Yi-Sheng Tsai
- Department of Anesthesiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 60002, Chia-Yi City, Taiwan
| | - Hsuan-Te Yeh
- Department of Anesthesiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 60002, Chia-Yi City, Taiwan
| | - Ming-Shan Chen
- Department of Anesthesiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 60002, Chia-Yi City, Taiwan
- Department of Biotechnology, Asia University, 41354, Taichung City, Taiwan
| | - Hui-Ju Chang
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 60002, Chia-Yi City, Taiwan
| | - Wen-Chun Lin
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 60002, Chia-Yi City, Taiwan
| | - Shew-Meei Sheu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 60002, Chia-Yi City, Taiwan.
| |
Collapse
|
4
|
DJALDETTI MEIR. Immunomodulatory and chemopreventive effects of resveratrol on the digestive system cancers. Oncol Res 2024; 32:1389-1399. [PMID: 39220125 PMCID: PMC11361903 DOI: 10.32604/or.2024.049745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/23/2024] [Indexed: 09/04/2024] Open
Abstract
Resveratrol (RSV), the primary polyphenol found in grapes, has been revealed to have anti-inflammatory properties by reducing the capacity of the peripheral blood mononuclear cells to produce pro-inflammatory cytokines, including IL-1β, IL-6, IL-1ra and TNFα. Considering the close association between chronic inflammation and cancer development, RSV's immunomodulatory properties are one way by which the polyphenol may inhibit cancer initiation, proliferation, neovascularization, and migration. Resveratrol influences the generation of microtumor environment which is one of the key factors in cancer progress. In addition to immunomodulation, RSV inhibits cancer development by expressing anti-oxidant effects, causing cell cycle arrest, stimulating the function of certain enzymes, and activating cell signaling pathways. The end outcome is one of the various forms of cell death, including apoptosis, pyroptosis, necroptosis, and more, as it has been observed in vitro. RSV has been shown to act against cancer in practically every organ, while its effects on colon cancer have been documented more frequently. It is remarkable that longer-term clinical studies that may have established the potential for this natural substance to serve as a therapeutic adjuvant to traditional anti-cancer medications were not prompted by the encouraging outcomes seen with cancer cells treated with non-toxic doses of resveratrol. The current review aims to assess the recent findings about the immunological and anti-cancer characteristics of RSV, with a particular emphasis on cancers of the digestive tract, as a challenge for future clinical research that may contribute to the better prognosis of cancer.
Collapse
Affiliation(s)
- MEIR DJALDETTI
- />Laboratory for Immunology and Hematology Research, Rabin Medical Center, Hasharon Hospital, Petah-Tiqva, the Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Israel
| |
Collapse
|
5
|
Herrera-Martínez AD, Jiménez CM, Romo AN, Aguilera JL, Crespin MC, Baena BT, Casado-Díaz A, Moreno MÁG, Puerta MJM, Roger AJ. Nutritional Support Reduces Circulating Cytokines in Patients with Heart Failure. Nutrients 2024; 16:1637. [PMID: 38892570 PMCID: PMC11174422 DOI: 10.3390/nu16111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Increased inflammation is associated with the pathogenesis of heart failure (HF). Increased circulating levels of cytokines have been previously reported and generally associated with worse clinical outcomes. In this context, the modulation of inflammation-related parameters seems to be a reasonable therapeutic option for improving the clinical course of the disease. Based on this, we aimed to compare changes in circulating cytokines when Mediterranean diet alone or in combination with hypercaloric, hyperproteic oral nutritional supplements (ONS), enriched with omega-3 (n-3) polyunsaturated fatty acids were administered to patients with HF. Briefly, patients were randomly assigned to receive Mediterranean Diet (control group) vs. Mediterranean Diet plus ONS (intervention group). We observed increased circulating levels of IL-6, IL-8, MCP-1 and IP-10. MCP-1 and IL-6 were associated with overweight and obesity (p = 0.01-0.01-0.04, respectively); IL-6 and IL-8 were positively correlated with fat mass and CRP serum levels (p = 0.02-0.04, respectively). Circulating levels of IL-8 significantly decreased in all patients treated with the Mediterranean diet, while IL-6 and IP-10 only significantly decreased in patients that received plus ONS. In the univariate analysis, MCP-1 and its combination with IL-6 were associated with increased mortality (p = 0.02), while the multivariate analysis confirmed that MCP-1 was an independent factor for mortality (OR 1.01, 95%ci 1.01-1.02). In conclusion, nutritional support using hypercaloric, hyperproteic, n-3 enriched ONS in combination with Mediterranean Diet was associated with decreased circulating levels of some cytokines and could represent an interesting step for improving heart functionality of patients with HF.
