1
|
Dubey PK, Singh S, Khalil H, Kommini GK, Bhat KM, Krishnamurthy P. Obg-like ATPase 1 Genetic Deletion Leads to Dilated Cardiomyopathy in Mice and Structural Changes in Drosophila Heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596265. [PMID: 38854005 PMCID: PMC11160646 DOI: 10.1101/2024.05.28.596265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Cardiomyopathy, disease of the heart muscle, is a significant contributor to heart failure. The pathogenesis of cardiomyopathy is multifactorial and involves genetic, environmental, and lifestyle factors. Identifying and characterizing novel genes that contribute to cardiac pathophysiology are crucial for understanding cardiomyopathy and effective therapies. In this study, we investigated the role of a novel gene, Obg-like ATPase 1 ( Ola1 ), in cardiac pathophysiology using a cardiac-specific knockout mouse model as well as a Drosophila model. Our previous work demonstrated that OLA1 modulates the hypertrophic response of cardiomyocytes through the GSK-beta/beta-catenin signaling pathway. Furthermore, recent studies have suggested that OLA1 plays a critical role in organismal growth and development. For example, Ola1 null mice exhibit increased heart size and growth retardation. It is not known, however, if loss of function for Ola1 leads to dilated cardiomyopathy. We generated cardiac-specific Ola1 knockout mice (OLA1-cKO) to evaluate the role of OLA1 in cardiac pathophysiology. We found that Ola1 -cKO in mice leads to dilated cardiomyopathy (DCM) and left ventricular (LV) dysfunction. These mice developed severe LV dilatation, thinning of the LV wall, reduced LV function, and, in some cases, ventricular wall rupture and death. In Drosophila, RNAi-mediated knock-down specifically in developing heart cells led to the change in the structure of pericardial cells from round to elongated, and abnormal heart function. This also caused significant growth reduction and pupal lethality. Thus, our findings suggest that OLA1 is critical for cardiac homeostasis and that its deficiency leads to dilated cardiomyopathy and dysfunction. Furthermore, our study highlights the potential of the Ola1 gene as a therapeutic target for dilated cardiomyopathy and heart failure.
Collapse
|
2
|
Fong FW, Hwang S, Xu Y, Hui WHA, Leung KHG, Lin L, Ho SY, Tang HS, Kwan CT, Ng PP, Hai JSH, Kwok FYJ, Sze HF, Fong AHT, Wan EYF, Lai YTA, Leung ST, Chan HL, Chan WSC, Cheung SCW, Lee CYJ, Yiu KH, Pennell DJ, Mohiaddin RH, Yan AT, Ng MY. Prognostic Utility of Left Atrial Strain From MRI Feature Tracking in Ischemic and Nonischemic Dilated Cardiomyopathy: A Multicenter Study. AJR Am J Roentgenol 2024; 222:e2330357. [PMID: 38323782 DOI: 10.2214/ajr.23.30357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
BACKGROUND. MRI-based prognostic evaluation in patients with dilated cardiomyopathy (DCM) has historically used markers of late gadolinium enhancement (LGE) and feature tracking (FT)-derived left ventricular global longitudinal strain (LVGLS). Early data indicate that FT-derived left atrial strain (LAS) parameters, including reservoir, conduit, and booster, may also have prognostic roles in such patients. OBJECTIVE. The purpose of our study was to evaluate the prognostic utility of LAS parameters, derived from MRI FT, in patients with ischemic or nonischemic DCM, including in comparison with the traditional parameters of LGE and LVGLS. METHODS. This retrospective study included 811 patients with ischemic or nonischemic DCM (median age, 60 years; 640 men, 171 women) who underwent cardiac MRI at any of five centers. FT-derived LAS parameters and LVGLS were measured using two- and four-chamber cine images. LGE percentage was quantified. Patients were assessed for a composite outcome of all-cause mortality or heart failure hospitalization. Multivariable Cox regression analyses including demographic characteristics, cardiovascular risk factors, medications used, and a wide range of cardiac MRI parameters were performed. Kaplan-Meier analyses with log-rank tests were also performed. RESULTS. A total of 419 patients experienced the composite outcome. Patients who did, versus those who did not, experience the composite outcome had larger LVGLS (-6.7% vs -8.3%, respectively; p < .001) as well as a smaller LAS reservoir (13.3% vs 19.3%, p < .001), LAS conduit (4.7% vs 8.0%, p < .001), and LAS booster (8.1% vs 10.3%, p < .001) but no significant difference in LGE (10.1% vs 11.3%, p = .51). In multivariable Cox regression analyses, significant independent predictors of the composite outcome included LAS reservoir (HR = 0.96, p < .001) and LAS conduit (HR = 0.91, p < .001). LAS booster and LGE were not significant independent predictors in the models. LVGLS was a significant independent predictor only in a model that initially included LAS booster but not the other LAS parameters. In Kaplan-Meier analysis, all three LAS parameters were significantly associated with the composite outcome (p < .001). CONCLUSION. In this multicenter study, LAS reservoir and LAS conduit were significant independent prognostic markers in patients with ischemic or nonischemic DCM, showing greater prognostic utility than the currently applied markers of LVGLS and LGE. CLINICAL IMPACT. FT-derived LAS analysis provides incremental prognostic information in patients with DCM.
