1
|
Rusak A, Wiatrak B, Krawczyńska K, Górnicki T, Zagórski K, Zadka Ł, Fortuna W. Starting points for the development of new targeted therapies for glioblastoma multiforme. Transl Oncol 2025; 51:102187. [PMID: 39531784 PMCID: PMC11585793 DOI: 10.1016/j.tranon.2024.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and lethal brain tumors, characterized by rapid growth, invasiveness, and resistance to standard therapies, including surgery, chemotherapy, and radiotherapy. Despite advances in treatment, GBM remains highly resistant due to its complex molecular mechanisms, including angiogenesis, invasion, immune modulation, and lipid metabolism dysregulation. This review explores recent breakthroughs in targeted therapies, focusing on innovative drug carriers such as nanoparticles and liposomes, and their potential to overcome GBM's chemo- and radioresistant phenotypes. We also discuss the molecular pathways involved in GBM progression and the latest therapeutic strategies, including immunotherapy and precision medicine approaches, which hold promise for improving clinical outcomes. The review highlights the importance of understanding GBM's genetic and molecular heterogeneity to develop more effective, personalized treatment protocols aimed at increasing survival rates and enhancing the quality of life for GBM patients.
Collapse
Affiliation(s)
- Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, J. Mikulicza-Radeckiego 2 Street, Wroclaw 50-345, Poland.
| | - Klaudia Krawczyńska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland.
| | - Tomasz Górnicki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland
| | - Karol Zagórski
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland
| | - Łukasz Zadka
- Division of Ultrastructural Research, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland; Department of Clinical Pharmacology, Wroclaw Medical University, Borowska 211a, Wroclaw 50-556, Poland.
| | - Wojciech Fortuna
- Department of Neurosurgery, Wroclaw Medical University, Borowska 213St, Wroclaw 50-556, Poland.
| |
Collapse
|
2
|
Alkotub B, Bauer L, Bashiri Dezfouli A, Hachani K, Ntziachristos V, Multhoff G, Kafshgari MH. Radiosensitizing capacity of fenofibrate in glioblastoma cells depends on lipid metabolism. Redox Biol 2024; 79:103452. [PMID: 39667305 DOI: 10.1016/j.redox.2024.103452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024] Open
Abstract
Despite advances in multimodal therapy approaches such as resection, chemotherapy and radiotherapy, the overall survival of patients with grade 4 glioblastoma (GBM) remains extremely poor (average survival time <2 years). Altered lipid metabolism, which increases fatty acid synthesis and thereby contributes to radioresistance in GBM, is a hallmark of cancer. Therefore, we explored the radiosensitizing effect of the clinically approved, lipid-lowering drug fenofibrate (FF) in different GBM cell lines (U87, LN18). Interestingly, FF (50 μM) significantly radiosensitizes U87 cells by inducing DNA double-strand breaks through oxidative stress and impairing mitochondrial membrane integrity, but radioprotects LN18 cells by reducing the production of reactive oxygen species (ROS) and stabilizing the mitochondrial membrane potential. A comparative protein and lipid analysis revealed striking differences in the two GBM cell lines: LN18 cells exhibited a significantly higher membrane expression density of the fatty acid (FA) cluster protein transporter CD36 than U87 cells, a higher expression of glycerol-3-phosphate acyltransferase 4 (GPAT4) which supports the production of large lipid droplets (LDs), and a lower expression of diacylglycerol O-acyltransferase 1 (DGAT1) which regulates the formation of small LDs. Consequently, large LDs are predominantly found in LN18 cells, whereas small LDs are found in U87 cells. After a combined treatment of FF and irradiation, the number of large LDs significantly increased in radioresistant LN18 cells, whereas the number of small LDs decreased in radiosensitive U87 cells. The radioprotective effect of FF in LN18 cells could be associated with the presence of large LDs, which act as a sink for the lipophilic drug FF. To prevent uptake of FF by large LDs and to ameliorate its function as a radiosensitizer, FF was encapsulated in biomimetic cell membrane extracellular lipid vesicles (CmEVs) which alter the intracellular trafficking of the drug. In contrast to the free drug, CmEV-encapsulated FF was predominantly enriched in the lysosomal compartment, causing necrosis by impairing lysosomal membrane integrity. Since the stability of plasma and lysosomal membranes is maintained by the presence of the stress-inducible heat shock protein 70 (Hsp70) which has a strong affinity to tumor-specific glycosphingolipids, necrosis occurs predominantly in LN18 cells having a lower membrane Hsp70 expression density than U87 cells. In summary, our findings indicate that the lipid metabolism of tumor cells can affect the radiosensitizing capacity of FF when encountered either as a free drug or as a drug loaded in biomimetic lipid vesicles.
Collapse
Affiliation(s)
- Bayan Alkotub
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany; Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Lisa Bauer
- Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany; Department of Radiation Oncology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Ali Bashiri Dezfouli
- Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany; Department of Otorhinolaryngology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Khouloud Hachani
- Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany; Department of Otorhinolaryngology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany; Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany; Department of Radiation Oncology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany.
| | - Morteza Hasanzadeh Kafshgari
- Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany; Department of Radiation Oncology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany.
| |
Collapse
|
3
|
Wei T, Li R, Guo S, Liang C. Stigmasterol exerts antiglioma effects by regulating lipid metabolism. Mol Med Rep 2024; 30:227. [PMID: 39364731 PMCID: PMC11484536 DOI: 10.3892/mmr.2024.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Stigmasterol is a sterol compound found in various traditional Chinese medicines; however, its effects on glioma remain unclear. The present study aimed to investigate the effects of stigmasterol on the biological behaviors of glioblastoma (GBM) cells and to explore the underlying mechanisms. In vitro experiments assessed its effects on GBM cell proliferation, apoptosis, cell cycle progression, invasion, migration and vasculogenic mimicry (VM). The potential targets for stigmasterol in treating GBM were identified using databases and Venn diagram analysis, followed by enrichment analysis using R language. A prognostic model related to the target genes of stigmasterol was developed through univariate Cox regression and least absolute shrinkage and selection operator analyses. Stigmasterol was found to suppress the proliferation of GBM cells in a dose‑ and time‑dependent manner, to induce apoptosis, and to inhibit invasion, migration and VM formation. Additionally, 31 potential targets of stigmasterol were identified, linked to lipid metabolism and the G protein‑coupled receptor signaling pathway. Lipid metabolism assays revealed that stigmasterol significantly reduced free fatty acids and total cholesterol levels. Furthermore, two prognosis‑related target genes, fatty acid binding protein 5 and α‑1B adrenergic receptor, were selected, and the prognostic model effectively predicted GBM outcomes. Moreover, molecular docking revealed strong binding affinities between stigmasterol and the target proteins. Overall, these findings suggested that stigmasterol may exert anti‑glioma effects, which could be potentially mediated through the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Ting Wei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ruichun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shiwen Guo
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chen Liang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
4
|
Hallal SM, Sida LA, Tűzesi CÁ, Shivalingam B, Sim H, Buckland ME, Satgunaseelan L, Alexander KL. Size matters: Biomolecular compositions of small and large extracellular vesicles in the urine of glioblastoma patients. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70021. [PMID: 39554867 PMCID: PMC11565258 DOI: 10.1002/jex2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
The promise of urinary extracellular vesicles (uEVs) in biomarker discovery is emerging. However, the characteristics and compositions of different uEV subpopulations across normal physiological and pathological states require rigorous explication. We recently reported proteomic signatures of small (s)-uEVs (<200 nm membranous nanoparticles) and described putative biomarkers corresponding to the diagnosis, tumour burden and recurrence of the lethal adult primary brain tumour, glioblastoma. Here, we comprehensively characterise uEV populations with significantly different mean and mode particle sizes obtained by differential centrifugation at 100,000 × g (100K-uEVs; smaller) and 17,000 × g (17K-uEVs; larger) using Fourier-transform infrared spectroscopy and quantitative data-independent acquisition mass spectrometry. We show distinct differences in protein and lipid content, prominent protein secondary structures, and proteome distributions between uEV populations that can distinguish glioblastoma patients from healthy controls and correspond to clinically relevant tumour changes (i.e., recurrence and treatment resistance). Among the key findings is a putative seven-protein biomarker panel associated with 17K-uEVs that could distinguish all glioblastoma patients from healthy controls and accurately classify 98.2% of glioblastoma samples. These novel, significant findings demonstrate that both uEV populations offer individual and combined biomarker potential. Further research is warranted to elucidate the complete diagnostic, prognostic, and predictive capabilities of often-neglected 17K-uEV populations.