Collapse
Affiliation(s)
- Aura D. Herrera-Martínez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain (B.T.B.); (M.Á.G.M.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Concepción Muñoz Jiménez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain (B.T.B.); (M.Á.G.M.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Ana Navas Romo
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain (B.T.B.); (M.Á.G.M.)
- Immunology Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - José López Aguilera
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain (B.T.B.); (M.Á.G.M.)
- Cardiology Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | | | - Bárbara Torrecillas Baena
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain (B.T.B.); (M.Á.G.M.)
| | - Antonio Casado-Díaz
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain (B.T.B.); (M.Á.G.M.)
| | - María Ángeles Gálvez Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain (B.T.B.); (M.Á.G.M.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - María José Molina Puerta
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain (B.T.B.); (M.Á.G.M.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Aurora Jurado Roger
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain (B.T.B.); (M.Á.G.M.)
- Immunology Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| |
Collapse
|
6
|
Zhou P, Yu X, Song T, Hou X. Safety and efficacy of antioxidant therapy in children and adolescents with attention deficit hyperactivity disorder: A systematic review and network meta-analysis. PLoS One 2024; 19:e0296926. [PMID: 38547138 PMCID: PMC10977718 DOI: 10.1371/journal.pone.0296926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/22/2023] [Indexed: 04/02/2024] Open
Abstract
OBJECTIVE To systematically evaluate the safety and efficacy of antioxidant therapy in children and adolescents with attention deficit hyperactivity disorder (ADHD). METHODS Randomized controlled trials and prospective studies on antioxidant therapy in children and adolescents with ADHD were searched in PubMed, Embase, and Cochrane Library from the inception of databases to November 12, 2022. Two investigators independently screened the literature, extracted data, and evaluated the quality of the included studies. Network meta-analysis (PROSPERO registration number CRD 42023382824) was carried out by using R Studio 4.2.1. RESULTS 48 studies involving 12 antioxidant drugs (resveratrol, pycnogenol, omega-3, omega-6, quercetin, phosphatidylserine, almond, vitamin D, zinc, folic acid, ginkgo biloba, Acetyl-L-carnitine) were finally included, with 3,650 patients. Network meta-analysis showed that omega-6 (0.18), vitamin D (0.19), and quercetin (0.24) were the top three safest drugs according to SUCRA. The omega-3 (SUCRA 0.35), pycnogenol (SUCRA 0.36), and vitamin D (SUCRA 0.27) were the most effective in improving attention, hyperactivity, and total score of Conners' parent rating scale (CPRS), respectively. In terms of improving attention, hyperactivity, and total score of Conners' teacher rating scale (CTRS), pycnogenol (SUCRA 0.32), phosphatidylserine+omega-3 (SUCRA 0.26), and zinc (SUCRA 0.34) were the most effective, respectively. In terms of improving attention, hyperactivity and total score of ADHD Rating Scale-Parent, the optimal agents were phosphatidylserine (SUCRA 0.39), resveratrol+MPH (SUCRA 0.24), and phosphatidylserine (SUCRA 0.34), respectively. In terms of improving attention, hyperactivity and total score of ADHD Rating Scale-Teacher, pycnogenol (SUCRA 0.32), vitamin D (SUCRA 0.31) and vitamin D (SUCRA 0.18) were the optimal agents, respectively. The response rate of omega-3+6 was the highest in CGI (SUCRA 0.95) and CPT (SUCRA 0.42). CONCLUSION The rankings of safety and efficacy of the 12 antioxidants vary. Due to the low methodological quality of the included studies, the probability ranking cannot fully explain the clinical efficacy, and the results need to be interpreted with caution. More high-quality studies are still needed to verify our findings.