Collapse
Affiliation(s)
- Fai Wang Fong
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | - Subin Hwang
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | - Yueyi Xu
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | | | - Kwan Ho Gordon Leung
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | - Lu Lin
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
- Department of Medical Imaging, Peking Union Medical College, Beijing, China
| | - Shui Yan Ho
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | - Hok Shing Tang
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | - Chi Ting Kwan
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | - Pan Pan Ng
- Department of Radiology and Imaging, Queen Elizabeth Hospital, Hong Kong SAR
| | - Jojo Siu Han Hai
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Fung Yu James Kwok
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | - Ho Fung Sze
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | - Ambrose Ho Tung Fong
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | - Eric Yuk Fai Wan
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR
| | - Yee Tak Alta Lai
- Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR
- Department of Radiology, Ruttonjee and Tang Shiu Kin Hospitals, Hong Kong SAR
| | - Siu Ting Leung
- Imaging and Intervention Radiology Centre, CUHK Medical Centre, Hong Kong SAR
| | - Hiu Lam Chan
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR
| | | | | | - Chun Yin Jonan Lee
- Department of Radiology and Imaging, Queen Elizabeth Hospital, Hong Kong SAR
| | - Kai-Hang Yiu
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Dudley J Pennell
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Raad H Mohiaddin
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Andrew T Yan
- Departments of Medicine and Medical Imaging, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Ming-Yen Ng
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
- Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
3
|
Gui LK, Liu HJ, Jin LJ, Peng XC. Krüpple-like factors in cardiomyopathy: emerging player and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1342173. [PMID: 38516000 PMCID: PMC10955087 DOI: 10.3389/fcvm.2024.1342173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiomyopathy, a heterogeneous pathological condition characterized by changes in cardiac structure or function, represents a significant risk factor for the prevalence and mortality of cardiovascular disease (CVD). Research conducted over the years has led to the modification of definition and classification of cardiomyopathy. Herein, we reviewed seven of the most common types of cardiomyopathies, including Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), diabetic cardiomyopathy, Dilated Cardiomyopathy (DCM), desmin-associated cardiomyopathy, Hypertrophic Cardiomyopathy (HCM), Ischemic Cardiomyopathy (ICM), and obesity cardiomyopathy, focusing on their definitions, epidemiology, and influencing factors. Cardiomyopathies manifest in various ways ranging from microscopic alterations in cardiomyocytes, to tissue hypoperfusion, cardiac failure, and arrhythmias caused by electrical conduction abnormalities. As pleiotropic Transcription Factors (TFs), the Krüppel-Like Factors (KLFs), a family of zinc finger proteins, are involved in regulating the setting and development of cardiomyopathies, and play critical roles in associated biological processes, including Oxidative Stress (OS), inflammatory reactions, myocardial hypertrophy and fibrosis, and cellular autophagy and apoptosis, particularly in diabetic cardiomyopathy. However, research into KLFs in cardiomyopathy is still in its early stages, and the pathophysiologic mechanisms of some KLF members in various types of cardiomyopathies remain unclear. This article reviews the roles and recent research advances in KLFs, specifically those targeting and regulating several cardiomyopathy-associated processes.