Collapse
Affiliation(s)
- Susannah M. Hallal
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Liam A. Sida
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Csilla Ágota Tűzesi
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Brindha Shivalingam
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Neurosurgery DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia
- Sydney Medical School, Faculty of Medicine and Health SciencesThe University of SydneyCamperdownNSWAustralia
| | - Hao‐Wen Sim
- Department of Medical OncologyChris O'Brien LifehouseCamperdownNSWAustralia
- NHMRC Clinical Trials CentreThe University of SydneyCamperdownNSWAustralia
- Faculty of Medicine and HealthUniversity of New South WalesKensingtonNSWAustralia
| | - Michael E. Buckland
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Laveniya Satgunaseelan
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- Sydney Medical School, Faculty of Medicine and Health SciencesThe University of SydneyCamperdownNSWAustralia
| | - Kimberley L. Alexander
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
5
|
Kaynar A, Kim W, Ceyhan AB, Zhang C, Uhlén M, Turkez H, Shoaie S, Mardinoglu A. Unveiling the Molecular Mechanisms of Glioblastoma through an Integrated Network-Based Approach. Biomedicines 2024; 12:2237. [PMID: 39457550 PMCID: PMC11504402 DOI: 10.3390/biomedicines12102237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Despite current treatments extending the lifespan of Glioblastoma (GBM) patients, the average survival time is around 15-18 months, underscoring the fatality of GBM. This study aims to investigate the impact of sample heterogeneity on gene expression in GBM, identify key metabolic pathways and gene modules, and explore potential therapeutic targets. Methods: In this study, we analysed GBM transcriptome data derived from The Cancer Genome Atlas (TCGA) using genome-scale metabolic models (GEMs) and co-expression networks. We examine transcriptome data incorporating tumour purity scores (TPSs), allowing us to assess the impact of sample heterogeneity on gene expression profiles. We analysed the metabolic profile of GBM by generating condition-specific GEMs based on the TPS group. Results: Our findings revealed that over 90% of genes showing brain and glioma specificity in RNA expression demonstrate a high positive correlation, underscoring their expression is dominated by glioma cells. Conversely, negatively correlated genes are strongly associated with immune responses, indicating a complex interaction between glioma and immune pathways and non-tumorigenic cell dominance on gene expression. TPS-based metabolic profile analysis was supported by reporter metabolite analysis, highlighting several metabolic pathways, including arachidonic acid, kynurenine and NAD pathway. Through co-expression network analysis, we identified modules that significantly overlap with TPS-correlated genes. Notably, SOX11 and GSX1 are upregulated in High TPS, show a high correlation with TPS, and emerged as promising therapeutic targets. Additionally, NCAM1 exhibits a high centrality score within the co-expression module, which shows a positive correlation with TPS. Moreover, LILRB4, an immune-related gene expressed in the brain, showed a negative correlation and upregulated in Low TPS, highlighting the importance of modulating immune responses in the GBM mechanism. Conclusions: Our study uncovers sample heterogeneity's impact on gene expression and the molecular mechanisms driving GBM, and it identifies potential therapeutic targets for developing effective treatments for GBM patients.
Collapse
Affiliation(s)
- Ali Kaynar
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (A.B.C.); (S.S.)
| | - Woonghee Kim
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Atakan Burak Ceyhan
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (A.B.C.); (S.S.)
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Mathias Uhlén
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Hasan Turkez
- Medical Biology Department, Faculty of Medicine, Atatürk University, Erzurum 25240, Türkiye;
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (A.B.C.); (S.S.)
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (A.B.C.); (S.S.)
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| |
Collapse
|
6
|
Liu YA, Aboud O, Dahabiyeh LA, Bloch O, Fiehn O. Metabolomic characterization of human glioblastomas and patient plasma: a pilot study. F1000Res 2024; 13:98. [PMID: 39371551 PMCID: PMC11452765 DOI: 10.12688/f1000research.143642.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/08/2024] Open
Abstract
Background Glioblastoma (GBM) is a clinically challenging primary brain tumor with poor survival outcome despite surgical resection and intensive chemoradiation. The metabolic heterogeneity of GBM can become biomarkers for treatment response, resistance, and outcome prediction. The aim of the study is to investigate metabolic distinctions between primary and recurrent GBM tissue and patient plasma to establish feasibility for metabolic profiling. Methods A single-center cohort study analyzed tissue and blood samples from 15 patients with GBM using untargeted metabolomic/lipidomic assays. Metabolomic, lipidomic, and biogenic amine analyses were conducted on GBM tissue and patient plasma at diagnosis and recurrence using untargeted mass spectrometry. The study utilized a small but longitudinally collected cohort to evaluate alteration in metabolites, lipids, and biogenic amines between specimens at diagnosis and recurrence. Results Exploratory analysis revealed significant alteration in metabolites, lipids, and biogenic amines between diagnostic and recurrent states in both tumor and plasma specimens. Notable metabolites differed at recurrence, including N-alpha-methylhistamine, glycerol-3-phosphate, phosphocholine, and succinic acid in tissue, and indole-3-acetate, and urea in plasma. Principal component analysis revealed distinct metabolomic profiles between tumor tissue and patient plasma. Distinct metabolic profiles were observed in GBM tissue and patient plasma at recurrence, demonstrating the feasibility of using metabolomic methodologies for longitudinal studies. One patient exhibited a unique tumor resistance signature at diagnosis, possibly indicating a high-risk metabolomic phenotype. Conclusions In this small cohort, the findings suggest the potential of metabolomic signatures of GBM tissue and patient plasma for risk stratification, outcome prediction, and the development of novel adjuvant metabolic-targeting therapies. The findings suggest metabolic discrepancies at diagnosis and recurrence in tissue and plasma, highlighting potential implications for evaluation of clinical response. The identification of significant changes in metabolite abundance emphasizes the need for larger studies using targeted metabolomics to validate and further explore these profiles.
Collapse
Affiliation(s)
- Yin Allison Liu
- Department of Opthalmology, University of California Davis, Davis, California, USA
- Department of Neurology, University of California Davis, Davis, California, USA
- Department of Neurosurgery, University of California Davis, Davis, California, USA
| | - Orwa Aboud
- Department of Opthalmology, University of California Davis, Davis, California, USA
- Department of Neurology, University of California Davis, Davis, California, USA
- Department of Neurosurgery, University of California Davis, Davis, California, USA
- Comprehensive Cancer Center, University of California Davis, Davis, California, USA
| | - Lina A. Dahabiyeh
- West Coast Metabolomics Center, University of California Davis, Davis, California, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Amman Governorate, Jordan
| | - Orin Bloch
- Department of Opthalmology, University of California Davis, Davis, California, USA
- Department of Neurosurgery, University of California Davis, Davis, California, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, California, USA
| |
Collapse
|
7
|
Zhong Y, Geng F, Mazik L, Yin X, Becker AP, Mohammed S, Su H, Xing E, Kou Y, Chiang CY, Fan Y, Guo Y, Wang Q, Li PK, Mo X, Lefai E, He L, Cheng X, Zhang X, Chakravarti A, Guo D. Combinatorial targeting of glutamine metabolism and lysosomal-based lipid metabolism effectively suppresses glioblastoma. Cell Rep Med 2024; 5:101706. [PMID: 39236712 PMCID: PMC11524980 DOI: 10.1016/j.xcrm.2024.101706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/07/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024]
Abstract
Antipsychotic drugs have been shown to have antitumor effects but have had limited potency in the clinic. Here, we unveil that pimozide inhibits lysosome hydrolytic function to suppress fatty acid and cholesterol release in glioblastoma (GBM), the most lethal brain tumor. Unexpectedly, GBM develops resistance to pimozide by boosting glutamine consumption and lipogenesis. These elevations are driven by SREBP-1, which we find upregulates the expression of ASCT2, a key glutamine transporter. Glutamine, in turn, intensifies SREBP-1 activation through the release of ammonia, creating a feedforward loop that amplifies both glutamine metabolism and lipid synthesis, leading to drug resistance. Disrupting this loop via pharmacological targeting of ASCT2 or glutaminase, in combination with pimozide, induces remarkable mitochondrial damage and oxidative stress, leading to GBM cell death in vitro and in vivo. Our findings underscore the promising therapeutic potential of effectively targeting GBM by combining glutamine metabolism inhibition with lysosome suppression.