Collapse
Affiliation(s)
- Peike Zhou
- Department of Pediatrics, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xiaohui Yu
- Department of Pediatrics, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Tao Song
- Department of Pediatrics, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xiaoli Hou
- Department of Pediatrics, Affiliated ZhongShan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
7
|
Faggian M, Bernabè G, Pauletto A, Loschi F, Tezze C, Merlo R, Merlo L, Sut S, Ferrarese I, Brun P, Castagliuolo I, Peron G, Dall'Acqua S. Nutraceutical formulation for immune system modulation: Active constituents, in vitro antibacterial and immunomodulatory activity, and metabolomics analysis. Phytother Res 2023; 37:5883-5896. [PMID: 37926430 DOI: 10.1002/ptr.7995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 11/07/2023]
Abstract
There is a large demand for nutraceuticals in the market and studies related to their action are needed. In this paper, the antimicrobial activity and the immunomodulatory effect of a nutraceutical formulation containing 14.39% of ascorbic acid, 7.17% of coenzyme Q10, 1.33% of Echinacea polyphenols, 0.99% of pine flavan-3-ols, 0.69% of resveratrol and 0.023% of Echinacea alkylamides were studied using in vitro assays and cell-based metabolomics. Chromatographic analysis allowed us to study the nutraceutical composition. The antibacterial activity was evaluated on S. aureus, K. pneumoniae, P. aeruginosa, E. coli, H. influenzae, S. pyogenes, S. pneumoniae and M. catarrhalis. The immunomodulatory activity was assessed on human macrophages and dendritic cells. The production of IL-1β, IL-12p70, IL-10 and IL-8 was evaluated on culture medium by ELISA and the activation/maturation of dendritic cells with cytofluorimetric analysis. Treated and untreated macrophages and dendritic cell lysates were analysed by liquid chromatography coupled with high-resolution mass spectrometry, and results were compared using multivariate data analysis to identify biological markers related to the treatment with the food supplement. The food supplement decreased K. pneumoniae, P. aeruginosa, E. coli, Methicillin-resistant Staphylococcus aureus (MRSA) and M. catharralis growth, reduced the inflammatory response in macrophages exposed to lipopolysaccharide (LPS) and modulated the activation and maturation of the dendritic cells. Oxidized phospholipids were identified as the main biological markers of treated cell lysates, compared with controls.
Collapse
Affiliation(s)
| | - Giulia Bernabè
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Anthony Pauletto
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Francesca Loschi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Caterina Tezze
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | | | | | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Irene Ferrarese
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Ignazio Castagliuolo
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Microbiology Unit of Padua University Hospital, Padua, Italy
| | - Gregorio Peron
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Dall'Acqua
- Unired srl, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Mu F, Huo H, Wang M, Wang F. Omega-3 fatty acid supplements and recurrent miscarriage: A perspective on potential mechanisms and clinical evidence. Food Sci Nutr 2023; 11:4460-4471. [PMID: 37576058 PMCID: PMC10420786 DOI: 10.1002/fsn3.3464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/07/2023] [Accepted: 05/14/2023] [Indexed: 08/15/2023] Open
Abstract
Recurrent miscarriage (RM) affects approximately 1%-5% of couples worldwide. Due to its complicated etiologies, the treatments for RM also vary greatly, including surgery for anatomic factors such as septate uterus and uterine adhesions, thyroid modulation drugs for hyperthyroidism and hypothyroidism, and aspirin and low molecular weight heparin for antiphospholipid syndrome. However, these treatment modalities are still insufficient to solve RM. Omega-3 fatty acids are reported to modulate the dysregulation of immune cells, oxidative stress, endocrine disorders, inflammation, etc., which are closely associated with the pathogenesis of RM. However, there is a lack of a systematic description of the involvement of omega-3 fatty acids in treating RM, and the underlying mechanisms are also not clear. In this review, we sought to determine the potential mechanisms that are highly associated with the pathogenesis of RM and the regulation of omega-3 fatty acids on these mechanisms. In addition, we also highlighted the direct and indirect clinical evidence of omega-3 fatty acid supplements to treat RM, which might encourage the application of omega-3 fatty acids to treat RM, thus improving pregnancy outcomes.