Collapse
Affiliation(s)
- Le-Kun Gui
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Huang-Jun Liu
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Li-Jun Jin
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
4
|
Klaeboe LG, Lie ØH, Brekke PH, Bosse G, Hopp E, Haugaa KH, Edvardsen T. Differentiation of Myocardial Properties in Physiological Athletic Cardiac Remodeling and Mild Hypertrophic Cardiomyopathy. Biomedicines 2024; 12:420. [PMID: 38398022 PMCID: PMC10886585 DOI: 10.3390/biomedicines12020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Clinical differentiation between athletes' hearts and those with hypertrophic cardiomyopathy (HCM) can be challenging. We aimed to explore the role of speckle tracking echocardiography (STE) and cardiac magnetic resonance imaging (CMR) in the differentiation between athletes' hearts and those with mild HCM. We compared 30 competitive endurance elite athletes (7% female, age 41 ± 9 years) and 20 mild phenotypic mutation-positive HCM carriers (15% female, age 51 ± 12 years) with left ventricular wall thickness 13 ± 1 mm. Mechanical dispersion (MD) was assessed by means of STE. Native T1-time and extracellular volume (ECV) were assessed by means of CMR. MD was higher in HCM mutation carriers than in athletes (54 ± 16 ms vs. 40 ± 11 ms, p = 0.001). Athletes had a lower native T1-time (1204 (IQR 1191, 1234) ms vs. 1265 (IQR 1255, 1312) ms, p < 0.001) and lower ECV (22.7 ± 3.2% vs. 25.6 ± 4.1%, p = 0.01). MD > 44 ms optimally discriminated between athletes and HCM mutation carriers (AUC 0.78, 95% CI 0.65-0.91). Among the CMR parameters, the native T1-time had the best discriminatory ability, identifying all HCM mutation carriers (100% sensitivity) with a specificity of 75% (AUC 0.83, 95% CI 0.71-0.96) using a native T1-time > 1230 ms as the cutoff. STE and CMR tissue characterization may be tools that can differentiate athletes' hearts from those with mild HCM.
Collapse
Affiliation(s)
- Lars G. Klaeboe
- Precision Health Center for Optimized Cardiac Care (ProCardio), Department of Cardiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway; (L.G.K.); (Ø.H.L.); (K.H.H.)
| | - Øyvind H. Lie
- Precision Health Center for Optimized Cardiac Care (ProCardio), Department of Cardiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway; (L.G.K.); (Ø.H.L.); (K.H.H.)
| | - Pål H. Brekke
- Precision Health Center for Optimized Cardiac Care (ProCardio), Department of Cardiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway; (L.G.K.); (Ø.H.L.); (K.H.H.)
| | - Gerhard Bosse
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway; (G.B.); (E.H.)
| | - Einar Hopp
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway; (G.B.); (E.H.)
| | - Kristina H. Haugaa
- Precision Health Center for Optimized Cardiac Care (ProCardio), Department of Cardiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway; (L.G.K.); (Ø.H.L.); (K.H.H.)
- Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
| | - Thor Edvardsen
- Precision Health Center for Optimized Cardiac Care (ProCardio), Department of Cardiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway; (L.G.K.); (Ø.H.L.); (K.H.H.)
- Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- KG Jebsen Cardiac Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
5
|
Wang E, Zhou R, Li T, Hua Y, Zhou K, Li Y, Luo S, An Q. The Molecular Role of Immune Cells in Dilated Cardiomyopathy. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1246. [PMID: 37512058 PMCID: PMC10385992 DOI: 10.3390/medicina59071246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Dilated cardiomyopathy (DCM) is a rare and severe condition characterized by chamber dilation and impaired contraction of the left ventricle. It constitutes a fundamental etiology for profound heart failure and abrupt cardiac demise, rendering it a prominent clinical indication for heart transplantation (HTx) among both adult and pediatric populations. DCM arises from various etiologies, including genetic variants, epigenetic disorders, infectious insults, autoimmune diseases, and cardiac conduction abnormalities. The maintenance of cardiac function involves two distinct types of immune cells: resident immune cells and recruited immune cells. Resident immune cells play a crucial role in establishing a harmonious microenvironment within the cardiac tissue. Nevertheless, in response to injury, cardiomyocytes initiate a cytokine cascade that attracts peripheral immune cells, thus perturbing this intricate equilibrium and actively participating in the initiation and pathological remodeling of dilated cardiomyopathy (DCM), particularly during the progression of myocardial fibrosis. Additionally, immune cells assume a pivotal role in orchestrating the inflammatory processes, which are intimately linked to the prognosis of DCM. Consequently, understanding the molecular role of various immune cells and their regulation mechanisms would provide an emerging era for managing DCM. In this review, we provide a summary of the most recent advancements in our understanding of the molecular mechanisms of immune cells in DCM. Additionally, we evaluate the effectiveness and limitations of immunotherapy approaches for the treatment of DCM, with the aim of optimizing future immunotherapeutic strategies for this condition.
Collapse
Affiliation(s)
- Enping Wang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ruofan Zhou
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yifei Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuhua Luo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
McColgan G, Villarroel M, Gehmlich K. Should young athletes be screened for cardiomyopathies to reduce the burden of sudden cardiac death in athletes? Biophys Rev 2023; 15:321-327. [PMID: 37396442 PMCID: PMC10310562 DOI: 10.1007/s12551-023-01085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/21/2023] [Indexed: 07/04/2023] Open
Abstract
In this correspondence, we highlight the risk of sudden cardiac death associated with undiagnosed cardiomyopathies. Life-threatening arrhythmias, which underlie sudden cardiac death, can be triggered by high-intensity exercise. It raises the question whether, and if so, how athletes should be screened for cardiomyopathies. The example of practice from Italy is discussed. We also briefly discuss novel developments, such as wearable biosensors and machine learning, which could be applied to screening for cardiomyopathies in future.
Collapse
Affiliation(s)
- Grace McColgan
- College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Mauricio Villarroel
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ UK
| | - Katja Gehmlich
- Institute of Cardiovascular Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, OX3 9DU UK
| |
Collapse
|
7
|
Zhao Y, van de Leemput J, Han Z. The opportunities and challenges of using Drosophila to model human cardiac diseases. Front Physiol 2023; 14:1182610. [PMID: 37123266 PMCID: PMC10130661 DOI: 10.3389/fphys.2023.1182610] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
The Drosophila heart tube seems simple, yet it has notable anatomic complexity and contains highly specialized structures. In fact, the development of the fly heart tube much resembles that of the earliest stages of mammalian heart development, and the molecular-genetic mechanisms driving these processes are highly conserved between flies and humans. Combined with the fly's unmatched genetic tools and a wide variety of techniques to assay both structure and function in the living fly heart, these attributes have made Drosophila a valuable model system for studying human heart development and disease. This perspective focuses on the functional and physiological similarities between fly and human hearts. Further, it discusses current limitations in using the fly, as well as promising prospects to expand the capabilities of Drosophila as a research model for studying human cardiac diseases.
Collapse
Affiliation(s)
- Yunpo Zhao
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|