Collapse
Affiliation(s)
- Yaogang Zhong
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, OH 43210, USA; Center for Cancer Metabolism, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Feng Geng
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, OH 43210, USA; Center for Cancer Metabolism, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Logan Mazik
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, OH 43210, USA; Center for Cancer Metabolism, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xinmin Yin
- Department of Chemistry, Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Aline Paixao Becker
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, OH 43210, USA
| | - Shabber Mohammed
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy at The Ohio State University, Columbus, OH 43210, USA
| | - Huali Su
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, OH 43210, USA; Center for Cancer Metabolism, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Enming Xing
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy at The Ohio State University, Columbus, OH 43210, USA
| | - Yongjun Kou
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, OH 43210, USA; Center for Cancer Metabolism, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Cheng-Yao Chiang
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, OH 43210, USA; Center for Cancer Metabolism, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Yunzhou Fan
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, OH 43210, USA; Center for Cancer Metabolism, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Yongchen Guo
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, OH 43210, USA; Center for Cancer Metabolism, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Qiang Wang
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, OH 43210, USA; Center for Cancer Metabolism, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Pui-Kai Li
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy at The Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Center for Biostatistics, Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Etienne Lefai
- Human Nutrition Unit, French National Research Institute for Agriculture, Food and Environment, University Clermont Auvergne, 63122 Clermont-Ferrand, France
| | - Liqing He
- Department of Chemistry, Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy at The Ohio State University, Columbus, OH 43210, USA; Translational Data Analytics Institute at The Ohio State University, Columbus, OH 43210, USA
| | - Xiang Zhang
- Department of Chemistry, Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, OH 43210, USA
| | - Deliang Guo
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, OH 43210, USA; Center for Cancer Metabolism, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Maraqah HH, Aboubechara JP, Abu-Asab MS, Lee HS, Aboud O. Excessive lipid production shapes glioma tumor microenvironment. Ultrastruct Pathol 2024; 48:367-377. [PMID: 39157967 PMCID: PMC11495230 DOI: 10.1080/01913123.2024.2392728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Disrupted lipid metabolism is a characteristic of gliomas. This study utilizes an ultrastructural approach to characterize the prevalence and distribution of lipids within gliomas. This study made use of tissue from IDH1 wild type (IDH1-wt) glioblastoma (n = 18) and IDH1 mutant (IDH1-mt) astrocytoma (n = 12) tumors. We uncover a prevalent and intriguing surplus of lipids. The bulk of the lipids manifested as sizable cytoplasmic inclusions and extracellular deposits in the tumor microenvironment (TME); in some tumors the lipids were stored in the classical membraneless spheroidal lipid droplets (LDs). Frequently, lipids accumulated inside mitochondria, suggesting possible dysfunction of the beta-oxidation pathway. Additionally, the tumor vasculature have lipid deposits in their lumen and vessel walls; this lipid could have shifted in from the tumor microenvironment or have been produced by the vessel-invading tumor cells. Lipid excess in gliomas stems from disrupted beta-oxidation and dysfunctional oxidative phosphorylation pathways. The implications of this lipid-driven environment include structural support for the tumor cells and protection against immune responses, non-lipophilic drugs, and free radicals.
Collapse
Affiliation(s)
- Haitham H Maraqah
- Medicine & Health Science Faculty, School of Meidicine, An-Najah National University, Nablus, Palestine
| | - John Paul Aboubechara
- Department of Neurology, University of California Davis, Sacramento, CA, USA
- Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, USA
| | - Mones S Abu-Asab
- Electron Microscopy Lab, Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Han Sung Lee
- Department of Pathology and Laboratory Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Orwa Aboud
- Department of Neurology, University of California Davis, Sacramento, CA, USA
- Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, USA
- Department of Neurosurgery, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
9
|
Giannoni L, Marradi M, Scibilia K, Ezhov I, Bonaudo C, Artemiou A, Toaha A, Lange F, Caredda C, Montcel B, Della Puppa A, Tachtsidis I, Rückert D, Pavone FS. Transportable hyperspectral imaging setup based on fast, high-density spectral scanning for in situ quantitative biochemical mapping of fresh tissue biopsies. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:093508. [PMID: 39258259 PMCID: PMC11384341 DOI: 10.1117/1.jbo.29.9.093508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
Significance Histopathological examination of surgical biopsies, such as in glioma and glioblastoma resection, is hindered in current clinical practice by the long time required for the laboratory analysis and pathological screening, typically taking several days or even weeks to be completed. Aim We propose here a transportable, high-density, spectral scanning-based hyperspectral imaging (HSI) setup, named HyperProbe1, that can provide in situ, fast biochemical analysis, and mapping of fresh surgical tissue samples, right after excision, and without the need for fixing, staining nor compromising the integrity of the tissue properties. Approach HyperProbe1 is based on spectral scanning via supercontinuum laser illumination filtered with acousto-optic tunable filters. Such methodology allows the user to select any number and type of wavelength bands in the visible and near-infrared range between 510 and 900 nm (up to a maximum of 79) and to reconstruct 3D hypercubes composed of high-resolution (4 to 5 μ m ), widefield images ( 0.9 × 0.9 mm 2 ) of the surgical samples, where each pixel is associated with a complete spectrum. Results The HyperProbe1 setup is here presented and characterized. The system is applied to 11 fresh surgical biopsies of glioma from routine patients, including different grades of tumor classification. Quantitative analysis of the composition of the tissue is performed via fast spectral unmixing to reconstruct the mapping of major biomarkers, such as oxy-(HbO 2 ) and deoxyhemoglobin (HHb), as well as cytochrome-c-oxidase (CCO). We also provided a preliminary attempt to infer tumor classification based on differences in composition in the samples, suggesting the possibility of using lipid content and differential CCO concentrations to distinguish between lower and higher-grade gliomas. Conclusions A proof of concept of the performances of HyperProbe1 for quantitative, biochemical mapping of surgical biopsies is demonstrated, paving the way for improving current post-surgical, histopathological practice via non-destructive, in situ streamlined screening of fresh tissue samples in a matter of minutes after excision.
Collapse
Affiliation(s)
- Luca Giannoni
- University of Florence, Department
of Physics and Astronomy, Florence, Italy
- European Laboratory for Non-Linear
Spectroscopy, Sesto Fiorentino, Italy
| | - Marta Marradi
- University of Florence, Department
of Physics and Astronomy, Florence, Italy
- European Laboratory for Non-Linear
Spectroscopy, Sesto Fiorentino, Italy
| | - Kevin Scibilia
- Technical University of Munich,
TranslaTUM - Center for Translational Cancer Research, Munich,
Germany
| | - Ivan Ezhov
- Technical University of Munich,
TranslaTUM - Center for Translational Cancer Research, Munich,
Germany
| | - Camilla Bonaudo
- Azienda Ospedaliero-Universitaria
Careggi, University of Florence, Neurosurgery, Department of Neuroscience,
Psychology, Pharmacology and Child Health, Florence, Italy
| | - Angelos Artemiou
- University College London,
Department of Medical Physics and Biomedical Engineering, London, United
Kingdom
| | - Anam Toaha
- University of Florence, Department
of Physics and Astronomy, Florence, Italy
- European Laboratory for Non-Linear
Spectroscopy, Sesto Fiorentino, Italy
| | - Frédéric Lange
- University College London,
Department of Medical Physics and Biomedical Engineering, London, United
Kingdom
| | - Charly Caredda
- Université de Lyon,
INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm,
CREATIS UMR 5220, Lyon, France
| | - Bruno Montcel
- Université de Lyon,
INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm,
CREATIS UMR 5220, Lyon, France
| | - Alessandro Della Puppa
- Azienda Ospedaliero-Universitaria
Careggi, University of Florence, Neurosurgery, Department of Neuroscience,
Psychology, Pharmacology and Child Health, Florence, Italy
| | - Ilias Tachtsidis
- University College London,
Department of Medical Physics and Biomedical Engineering, London, United
Kingdom
| | - Daniel Rückert
- Technical University of Munich,
TranslaTUM - Center for Translational Cancer Research, Munich,
Germany
- Imperial College London,
Department of Computing, London, United Kingdom
| | - Francesco Saverio Pavone
- University of Florence, Department
of Physics and Astronomy, Florence, Italy
- European Laboratory for Non-Linear
Spectroscopy, Sesto Fiorentino, Italy
- National Research Council,
National Institute of Optics, Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Cao LQ, Xie Y, Fleishman JS, Liu X, Chen ZS. Hepatocellular carcinoma and lipid metabolism: Novel targets and therapeutic strategies. Cancer Lett 2024; 597:217061. [PMID: 38876384 DOI: 10.1016/j.canlet.2024.217061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is an increasingly prevalent disease that is associated with high and continually rising mortality rates. Lipid metabolism holds a crucial role in the pathogenesis of HCC, in which abnormalities pertaining to the delicate balance of lipid synthesis, breakdown, and storage, predispose for the pathogenesis of the nonalcoholic fatty liver disease (NAFLD), a disease precursor to HCC. If caught early enough, HCC treatment may be curative. In later stages, treatment is only halting the inevitable outcome of death, boldly prompting for novel drug discovery to provide a fighting chance for this patient population. In this review, we begin by providing a summary of current local and systemic treatments against HCC. From such we discuss hepatic lipid metabolism and highlight novel targets that are ripe for anti-cancer drug discovery. Lastly, we provide a targeted summary of current known risk factors for HCC pathogenesis, providing key insights that will be essential for rationalizing future development of anti-HCC therapeutics.
