1
|
Jabloñski M, Rodríguez MS, Rivero EM, Bruque CD, Vanzulli S, Bruzzone A, Pérez Piñero C, Lüthy IA. The Beta2-adrenergic agonist salbutamol synergizes with paclitaxel on cell proliferation and tumor growth in triple negative breast cancer models. Cancer Chemother Pharmacol 2023; 92:485-499. [PMID: 37725114 DOI: 10.1007/s00280-023-04586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Globally breast cancer accounts for 24.5% in incidence and 15.5% in cancer deaths in women. The triple-negative subtype lacks any specific therapy and is treated with chemotherapy, resulting in significant side-effects. We aimed to investigate if the dose of chemotherapeutic drugs could be diminished by co-administering it with the β2-agonist salbutamol. METHODS Cell proliferation was measured by thymidine incorporation; gene expression, by real-time PCR and protein phosphorylation by WB. Apoptosis was assessed by acridine orange / ethidium bromide and TUNEL tests. Public patient databases were consulted. Cells were inoculated to nude mice and their growth assessed. RESULTS The β2-agonist salbutamol synergizes in MDA-MB-231 cells in vitro with paclitaxel and doxorubicin on cell proliferation through ADRB2 receptors, while the β-blocker propranolol does not. The expression of this receptor was assessed in patient databases and other cell lines. Triple negative samples had the lowest expression. Salbutamol and paclitaxel decreased MDA-MB-231 cell proliferation while their combination further inhibited it. The pathways involved were analyzed. When these cells were inoculated to nude mice, paclitaxel and salbutamol inhibited tumor growth. The combined effect was significantly greater. Paclitaxel increased the expression of MDR1 while salbutamol partially reversed this increase. CONCLUSION While the effect of salbutamol was mainly on cell proliferation, suboptimal concentrations of paclitaxel provoked a very important enhancement of apoptosis. The latter enhanced transporter proteins as MDR1, whose expression were diminished by salbutamol. The expression of ADRB2 should be assessed in the biopsy or tumor to eventually select patients that could benefit from salbutamol repurposing.
Collapse
Affiliation(s)
- Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Sol Rodríguez
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ezequiel Mariano Rivero
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina
- Centre for Genomic Regulation, Barcelona, Spain
| | - Carlos David Bruque
- Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad SAMIC - El Calafate, El Calafate, Argentina
| | | | - Ariana Bruzzone
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-CONICET), Bahía Blanca, Argentina
| | - Cecilia Pérez Piñero
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Isabel Alicia Lüthy
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Obligado 2490, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Diamond A, Goldenberg I, Younis A, Goldenberg I, Sampath R, Kutyifa V, Chen AY, McNitt S, Polonsky B, Steinberg JS, Zareba W, Aktaş MK. Effect of Carvedilol vs Metoprolol on Atrial and Ventricular Arrhythmias Among Implantable Cardioverter-Defibrillator Recipients. JACC Clin Electrophysiol 2023; 9:2122-2131. [PMID: 37656097 DOI: 10.1016/j.jacep.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Both selective and nonselective beta-blockers are used to treat patients with heart failure (HF). However, the data on the association of beta-blocker type with risk of atrial arrhythmia and ventricular arrhythmia (VA) in HF patients with a primary prevention implantable cardioverter-defibrillator (ICD) are limited. OBJECTIVES This study sought to evaluate the effect of metoprolol vs carvedilol on the risk of atrial tachyarrhythmia (ATA) and VA in HF patients with an ICD. METHODS This study pooled primary prevention ICD recipients from 5 landmark ICD trials (MADIT-II, MADIT-CRT, MADIT-RIT, MADIT-RISK, and RAID). Fine and Gray multivariate regression models, stratified by study, were used to evaluate the risk of ATA, inappropriate ICD shocks, and fast VA (defined as ventricular tachycardia ≥200 beats/min or ventricular fibrillation) by beta-blocker type. RESULTS Among 4,194 patients, 2,920 (70%) were prescribed carvedilol and 1,274 (30%) metoprolol. The cumulative incidence of ATA at 3.5 years was 11% in patients treated with carvedilol vs 15% in patients taking metoprolol (P = 0.003). Multivariate analysis showed that carvedilol treatment was associated with a 35% reduction in the risk of ATA (HR: 0.65; 95% CI: 0.53-0.81; P < 0.001) when compared to metoprolol, and with a corresponding 35% reduction in the risk of inappropriate ICD shocks (HR: 0.65; 95% CI: 0.47-0.89; P = 0.008). Carvedilol vs metoprolol was also associated with a 16% reduction in the risk of fast VA. However, these findings did not reach statistical significance (HR: 0.84; 95% CI: 0.70-1.02; P = 0.085). CONCLUSIONS These findings suggests that HF patients with ICDs on carvedilol treatment experience a significantly lower risk of ATA and inappropriate ICD shocks when compared to treatment with metoprolol.