Collapse
Affiliation(s)
- Fangxiang Mu
- Department of Reproductive MedicineLanzhou University Second HospitalLanzhouChina
| | - Huyan Huo
- Department of Reproductive MedicineLanzhou University Second HospitalLanzhouChina
| | - Mei Wang
- Department of Reproductive MedicineLanzhou University Second HospitalLanzhouChina
| | - Fang Wang
- Department of Reproductive MedicineLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
9
|
Qin M, Chen Q, Li N, Xu X, Wang C, Wang G, Xu Z. Shared gene characteristics and molecular mechanisms of macrophages M1 polarization in calcified aortic valve disease. Front Cardiovasc Med 2023; 9:1058274. [PMID: 36684607 PMCID: PMC9846331 DOI: 10.3389/fcvm.2022.1058274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Background CAVD is a common cardiovascular disease, but currently there is no drug treatment. Therefore, it is urgent to find new and effective drug therapeutic targets. Recent evidence has shown that the infiltration of M1 macrophages increased in the calcified aortic valve tissues, but the mechanism has not been fully elucidated. The purpose of this study was to explore the shared gene characteristics and molecular mechanisms of macrophages M1 polarization in CAVD, in order to provide a theoretical basis for new drugs of CAVD. Methods The mRNA datasets of CAVD and M1 polarization were downloaded from Gene Expression Omnibus (GEO) database. R language, String, and Cytoscape were used to analyze the functions and pathways of DEGs and feature genes. Immunohistochemical staining and Western Blot were performed to verify the selected hub genes. Results CCR7 and GZMB were two genes appeared together in hub genes of M1-polarized and CAVD datasets that might be involved in the process of CAVD and macrophages M1 polarization. CCR7 and CD86 were significantly increased, while CD163 was significantly decreased in the calcified aortic valve tissues. The infiltration of M1 macrophages was increased, on the contrary, the infiltration of M2 macrophages was decreased in the calcified aortic valve tissues. Conclusion This study reveals the shared gene characteristics and molecular mechanisms of CAVD and macrophages M1 polarization. The hub genes and pathways we found may provide new ideas for the mechanisms underlying the occurrence of M1 polarization during CAVD process.
Collapse
Affiliation(s)
- Ming Qin
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qian Chen
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ning Li
- Department of Cardiothoracic Surgery, People’s Liberation Army Navy Medical Center, Naval Medical University, Shanghai, China
| | - Xiangyang Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chuyi Wang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guokun Wang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China,Guokun Wang,
| | - Zhiyun Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Zhiyun Xu,
| |
Collapse
|
10
|
Singer D, Ressel V, Stope MB, Bekeschus S. Heat Shock Protein 27 Affects Myeloid Cell Activation and Interaction with Prostate Cancer Cells. Biomedicines 2022; 10:biomedicines10092192. [PMID: 36140293 PMCID: PMC9496253 DOI: 10.3390/biomedicines10092192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Heat shock proteins are cytoprotective molecules induced by environmental stresses. The small heat shock protein 27 (Hsp27) is highly expressed under oxidative stress conditions, mediating anti-oxidative effects and blocking apoptosis. Since medical gas plasma treatment subjects cancer cells to a multitude of reactive oxygen species (ROS), inducing apoptosis and immunomodulation, probable effects of Hsp27 should be investigated. To this end, we quantified the extracellular Hsp27 in two prostate cancer cell lines (LNCaP, PC-3) after gas plasma-induced oxidative stress, showing a significantly enhanced release. To investigate immunomodulatory effects, two myeloid cell lines (THP-1 and HL-60) were also exposed to Hsp27. Only negligible effects on viability, intracellular oxidative milieu, and secretion profiles of the myeloid cells were found when cultured alone. Interestingly, prostate cancer-myeloid cell co-cultures showed altered secretion profiles with a significant decrease in vascular endothelial growth factor (VEGF) release. Furthermore, the myeloid surface marker profiles were changed, indicating an enhanced differentiation in co-culture upon Hsp27 treatment. Finally, we investigated morphological changes, proliferation, and interaction with prostate cancer cells, and found significant alterations in the myeloid cells, supporting the tendency to differentiate. Collectively, our results suggest an ambiguous effect of Hsp27 on myeloid cells in the presence of prostate cancer cells which needs to be further investigated.
Collapse
Affiliation(s)
- Debora Singer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Verena Ressel
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic for Urology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Correspondence:
| |
Collapse
|