Collapse
Affiliation(s)
- Lu-Qi Cao
- Institute for Biotechnology, St. John's University, New York, NY, 11439, USA; College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Yuhao Xie
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Xuan Liu
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518034, China.
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John's University, New York, NY, 11439, USA; College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA.
| |
Collapse
|
11
|
Tang Y, Chu C, Bu S, Sun Q, Liu A, Xie J, Qiao S, Huang L, Wang H. Integrated multi-omics profiling landscape of organising pneumonia. Clin Transl Med 2024; 14:e1782. [PMID: 39083563 PMCID: PMC11290555 DOI: 10.1002/ctm2.1782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Organising pneumonia (OP) is one of the most common and lethal diseases in the category of interstitial pneumonia, along with lung cancer. Reprogramming of lipid metabolism is a newly recognized hallmark of many diseases including cancer, cardiovascular disorders, as well as liver fibrosis and sclerosis. Increased levels of ceramides composed of sphingosine and fatty acid, are implicated in the development of both acute and chronic lung diseases. However, their pathophysiological significance in OP is unclear. The aim of this study was to investigate the role of lipid metabolism reprogramming in OP, focusing on inflammation and fibrosis. METHODS Comprehensive multi-omics profiling approaches, including single-cell RNA sequencing, Visium CytAssist spatial transcriptomics, proteomics, metabolomics and mass spectrometry, were employed to analyze the tissues. OP mice model was utilized and molecular mechanisms were investigated in macrophages. RESULTS The results revealed a significant association between OP and lipid metabolism reprogramming, characterized by an abnormal expression of several genes related to lipid metabolism, including CD36, SCD1, and CES1 mainly in macrophages. CD36 deficiency in alveolar macrophages, led to an increased expression of C16/24 ceramides that accumulated in mitochondria, resulting in mitophagy or mitochondrial dysfunction. The number of alveolar macrophages in OP was significantly reduced, which was probably due to the ferroptosis signaling pathway involving GSH/SLC3A2/GPX4 through CD36 downregulation in OP. Furthermore, macrophage secretion of DPP7 and FABP4 influenced epithelial cell fibrosis. CONCLUSIONS CD36 inhibited the ferroptosis pathway involving SLC3A2/GPX4 in alveolar macrophages of OP tissue by regulating lipid metabolism, thus representing a new anti-ferroptosis and anti-fibrosis effect of CD36 mediated, at least in part, by ceramides. HIGHLIGHTS Our findings reveal a significant association between organising pneumonia and lipid metabolism reprogramming and will make a substantial contribution to the understanding of the mechanism of organising pneumonia in patients.
Collapse
Affiliation(s)
- Ying Tang
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Cuilin Chu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Siyuan Bu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
- Shaanxi University of Chinese MedicineXianyangChina
| | - Qin Sun
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Airan Liu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Sen Qiao
- Assisted Reproduction CenterNorthwest Women's and Children's HospitalXi'anChina
| | - Lingyan Huang
- Department of PathologicalGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Hongmei Wang
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
- Shaanxi University of Chinese MedicineXianyangChina
| |
Collapse
|
12
|
White J, White MPJ, Wickremesekera A, Peng L, Gray C. The tumour microenvironment, treatment resistance and recurrence in glioblastoma. J Transl Med 2024; 22:540. [PMID: 38844944 PMCID: PMC11155041 DOI: 10.1186/s12967-024-05301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024] Open
Abstract
The adaptability of glioblastoma (GBM) cells, encouraged by complex interactions with the tumour microenvironment (TME), currently renders GBM an incurable cancer. Despite intensive research, with many clinical trials, GBM patients rely on standard treatments including surgery followed by radiation and chemotherapy, which have been observed to induce a more aggressive phenotype in recurrent tumours. This failure to improve treatments is undoubtedly a result of insufficient models which fail to incorporate components of the human brain TME. Research has increasingly uncovered mechanisms of tumour-TME interactions that correlate to worsened patient prognoses, including tumour-associated astrocyte mitochondrial transfer, neuronal circuit remodelling and immunosuppression. This tumour hijacked TME is highly implicated in driving therapy resistance, with further alterations within the TME and tumour resulting from therapy exposure inducing increased tumour growth and invasion. Recent developments improving organoid models, including aspects of the TME, are paving an exciting future for the research and drug development for GBM, with the hopes of improving patient survival growing closer. This review focuses on GBMs interactions with the TME and their effect on tumour pathology and treatment efficiency, with a look at challenges GBM models face in sufficiently recapitulating this complex and highly adaptive cancer.
Collapse
Affiliation(s)
- Jasmine White
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand
| | | | - Agadha Wickremesekera
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Department of Neurosurgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Lifeng Peng
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand.
| | - Clint Gray
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand.
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand.
| |
Collapse
|
13
|
Fan Y, Zhang R, Wang C, Pan M, Geng F, Zhong Y, Su H, Kou Y, Mo X, Lefai E, Han X, Chakravarti A, Guo D. STAT3 activation of SCAP-SREBP-1 signaling upregulates fatty acid synthesis to promote tumor growth. J Biol Chem 2024; 300:107351. [PMID: 38718868 PMCID: PMC11176798 DOI: 10.1016/j.jbc.2024.107351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
SCAP plays a central role in controlling lipid homeostasis by activating SREBP-1, a master transcription factor in controlling fatty acid (FA) synthesis. However, how SCAP expression is regulated in human cancer cells remains unknown. Here, we revealed that STAT3 binds to the promoter of SCAP to activate its expression across multiple cancer cell types. Moreover, we identified that STAT3 also concurrently interacts with the promoter of SREBF1 gene (encoding SREBP-1), amplifying its expression. This dual action by STAT3 collaboratively heightens FA synthesis. Pharmacological inhibition of STAT3 significantly reduces the levels of unsaturated FAs and phospholipids bearing unsaturated FA chains by reducing the SCAP-SREBP-1 signaling axis and its downstream effector SCD1. Examination of clinical samples from patients with glioblastoma, the most lethal brain tumor, demonstrates a substantial co-expression of STAT3, SCAP, SREBP-1, and SCD1. These findings unveil STAT3 directly regulates the expression of SCAP and SREBP-1 to promote FA synthesis, ultimately fueling tumor progression.
Collapse
Affiliation(s)
- Yunzhou Fan
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA; Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA
| | - Rui Zhang
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA
| | - Chao Wang
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Feng Geng
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA; Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA
| | - Yaogang Zhong
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA; Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA
| | - Huali Su
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA; Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA
| | - Yongjun Kou
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA; Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA
| | - Xiaokui Mo
- Biostatistic Center and Department of Bioinformatics, College of Medicine at The Ohio State University, Columbus, Ohio, USA
| | - Etienne Lefai
- Human Nutrition Unit, French National Research Institute for Agriculture, Food and Environment, University Clermont Auvergne, Clermont-Ferrand, France
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA
| | - Deliang Guo
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA; Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
14
|
Son SM, Lee HS, Kim J, Kwon RJ. Expression and prognostic significance of microsomal triglyceride transfer protein in brain tumors: a retrospective cohort study. Transl Cancer Res 2024; 13:2282-2294. [PMID: 38881934 PMCID: PMC11170499 DOI: 10.21037/tcr-23-2286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/10/2024] [Indexed: 06/18/2024]
Abstract
Background Glioblastoma (GBM) is the most common malignant brain tumor and has poor survival. An elevated cholesterol level is involved occurrence and progression of brain tumors. Microsomal triglyceride transfer protein (MTTP) is a target for lowering lipids, and its inhibition helps to improve hyperlipidemia. However, whether the altered expression of MTTP affects the development and prognosis of brain tumors is currently unidentified. The purpose of this study is to determine MTTP as a prognostic marker for brain tumors. Methods Data for patients with brain cancers and control brain tissue were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The datasets were analyzed using Mann-Whitney U-test or t-test to compare the expression of MTTP in normal and brain tumor tissues. To examine whether MTTP affected the prognosis of patients with brain tumors, log-rank test and multivariable Cox proportional hazard regression were conducted. Results The expression of MTTP was significantly upregulated in brain tumors and was correlated with age, tumor stage, and isocitrate dehydrogenase (IDH) mutation. Importantly, increased MTTP expression in brain tumors is associated with poor patient survival. Conclusions High MTTP expression is associated with brain tumor development, tumor stage, and prognosis. Therefore, MTTP is an independent prognostic indicator for brain tumors, which can serve as one of the possible targets for adjuvant treatment of GBM.