Collapse
Affiliation(s)
- Alexander Diamond
- University of Rochester Medical Center, Clinical Cardiovascular Research Center, Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Ilan Goldenberg
- University of Rochester Medical Center, Clinical Cardiovascular Research Center, Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Arwa Younis
- University of Rochester Medical Center, Clinical Cardiovascular Research Center, Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Ido Goldenberg
- University of Rochester Medical Center, Clinical Cardiovascular Research Center, Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Ramya Sampath
- University of Rochester Medical Center, Clinical Cardiovascular Research Center, Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Valentina Kutyifa
- University of Rochester Medical Center, Clinical Cardiovascular Research Center, Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Anita Y Chen
- University of Rochester Medical Center, Clinical Cardiovascular Research Center, Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Scott McNitt
- University of Rochester Medical Center, Clinical Cardiovascular Research Center, Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Bronislava Polonsky
- University of Rochester Medical Center, Clinical Cardiovascular Research Center, Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jonathan S Steinberg
- University of Rochester Medical Center, Clinical Cardiovascular Research Center, Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Wojciech Zareba
- University of Rochester Medical Center, Clinical Cardiovascular Research Center, Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Mehmet K Aktaş
- University of Rochester Medical Center, Clinical Cardiovascular Research Center, Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA.
| |
Collapse
|
3
|
Tarifa C, Serra SA, Herraiz-Martínez A, Lozano-Velasco E, Benítez R, Aranega A, Franco D, Hove-Madsen L. Pitx2c deficiency confers cellular electrophysiological hallmarks of atrial fibrillation to isolated atrial myocytes. Biomed Pharmacother 2023; 162:114577. [PMID: 37001181 DOI: 10.1016/j.biopha.2023.114577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
AIMS Atrial fibrillation (AF) has been associated with altered expression of the transcription factor Pitx2c and a high incidence of calcium release-induced afterdepolarizations. However, the relationship between Pitx2c expression and defective calcium homeostasis remains unclear and we here aimed to determine how Pitx2c expression affects calcium release from the sarcoplasmic reticulum (SR) and its impact on electrical activity in isolated atrial myocytes. METHODS To address this issue, we applied confocal calcium imaging and patch-clamp techniques to atrial myocytes isolated from a mouse model with conditional atrial-specific deletion of Pitx2c. RESULTS Our findings demonstrate that heterozygous deletion of Pitx2c doubles the calcium spark frequency, increases the frequency of sparks/site 1.5-fold, the calcium spark decay constant from 36 to 42 ms and the wave frequency from none to 3.2 min-1. Additionally, the cell capacitance increased by 30% and both the SR calcium load and the transient inward current (ITI) frequency were doubled. Furthermore, the fraction of cells with spontaneous action potentials increased from none to 44%. These effects of Pitx2c deficiency were comparable in right and left atrial myocytes, and homozygous deletion of Pitx2c did not induce any further effects on sparks, SR calcium load, ITI frequency or spontaneous action potentials. CONCLUSION Our findings demonstrate that heterozygous Pitx2c deletion induces defects in calcium homeostasis and electrical activity that mimic derangements observed in right atrial myocytes from patients with AF and suggest that Pitx2c deficiency confers cellular electrophysiological hallmarks of AF to isolated atrial myocytes.
Collapse
Affiliation(s)
- Carmen Tarifa
- Biomedical Research Institute Barcelona (IIBB-CSIC), Spain; IIB Sant Pau, Barcelona, Spain
| | - Selma A Serra
- Biomedical Research Institute Barcelona (IIBB-CSIC), Spain; IIB Sant Pau, Barcelona, Spain
| | - Adela Herraiz-Martínez
- Biomedical Research Institute Barcelona (IIBB-CSIC), Spain; IIB Sant Pau, Barcelona, Spain
| | | | - Raul Benítez
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaén, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaén, Spain
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona (IIBB-CSIC), Spain; IIB Sant Pau, Barcelona, Spain; CIBERCV, Spain.
| |
Collapse
|
4
|
Serum Catestatin Concentrations Are Increased in Patients with Atrial Fibrillation. J Cardiovasc Dev Dis 2023; 10:jcdd10020085. [PMID: 36826581 PMCID: PMC9965955 DOI: 10.3390/jcdd10020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The autonomic nervous system is crucial in initiating and maintaining atrial fibrillation (AF). Catestatin is a multipurpose peptide that regulates cardiovascular systems and reduces harmful, excessive activity of the sympathetic nervous system by blocking the release of catecholamines. We aimed to determine whether serum catestatin concentrations are associated with AF severity, duration indices, and various clinical and laboratory indicators in these individuals to better define the clinical value of catestatin in patients with AF. The present single center study enrolled 73 participants with AF and 72 healthy age-matched controls. Serum catestatin concentrations were markedly higher in AF patients than controls (14.11 (10.21-26.02) ng/mL vs. 10.93 (5.70-20.01) ng/mL, p = 0.013). Furthermore, patients with a more severe form of AF had significantly higher serum catestatin (17.56 (12.80-40.35) vs. 10.98 (8.38-20.91) ng/mL, p = 0.001). Patients with higher CHA2DS2-VASc scores (17.58 (11.89-37.87) vs. 13.02 (8.47-22.75) ng/mL, p = 0.034) and higher NT-proBNP levels (17.58 (IQR 13.91-34.62) vs. 13.23 (IQR 9.04-22.61), p = 0.036) had significantly higher serum catestatin concentrations. Finally, AF duration correlated negatively with serum catestatin levels (r = -0.348, p = 0.003). The results of the present study implicate the promising role of catestatin in the intricate pathophysiology of AF, which should be explored in future research.