Collapse
Affiliation(s)
- Soo Min Son
- Family Medicine Clinic and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
- Department of Family Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Hye Sun Lee
- Family Medicine Clinic and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jeongsu Kim
- Division of Cardiology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
- Division of Cardiology, Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Ryuk Jun Kwon
- Family Medicine Clinic and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
- Department of Family Medicine, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
15
|
Šofranko J, Gondáš E, Murín R. Application of the Hydrophilic Interaction Liquid Chromatography (HILIC-MS) Novel Protocol to Study the Metabolic Heterogeneity of Glioblastoma Cells. Metabolites 2024; 14:297. [PMID: 38921432 PMCID: PMC11205371 DOI: 10.3390/metabo14060297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Glioblastoma is a highly malignant brain tumor consisting of a heterogeneous cellular population. The transformed metabolism of glioblastoma cells supports their growth and division on the background of their milieu. One might hypothesize that the transformed metabolism of a primary glioblastoma could be well adapted to limitations in the variety and number of substrates imported into the brain parenchyma and present it their microenvironment. Additionally, the phenotypic heterogeneity of cancer cells could promote the variations among their metabolic capabilities regarding the utilization of available substrates and release of metabolic intermediates. With the aim to identify the putative metabolic footprint of different types of glioblastoma cells, we exploited the possibility for separation of polar and ionic molecules present in culture media or cell lysates by hydrophilic interaction liquid chromatography (HILIC). The mass spectrometry (MS) was then used to identify and quantify the eluted compounds. The introduced method allows the detection and quantification of more than 150 polar and ionic metabolites in a single run, which may be present either in culture media or cell lysates and provide data for polaromic studies within metabolomics. The method was applied to analyze the culture media and cell lysates derived from two types of glioblastoma cells, T98G and U118. The analysis revealed that even both types of glioblastoma cells share several common metabolic aspects, and they also exhibit differences in their metabolic capability. This finding agrees with the hypothesis about metabolic heterogeneity of glioblastoma cells. Furthermore, the combination of both analytical methods, HILIC-MS, provides a valuable tool for metabolomic studies based on the simultaneous identification and quantification of a wide range of polar and ionic metabolites-polaromics.
Collapse
Affiliation(s)
- Jakub Šofranko
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 036 01 Martin, Slovakia
| | - Eduard Gondáš
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 036 01 Martin, Slovakia
| | - Radovan Murín
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 036 01 Martin, Slovakia
| |
Collapse
|
16
|
Tamas C, Tamas F, Kovecsi A, Cehan A, Balasa A. Metabolic Contrasts: Fatty Acid Oxidation and Ketone Bodies in Healthy Brains vs. Glioblastoma Multiforme. Int J Mol Sci 2024; 25:5482. [PMID: 38791520 PMCID: PMC11122426 DOI: 10.3390/ijms25105482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The metabolism of glucose and lipids plays a crucial role in the normal homeostasis of the body. Although glucose is the main energy substrate, in its absence, lipid metabolism becomes the primary source of energy. The main means of fatty acid oxidation (FAO) takes place in the mitochondrial matrix through β-oxidation. Glioblastoma (GBM) is the most common form of primary malignant brain tumor (45.6%), with an incidence of 3.1 per 100,000. The metabolic changes found in GBM cells and in the surrounding microenvironment are associated with proliferation, migration, and resistance to treatment. Tumor cells show a remodeling of metabolism with the use of glycolysis at the expense of oxidative phosphorylation (OXPHOS), known as the Warburg effect. Specialized fatty acids (FAs) transporters such as FAT, FABP, or FATP from the tumor microenvironment are overexpressed in GBM and contribute to the absorption and storage of an increased amount of lipids that will provide sufficient energy used for tumor growth and invasion. This review provides an overview of the key enzymes, transporters, and main regulatory pathways of FAs and ketone bodies (KBs) in normal versus GBM cells, highlighting the need to develop new therapeutic strategies to improve treatment efficacy in patients with GBM.
Collapse
Affiliation(s)
- Corina Tamas
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Flaviu Tamas
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Attila Kovecsi
- Department of Morphopathology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Morphopathology, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
| | - Alina Cehan
- Department of Plastic, Esthetics and Reconstructive Surgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
| | - Adrian Balasa
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| |
Collapse
|
17
|
Cui Y, Man S, Tao J, Liu Y, Ma L, Guo L, Huang L, Liu C, Gao W. The lipid droplet in cancer: From being a tumor-supporting hallmark to clinical therapy. Acta Physiol (Oxf) 2024; 240:e14087. [PMID: 38247395 DOI: 10.1111/apha.14087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/18/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Abnormal lipid metabolism, one of the hallmarks in cancer, has gradually emerged as a novel target for cancer treatment. As organelles that store and release excess lipids, lipid droplets (LDs) resemble "gears" and facilitate cancer development in the body. AIM This review discusses the life cycle of LDs, the relationship between abnormal LDs and cancer hallmarks, and the application of LDs in theragnostic and clinical contexts to provide a contemporary understanding of the role of LDs in cancer. METHODS A systematic literature search was conducted in PubMed and SPORTDiscus. Retrieve and summarize clinical trials of drugs that target proteins associated with LD formation using the Clinical Trials website. Create a schematic diagram of lipid droplets in the tumor microenvironment using Adobe Illustrator. CONCLUSION As one of the top ten hallmarks of cancer, abnormal lipid metabolism caused by excessive generation of LDs interrelates with other hallmarks. The crosstalk between excessive LDs and intracellular free fatty acids (FFAs) promotes an inflammatory environment that supports tumor growth. Moreover, LDs contribute to cancer metastasis and cell death resistance in vivo. Statins, as HMGCR inhibitors, are promising to be the pioneering commercially available anti-cancer drugs that target LD formation.
Collapse
Affiliation(s)
- Yingfang Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jiejing Tao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changxiao Liu
- State Key Laboratory of Drug Release Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Co and Ltd., Tianjin, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
18
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
19
|
Caridi M, Alborghetti M, Pellicelli V, Orlando R, Pontieri FE, Battaglia G, Arcella A. Metabotropic Glutamate Receptors Type 3 and 5 Feature the "NeuroTransmitter-type" of Glioblastoma: A Bioinformatic Approach. Curr Neuropharmacol 2024; 22:1923-1939. [PMID: 38509672 PMCID: PMC11284726 DOI: 10.2174/1570159x22666240320112926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) represents an aggressive and common tumor of the central nervous system. The prognosis of GBM is poor, and despite a refined genetic and molecular characterization, pharmacological treatment is largely suboptimal. OBJECTIVE Contribute to defining a therapeutic line in GBM targeting the mGlu3 receptor in line with the principles of precision medicine. METHODS Here, we performed a computational analysis focused on the expression of type 3 and 5 metabotropic glutamate receptor subtypes (mGlu3 and mGlu5, respectively) in high- and low-grade gliomas. RESULTS The analysis allowed the identification of a particular high-grade glioma type, characterized by a high expression level of both receptor subtypes and by other markers of excitatory and inhibitory neurotransmission. This so-called neurotransmitter-GBM (NT-GBM) also shows a distinct immunological, metabolic, and vascularization gene signature. CONCLUSION Our findings might lay the groundwork for a targeted therapy to be specifically applied to this putative novel type of GBM.
Collapse
Affiliation(s)
- Matteo Caridi
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Marika Alborghetti
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | | | - Rosamaria Orlando
- Department of Physiology and Pharmacology, University Sapienza of Roma, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Francesco Ernesto Pontieri
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Battaglia
- Department of Physiology and Pharmacology, University Sapienza of Roma, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | | |
Collapse
|
20
|
Maraqah H, Aboubechara JP, Abu-Asab M, Lee HS, Aboud O. Excessive Lipid Production Shapes Glioma Tumor Microenvironment. RESEARCH SQUARE 2023:rs.3.rs-3694185. [PMID: 38168422 PMCID: PMC10760230 DOI: 10.21203/rs.3.rs-3694185/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Disrupted lipid metabolism is a characteristic of gliomas. This study utilizes an ultrastructural approach to characterize the prevalence and distribution of lipids within gliomas. This study made use of tissue from IDH1 wild type (IDH1-wt) glioblastoma (n = 18) and IDH1 mutant (IDH1-mt) astrocytoma (n = 12) tumors. We uncover a prevalent and intriguing surplus of lipids. The bulk of the lipids manifested as sizable cytoplasmic inclusions and extracellular deposits in the tumor microenvironment (TME); in some tumors the lipids were stored in the classical membraneless spheroidal lipid droplets (LDs). Frequently, lipids accumulated inside mitochondria, suggesting possible dysfunction of the beta-oxidation pathway. Additionally, the tumor vasculature have lipid deposits in their lumen and vessel walls; this lipid could have shifted in from the tumor microenvironment or have been produced by the vessel-invading tumor cells. Lipid excess in gliomas stems from disrupted beta-oxidation and dysfunctional oxidative phosphorylation pathways. The implications of this lipid-driven environment include structural support for the tumor cells and protection against immune responses, non-lipophilic drugs, and free radicals.
Collapse
|
21
|
Gareev I, Beylerli O, Tamrazov R, Ilyasova T, Shumadalova A, Du W, Yang B. Methods of miRNA delivery and possibilities of their application in neuro-oncology. Noncoding RNA Res 2023; 8:661-674. [PMID: 37860265 PMCID: PMC10582311 DOI: 10.1016/j.ncrna.2023.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
In the current phase of medical progress, practical neuro-oncology faces critical challenges. These include the quest for and development of innovative methodological approaches, as well as the enhancement of conventional therapies to boost their efficacy in treating brain tumors, especially the malignant varieties. Recent strides in molecular and cellular biology, molecular genetics, and immunology have charted the primary research pathways in the development of new anti-cancer medications, with a particular focus on microRNA (miRNA)-based therapy. MiRNAs possess the ability to function as suppressors of tumor growth while also having the potential to act as oncogenes. MiRNAs wield control over numerous processes within the human body, encompassing tumor growth, proliferation, invasion, metastasis, apoptosis, angiogenesis, and immune responses. A significant impediment to enhancing the efficacy of brain tumor treatment lies in the unresolved challenge of traversing the blood-brain barrier (BBB) and blood-tumor barrier (BTB) to deliver therapeutic agents directly to the tumor tissue. Presently, there is a worldwide effort to conduct intricate research and design endeavors aimed at creating miRNA-based dosage forms and delivery systems that can effectively target various structures within the central nervous system (CNS). MiRNA-based therapy stands out as one of the most promising domains in neuro-oncology. Hence, the development of efficient and safe methods for delivering miRNA agents to the specific target cells within brain tumors is of paramount importance. In this study, we will delve into recent findings regarding various methods for delivering miRNA agents to brain tumor cells. We will explore the advantages and disadvantages of different delivery systems and consider some clinical aspects of miRNA-based therapy for brain tumors.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, 150067, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, PR China
| | - Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin street, 450008, Russia
| | - Rasim Tamrazov
- Department of Oncology, Radiology and Radiotherapy, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin street, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin street, 450008, Russia
| | - Weijie Du
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, 150067, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, PR China
| | - Baofeng Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, 150067, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, PR China
| |
Collapse
|
22
|
Wang M, Wang W, You S, Hou Z, Ji M, Xue N, Du T, Chen X, Jin J. ACAT1 deficiency in myeloid cells promotes glioblastoma progression by enhancing the accumulation of myeloid-derived suppressor cells. Acta Pharm Sin B 2023; 13:4733-4747. [PMID: 38045043 PMCID: PMC10692383 DOI: 10.1016/j.apsb.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 08/09/2023] [Indexed: 12/05/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal brain tumor with an immunosuppressive tumor microenvironment (TME). In this environment, myeloid cells, such as myeloid-derived suppressor cells (MDSCs), play a pivotal role in suppressing antitumor immunity. Lipometabolism is closely related to the function of myeloid cells. Here, our study reports that acetyl-CoA acetyltransferase 1 (ACAT1), the key enzyme of fatty acid oxidation (FAO) and ketogenesis, is significantly downregulated in the MDSCs infiltrated in GBM patients. To investigate the effects of ACAT1 on myeloid cells, we generated mice with myeloid-specific (LyzM-cre) depletion of ACAT1. The results show that these mice exhibited a remarkable accumulation of MDSCs and increased tumor progression both ectopically and orthotopically. The mechanism behind this effect is elevated secretion of C-X-C motif ligand 1 (CXCL1) of macrophages (Mφ). Overall, our findings demonstrate that ACAT1 could serve as a promising drug target for GBM by regulating the function of MDSCs in the TME.
Collapse
Affiliation(s)
- Mingjin Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Weida Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shen You
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhenyan Hou
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nina Xue
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tingting Du
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Jin
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
23
|
Li Y, Karin M, Prochownik EV. Cholesterol esterification and p53-mediated tumor suppression. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1122-1127. [PMID: 38023993 PMCID: PMC10651352 DOI: 10.37349/etat.2023.00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
Many human cancers carry missense mutations in or deletions of the tumor protein 53 (TP53) tumor suppressor gene. TP53's product, p53 regulates many biological processes, including cell metabolism. Cholesterol is a key lipid needed for the maintenance of membrane function and tissue homeostasis while also serving as a precursor for steroid hormone and bile acid synthesis. An over-abundance of cholesterol can lead to its esterification and storage as cholesterol esters. The recent study has shown that the loss of p53 leads to excessive cholesterol ester biosynthesis, which promotes hepatocellular carcinoma in mice. Blocking cholesterol esterification improves treatment outcomes, particularly for liver cancers with p53 deletions/mutations that originate in a background of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China
- Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Michael Karin
- Department of Pharmacology, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Edward V. Prochownik
- Division of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, The Department of Microbiology and Molecular Genetics, The Pittsburgh Liver Research Center and The Hillman Cancer Center of UPMC, The University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| |
Collapse
|
24
|
Alrosan AZ, Heilat GB, Al Subeh ZY, Alrosan K, Alrousan AF, Abu-Safieh AK, Alabdallat NS. The effects of statin therapy on brain tumors, particularly glioma: a review. Anticancer Drugs 2023; 34:985-994. [PMID: 37466094 PMCID: PMC10501357 DOI: 10.1097/cad.0000000000001533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/21/2023] [Indexed: 07/20/2023]
Abstract
Brain tumors account for less than 2% of all malignancies. However, they are associated with the highest morbidity and mortality rates among all solid tumors. The most common malignant primary brain tumors are glioma or glioblastoma (GBM), which have a median survival time of about 14 months, often suffer from recurrence after a few months following treatment, and pose a therapeutic challenge. Despite recent therapeutic advances, the prognosis for glioma patients is poor when treated with modern therapies, including chemotherapy, surgery, radiation, or a combination of these. Therefore, discovering a new target to treat brain tumors, particularly glioma, might be advantageous in raising progression-free survival and overall survival (OS) rates. Statins, also known as competitive HMG-CoA reductase inhibitors, are effective medications for reducing cholesterol and cardiovascular risk. The use of statins prior to and during other cancer treatments appears to enhance patient outcomes according to preclinical studies. After surgical resection followed by concurrent radiation and treatment, OS for patients with GBM is only about a year. Statins have recently emerged as potential adjuvant medications for treating GBM due to their ability to inhibit cell growth, survival, migration, metastasis, inflammation, angiogenesis, and increase apoptosis in-vitro and in-vivo studies. Whether statins enhance clinical outcomes, such as patient survival in GBM, is still debatable. This study aimed to explore the effects of statin therapy in the context of cancer treatment, with a particular focus on GBM.