Collapse
|
5
|
Jiménez-Sábado V, Casabella-Ramón S, Llach A, Gich I, Casellas S, Ciruela F, Chen SRW, Guerra JM, Ginel A, Benítez R, Cinca J, Tarifa C, Hove-Madsen L. Beta-blocker treatment of patients with atrial fibrillation attenuates spontaneous calcium release-induced electrical activity. Biomed Pharmacother 2023; 158:114169. [PMID: 36592495 DOI: 10.1016/j.biopha.2022.114169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
AIMS Atrial fibrillation (AF) has been associated with excessive spontaneous calcium release, linked to cyclic AMP (cAMP)-dependent phosphorylation of calcium regulatory proteins. Because β-blockers are expected to attenuate cAMP-dependent signaling, we aimed to examine whether the treatment of patients with β-blockers affected the incidence of spontaneous calcium release events or transient inward currents (ITI). METHODS The impact of treatment with commonly used β-blockers was analyzed in human atrial myocytes from 371 patients using patch-clamp technique, confocal calcium imaging or immunofluorescent labeling. Data were analyzed using multivariate regression analysis taking into account potentially confounding effects of relevant clinical factors RESULTS: The L-type calcium current (ICa) density was diminished significantly in patients with chronic but not paroxysmal AF and the treatment of patients with β-blockers did not affect ICa density in any group. By contrast, the ITI frequency was elevated in patients with either paroxysmal or chronic AF that did not receive treatment, and β-blocker treatment reduced the frequency to levels observed in patients without AF. Confocal calcium imaging showed that β-blocker treatment also reduced the calcium spark frequency in patients with AF to levels observed in those without AF. Furthermore, phosphorylation of the ryanodine receptor (RyR2) at Ser-2808 and phospholamban at Ser-16 was significantly lower in patients with AF that received β-blockers. CONCLUSION Together, our findings demonstrate that β-blocker treatment may be of therapeutic utility to prevent spontaneous calcium release-induced atrial electrical activity; especially in patients with a history of paroxysmal AF displaying preserved ICa density.
Collapse
Affiliation(s)
- Verónica Jiménez-Sábado
- CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Sergi Casabella-Ramón
- IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain; Department of Cell Biology, Physiology and Immunology and Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Llach
- IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ignasi Gich
- IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Casellas
- Servicio de Cirugía Cardíaca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Francisco Ciruela
- Pharmacology Unit, Dept. Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, The Libin Cardiovascular Institute, University of Calgary, Canada
| | - José M Guerra
- CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Servicio de Cardiología and Univ. Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Antonino Ginel
- Servicio de Cirugía Cardíaca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Raúl Benítez
- Dept. d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Univ. Politècnica de Catalunya, Barcelona, Spain
| | - Juan Cinca
- Servicio de Cardiología and Univ. Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Carmen Tarifa
- IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Leif Hove-Madsen
- CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain.
| |
Collapse
|
6
|
Fang C, Zuo K, Jiao K, Zhu X, Fu Y, Zhong J, Xu L, Yang X. PAGln, an Atrial Fibrillation-Linked Gut Microbial Metabolite, Acts as a Promoter of Atrial Myocyte Injury. Biomolecules 2022; 12:biom12081120. [PMID: 36009014 PMCID: PMC9405855 DOI: 10.3390/biom12081120] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
Phenylacetylglutamine (PAGln), a gut microbiota (GM)-derived metabolite, is associated with cardiovascular disease. Studies have shown that disordered GM participated in the progression of atrial fibrillation (AF), but the relationship between PAGln and AF is unclear. This study investigated the characteristics of PAGln in AF patients and its impact on atrial myocytes. Based on our previous metagenomic data, the relative abundance of porA, a critical bacterial enzyme for PAGln synthesis, exhibited an increased tendency in AF. In an independent cohort consisting of 42 controls without AF and 92 AF patients, plasma PAGln levels were higher in AF patients than in controls (p < 0.001) by immunoassay. Notably, PAGln exerted a predictive potential of AF with an AUC of 0.774 (p < 0.001), and a predictive model constructed based on the PAGln and Taiwan AF score further improved the predictive potential. Furthermore, a positive correlation was determined between PAGln and LA diameter. Subsequently, the effect of PAGln intervention was examined on HL-1 cells in vitro, revealing that PAGln increased apoptosis, reactive oxygen species (ROS) production, CaMKII and RyR2 activation and decreased cell viability. In conclusion, increased PAGln was associated with AF, and PAGln might contribute to the AF pathogenesis by promoting oxidative stress and apoptosis in atrial myocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Xu
- Correspondence: (L.X.); (X.Y.); Tel.: +86-10-85231937 (X.Y.)
| | - Xinchun Yang
- Correspondence: (L.X.); (X.Y.); Tel.: +86-10-85231937 (X.Y.)
| |
Collapse
|