Collapse
Affiliation(s)
- Amjad Z. Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa
| | - Ghaith B. Heilat
- Department of General Surgery and Urology, Faculty of Medicine, The Jordan University of Science and Technology
| | - Zeinab Y. Al Subeh
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, The Jordan University of Science and Technology
| | - Khaled Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa
| | - Alaa F. Alrousan
- Doctor of Pharmacy, Faculty of Pharmacy, The Jordan University of Science and Technology, Irbid
| | - Amro K. Abu-Safieh
- Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | | |
Collapse
|
25
|
Ye M, Chen J, Lu F, Zhao M, Wu S, Hu C, Yu P, Kan J, Bai J, Tian Y, Tang Q. Down-regulated FTO and ALKBH5 co-operatively activates FOXO signaling through m6A methylation modification in HK2 mRNA mediated by IGF2BP2 to enhance glycolysis in colorectal cancer. Cell Biosci 2023; 13:148. [PMID: 37580808 PMCID: PMC10424385 DOI: 10.1186/s13578-023-01100-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification is the most abundant reversible methylation modification in eukaryotes, and it is reportedly closely associated with a variety of cancers progression, including colorectal cancer (CRC). This study showed that activated lipid metabolism and glycolysis play vital roles in the occurrence and development of CRC. However, only a few studies have reported the biological mechanisms underlying this connection. METHODS Protein and mRNA levels of FTO and ALKBH5 were measured using western blot and qRT-PCR. The effects of FTO and ALKBH5 on cell proliferation were examined using CCK-8, colony formation, and EdU assays, and the effects on cell migration and invasion were tested using a transwell assay. m6A RNA immunoprecipitation (MeRIP) and RNA-seq was used to explore downstream target gene. RIP was performed to verify the interaction between m6A and HK2. The function of FTO and ALKBH5 in vivo was determined by xenograft in nude mice. RESULTS In this study, FTO and ALKBH5 were significantly down-regulated in CRC patients and cells both in vivo and in vitro in a high-fat environment. Moreover, FTO and ALKBH5 over-expression hampered cell proliferation both in vitro and in vivo. Conversely, FTO and ALKBH5 knockdown accelerated the malignant biological behaviors of CRC cells. The mechanism of action of FTO and ALKBH5 involves joint regulation of HK2, a key enzyme in glycolysis, which was identified by RNA sequencing and MeRIP-seq. Furthermore, reduced expression of FTO and ALKBH5 jointly activated the FOXO signaling pathway, which led to enhanced proliferation ability in CRC cells. IGF2BP2, as a m6A reader, positively regulated HK2 mRNA in m6A dependent manner. Additionally, down-regulation of FTO/ALKBH5 increased METTL3 and decreased METTL14 levels, further promoting CRC progression. CONCLUSION In conclusion, our study revealed the FTO-ALKBH5/IGF2BP2/HK2/FOXO1 axis as a mechanism of aberrant m6A modification and glycolysis regulation in CRC.
Collapse
Affiliation(s)
- Mujie Ye
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, 210029, China
| | - Jinhao Chen
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, 210029, China
| | - Feiyu Lu
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, 210029, China
| | - Minghui Zhao
- Department of Radiation Oncology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Suwen Wu
- Obstetrics and Gynaecology Hospital, Fudan University, Shanghai, China
| | - Chunhua Hu
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, 210029, China
| | - Ping Yu
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, 210029, China
| | - Jingbao Kan
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, 210029, China
| | - Jianan Bai
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, 210029, China
| | - Ye Tian
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, 210029, China.
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, Institute of Neuroendocrine Tumor, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
26
|
Kao TJ, Lin CL, Yang WB, Li HY, Hsu TI. Dysregulated lipid metabolism in TMZ-resistant glioblastoma: pathways, proteins, metabolites and therapeutic opportunities. Lipids Health Dis 2023; 22:114. [PMID: 37537607 PMCID: PMC10398973 DOI: 10.1186/s12944-023-01881-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal brain tumor with limited treatment options, such as the chemotherapeutic agent, temozolomide (TMZ). However, many GBM tumors develop resistance to TMZ, which is a major obstacle to effective therapy. Recently, dysregulated lipid metabolism has emerged as an important factor contributing to TMZ resistance in GBM. The dysregulation of lipid metabolism is a hallmark of cancer and alterations in lipid metabolism have been linked to multiple aspects of tumor biology, including proliferation, migration, and resistance to therapy. In this review, we aimed to summarize current knowledge on lipid metabolism in TMZ-resistant GBM, including key metabolites and proteins involved in lipid synthesis, uptake, and utilization, and recent advances in the application of metabolomics to study lipid metabolism in GBM. We also discussed the potential of lipid metabolism as a target for novel therapeutic interventions. Finally, we highlighted the challenges and opportunities associated with developing these interventions for clinical use, and the need for further research to fully understand the role of lipid metabolism in TMZ resistance in GBM. Our review suggests that targeting dysregulated lipid metabolism may be a promising approach to overcome TMZ resistance and improve outcomes in patients with GBM.
Collapse
Affiliation(s)
- Tzu-Jen Kao
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, 110, Taiwan
| | | | - Wen-Bin Yang
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, 110, Taiwan
| | - Hao-Yi Li
- Department of Biochemistry, Ludwig-Maximilians-University, Munich, 81377, Germany
- Gene Center, Ludwig-Maximilians-University, Munich, 81377, Germany
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, 110, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan.
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
27
|
Geng F, Zhong Y, Su H, Lefai E, Magaki S, Cloughesy TF, Yong WH, Chakravarti A, Guo D. SREBP-1 upregulates lipophagy to maintain cholesterol homeostasis in brain tumor cells. Cell Rep 2023; 42:112790. [PMID: 37436895 PMCID: PMC10528745 DOI: 10.1016/j.celrep.2023.112790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/22/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Cholesterol is a structural component of cell membranes. How rapidly growing tumor cells maintain membrane cholesterol homeostasis is poorly understood. Here, we found that glioblastoma (GBM), the most lethal brain tumor, maintains normal levels of membrane cholesterol but with an abundant presence of cholesteryl esters (CEs) in its lipid droplets (LDs). Mechanistically, SREBP-1 (sterol regulatory element-binding protein 1), a master transcription factor that is activated upon cholesterol depletion, upregulates critical autophagic genes, including ATG9B, ATG4A, and LC3B, as well as lysosome cholesterol transporter NPC2. This upregulation promotes LD lipophagy, resulting in the hydrolysis of CEs and the liberation of cholesterol from the lysosomes, thus maintaining plasma membrane cholesterol homeostasis. When this pathway is blocked, GBM cells become quite sensitive to cholesterol deficiency with poor growth in vitro. Our study unravels an SREBP-1-autophagy-LD-CE hydrolysis pathway that plays an important role in maintaining membrane cholesterol homeostasis while providing a potential therapeutic avenue for GBM.
Collapse
Affiliation(s)
- Feng Geng
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH 43210, USA; Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; College of Medicine at The Ohio State University, Columbus, OH 43210, USA
| | - Yaogang Zhong
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH 43210, USA; Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; College of Medicine at The Ohio State University, Columbus, OH 43210, USA
| | - Huali Su
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH 43210, USA; Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; College of Medicine at The Ohio State University, Columbus, OH 43210, USA
| | - Etienne Lefai
- Human Nutrition Unit, French National Research Institute for Agriculture, Food and Environment, University Clermont Auvergne, 63122 Clermont-Ferrand, France
| | - Shino Magaki
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Timothy F Cloughesy
- Department of Neurology (Neuro-Oncology), David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, USA
| | - William H Yong
- Department of Pathology and Laboratory Medicine, School of Medicine at University of California, Irvine, CA 92617, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH 43210, USA; Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; College of Medicine at The Ohio State University, Columbus, OH 43210, USA
| | - Deliang Guo
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH 43210, USA; Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; College of Medicine at The Ohio State University, Columbus, OH 43210, USA; Center of Cancer Metabolism, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
| |
Collapse
|
28
|
Tu T, Zhang H, Xu H. Targeting sterol-O-acyltransferase 1 to disrupt cholesterol metabolism for cancer therapy. Front Oncol 2023; 13:1197502. [PMID: 37409263 PMCID: PMC10318190 DOI: 10.3389/fonc.2023.1197502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Cholesterol esterification is often dysregulated in cancer. Sterol O-acyl-transferase 1 (SOAT1) plays an important role in maintaining cellular cholesterol homeostasis by catalyzing the formation of cholesterol esters from cholesterol and long-chain fatty acids in cells. Many studies have implicated that SOAT1 plays a vital role in cancer initiation and progression and is an attractive target for novel anticancer therapy. In this review, we provide an overview of the mechanism and regulation of SOAT1 in cancer and summarize the updates of anticancer therapy targeting SOAT1.
Collapse
Affiliation(s)
- Teng Tu
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| | - Huanji Xu
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Liu X, Zhao Z, Sun X, Wang J, Yi W, Wang D, Li Y. Blocking Cholesterol Metabolism with Tumor-Penetrable Nanovesicles to Improve Photodynamic Cancer Immunotherapy. SMALL METHODS 2023; 7:e2200898. [PMID: 36307388 DOI: 10.1002/smtd.202200898] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/23/2022] [Indexed: 05/17/2023]
Abstract
Photodynamic therapy (PDT)-mediated cancer immunotherapy is attenuated due to the dysfunction of T cells in immunosuppressive tumor microenvironment (TME). Cholesterol metabolism plays a vital role in T cell signaling and effector. While the metabolic fitness of tumor infiltrating CD8+ T cells is impaired by nutrition restriction in TME and accumulated metabolites by tumor cells. Here a matrix metalloproteinase-2-sensitive tumor-penetrable nanovesicle is designed to regulate cholesterol metabolism pathway for enhancing photodynamic cancer immunotherapy. The nanovesicles accumulate in tumor and release internalizing RGD to promote deep penetration. Released avasimibe from the nanovesicles simultaneously blocks cholesterol metabolism in CD8+ T and tumor cells, thus reinvigorating the functions of T cells and suppressing the migration of tumor cells. Immune responses induced by PDT-triggered immunogenic cell death are further improved with cholesterol metabolism blockage. Compared with PDT alone, the designed nanovesicles display enhanced tumor growth inhibition in B16-F10 mouse tumor model. The approach provides an alternative strategy to improve photodynamic cancer immunotherapy by cholesterol metabolism intervention.
Collapse
Affiliation(s)
- Xiaochen Liu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zitong Zhao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiangshi Sun
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jue Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenzhe Yi
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dangge Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Shandong, 264000, China
| |
Collapse
|
30
|
Yu Z, Zhou Y, Li Y, Dong Z. Integration of clinical and spatial data to explore lipid metabolism-related genes for predicting prognosis and immune microenvironment in gliomas. Funct Integr Genomics 2023; 23:82. [PMID: 36929451 DOI: 10.1007/s10142-023-01010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023]
Abstract
Lipid metabolism is crucial to tumor growth and immune microenvironment as well as drug sensitivity in glioma. Identifying prognostic indicators of glioma and elucidating the mechanisms of glioma progression are critical for improving the prognosis of glioma patients. In this study, we investigated the role and prognostic value of metabolism-related genes in glioma by integrative analysis of datasets from GEO, CGGA, and TCGA. Based on clinical data and transcriptome data, we found that the expression pattern of three major pathways related to lipid metabolism is fatty acidhigh-phospholipidhigh-triglyceridelow, which is associated with better prognosis and immune infiltration. The genes involved in these three pathways were used to generate a prognostic model, which showed high stability and efficiency in the test set and validation set. The spatial transcriptome of glioma patients revealed that the microenvironment of the regions with high expression of risk genes CAV1 and SCD is in a state of hypoxia, EMT, and cell cycle arrest, and thus can be used as markers of metabolic reprogramming in the tumor microenvironment. In the high-risk group, M0 macrophages and M1 macrophages were significantly enriched, and the risk score was significantly correlated with gene mutation and methylation of risk genes. We further performed drug sensitivity screening corresponding to different risk genes. This study provided novel insights into the differential immune microenvironment with different expression patterns of metablism-related genes and highlighted the spatial and temporal synergy of tumor progression and metabolic reprogramming.
Collapse
Affiliation(s)
- Zhangyi Yu
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuneng Zhou
- School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No.206, Guanggu 1St Road, Wuhan, 430205, Hubei, China
| | - Yongxue Li
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Dong
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
31
|
Liu A, Aboud O, Dahabiyeh LA, Bloch O, Fiehn O. A pilot study on metabolomic characterization of human glioblastomas and patient plasma. RESEARCH SQUARE 2023:rs.3.rs-2662020. [PMID: 36945517 PMCID: PMC10029122 DOI: 10.21203/rs.3.rs-2662020/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Purpose To determine whether recurrent GBMs are metabolically distinct from primary GBM, and whether patient plasma can be used as a liquid biopsy to reflect this difference. Methods In a single center cohort study, tissue and blood samples from 15 patients with glioblastoma (9 glioblastoma tissues at diagnosis, 3 pairs of tissue, and 6 pairs of plasma specimens at diagnosis and at recurrence) were analyzed. Results Several metabolites had significant alternations in both tumor and plasma specimens. In the tissue, the following representative metabolites had a significant increase in peak intensity at recurrence compared to diagnosis: N-alpha-methylhistamine (p = 0.037), glycerol-3-phosphate (p = 0.029), phosphocholine (p = 0.045), and succinic acid (p = 0.025). In patient plasma, metabolites that significantly increased at recurrence included: 2,4-difluorotoluene (p = 0.031), diatrizoic acid (p = 0.032), indole-3-acetate with (p = 0.029), urea (P = 0.025), pseudouridine (p = 0.042), and maltose (p = 0.035). Metabolites that significantly decreased in plasma at recurrence were: eicosenoic acid (p = 0.017), glucose-1-phosphate (p = 0.017), FA 18:2 (linoleic acid) (p = 0.017), arginine (p = 0.036), fatty acids 20:3 (homo-gamma-linolenic acid (p = 0.036), galactosamine (p = 0.007), and FA 18:3 (linolenic acid) (P = 0.012). Principal component analysis showed that the metabolomic profiles differ between tumor tissue and patient plasma. Conclusions Our data suggest that metabolomic profiles of human GBM tissue and patient plasma differ at diagnosis and at recurrence. Many metabolites involved in tumorigenesis and metabolomic flexibility were identified. A larger study using targeted metabolomic assay is warranted to measure the levels of these metabolites, which will help identify the metabolomic signatures in both GBM tissue and patient plasma for risk stratification, clinical outcome prediction, and development of new adjuvant metabolomic-targeting therapy.
Collapse
|
32
|
Antibody Profiling and In Silico Functional Analysis of Differentially Reactive Antibody Signatures of Glioblastomas and Meningiomas. Int J Mol Sci 2023; 24:ijms24021411. [PMID: 36674927 PMCID: PMC9866115 DOI: 10.3390/ijms24021411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Studies on tumor-associated antigens in brain tumors are sparse. There is scope for enhancing our understanding of molecular pathology, in order to improve on existing forms, and discover new forms, of treatment, which could be particularly relevant to immuno-oncological strategies. To elucidate immunological differences, and to provide another level of biological information, we performed antibody profiling, based on a high-density protein array (containing 8173 human transcripts), using IgG isolated from the sera of n = 12 preoperative and n = 16 postoperative glioblastomas, n = 26 preoperative and n = 29 postoperative meningiomas, and n = 27 healthy, cancer-free controls. Differentially reactive antigens were compared to gene expression data from an alternate public GBM data set from OncoDB, and were analyzed using the Reactome pathway browser. Protein array analysis identified approximately 350-800 differentially reactive antigens, and revealed different antigen profiles in the glioblastomas and meningiomas, with approximately 20-30%-similar and 10-15%-similar antigens in preoperative and postoperative sera, respectively. Seroreactivity did not correlate with OncoDB-derived gene expression. Antigens in the preoperative glioblastoma sera were enriched for signaling pathways, such as signaling by Rho-GTPases, COPI-mediated anterograde transport and vesicle-mediated transport, while the infectious disease, SRP-dependent membrane targeting cotranslational proteins were enriched in the meningiomas. The pre-vs. postoperative seroreactivity in the glioblastomas was enriched for antigens, e.g., platelet degranulation and metabolism of lipid pathways; in the meningiomas, the antigens were enriched in infectious diseases, metabolism of amino acids and derivatives, and cell cycle. Antibody profiling in both tumor entities elucidated several hundred antigens and characteristic signaling pathways that may provide new insights into molecular pathology and may be of interest for the development of new treatment strategies.
Collapse
|
33
|
Abstract
Glioblastoma (GBM) is a primary tumor of the brain defined by its uniform lethality and resistance to conventional therapies. There have been considerable efforts to untangle the metabolic underpinnings of this disease to find novel therapeutic avenues for treatment. An emerging focus in this field is fatty acid (FA) metabolism, which is critical for numerous diverse biological processes involved in GBM pathogenesis. These processes can be classified into four broad fates: anabolism, catabolism, regulation of ferroptosis, and the generation of signaling molecules. Each fate provides a unique perspective by which we can inspect GBM biology and gives us a road map to understanding this complicated field. This Review discusses the basic, translational, and clinical insights into each of these fates to provide a contemporary understanding of FA biology in GBM. It is clear, based on the literature, that there are far more questions than answers in the field of FA metabolism in GBM, and substantial efforts should be made to untangle these complex processes in this intractable disease.
Collapse
Affiliation(s)
| | - Navdeep S. Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|