1
|
Apostolopoulou M, Lambadiari V, Roden M, Dimitriadis GD. Insulin Resistance in Type 1 Diabetes: Pathophysiological, Clinical, and Therapeutic Relevance. Endocr Rev 2025:bnae032. [PMID: 39998445 DOI: 10.1210/endrev/bnae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Indexed: 02/26/2025]
Abstract
People with type 1 diabetes (T1D) are usually considered to exclusively exhibit β-cell failure, but they frequently also feature insulin resistance. This review discusses the mechanisms, clinical features, and therapeutic relevance of insulin resistance by focusing mainly on human studies using gold-standard techniques (euglycemic-hyperinsulinemic clamp). In T1D, tissue-specific insulin resistance can develop early and sustain throughout disease progression. The underlying pathophysiology is complex, involving both metabolic- and autoimmune-related factors operating synergistically. Insulin treatment may play an important pathogenic role in predisposing individuals with T1D to insulin resistance. However, the established lifestyle-related risk factors and peripheral insulin administration inducing glucolipotoxicity, hyperinsulinemia, hyperglucagonemia, inflammation, mitochondrial abnormalities, and oxidative stress cannot always fully explain insulin resistance in T1D, suggesting a phenotype distinct from type 2 diabetes. The mutual interaction between insulin resistance and impaired endothelial function further contributes to diabetes-related complications. Insulin resistance should therefore be considered a treatment target in T1D. Aside from lifestyle modifications, continuous subcutaneous insulin infusion can ameliorate insulin resistance and hyperinsulinemia, thereby improving glucose toxicity compared with multiple injection insulin treatment. Among other concepts, metformin, pioglitazone, incretin-based drugs such as GLP-1 receptor agonists, sodium-glucose cotransporter inhibitors, and pramlintide can improve insulin resistance, either directly or indirectly. However, considering the current issues of high cost, side effects, limited efficacy, and their off-label status, these agents in people with T1D are not widely used in routine clinical care at present.
Collapse
Affiliation(s)
- Maria Apostolopoulou
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibnitz Center for Diabetes Research at Heinrich-Heine University, 40225 Düsseldorf, Germany
- German Center of Diabetes Research (DZD), Partner Düsseldorf, 85764 München-Neuherberg, Germany
| | - Vaia Lambadiari
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens Medical School, 12462 Athens, Greece
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibnitz Center for Diabetes Research at Heinrich-Heine University, 40225 Düsseldorf, Germany
- German Center of Diabetes Research (DZD), Partner Düsseldorf, 85764 München-Neuherberg, Germany
| | - George D Dimitriadis
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens Medical School, 12462 Athens, Greece
| |
Collapse
|
2
|
Hilliard BK, Prendergast JE, Smith MJ. Dia-B-Ties: B Cells in the Islet-Immune-Cell Interface in T1D. Biomolecules 2025; 15:332. [PMID: 40149868 PMCID: PMC11940010 DOI: 10.3390/biom15030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/29/2025] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that affects an estimated 30 million people worldwide and results in a lifelong dependency of exogenous insulin treatments. While T1D is characterized by T-cell driven-destruction of the insulin-secreting β cells, B lymphocytes play a key role in the islet-immune interface. B cells are an essential intermediary between islet cells and other immune-cell populations. Through antigen presentation, cytokine secretion, and antibody production, B cells play a role in activating autoreactive islet-specific T cells, thus potentiating pancreatic inflammation in the early stages of T1D. Despite this, their role in disease development remains an understudied feature of T1D with significant therapeutic potential. Herein, we will discuss the current knowledge of the islet-immune-cell interface within T1D through the lens of B lymphocytes. We will also consider knowledge gaps that may be limiting further therapeutic opportunities.
Collapse
Affiliation(s)
- Brandon K. Hilliard
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jessica E. Prendergast
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mia J. Smith
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Jeun R. Immunotherapies for prevention and treatment of type 1 diabetes. Immunotherapy 2025; 17:201-210. [PMID: 40033931 PMCID: PMC11951698 DOI: 10.1080/1750743x.2025.2473311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/25/2025] [Indexed: 03/05/2025] Open
Abstract
Type 1 diabetes (T1D) is characterized by the autoimmune destruction of insulin-producing β-cells of the pancreatic islets necessitating lifelong insulin therapy. Despite significant advancements in diabetes technology with increasingly sophisticated methods of insulin delivery and glucose monitoring, people with T1D remain at risk of severe complications like hypoglycemia and diabetic ketoacidosis. There has long been an interest in altering the immune response in T1D to prevent or cure T1D across its various stages with limited efficacy. This review highlights immunomodulatory approaches over the years including the anti-CD3 monoclonal antibody teplizumab which is now approved to delay onset of T1DM and other interventions under current investigation.
Collapse
Affiliation(s)
- Rebecca Jeun
- Division of Endocrinology, Diabetes & Metabolism, University of Louisville, Louisville, KY, USA
| |
Collapse
|
4
|
Mohamed AA, Abdallah GM, Ibrahim IT, Ali NS, Hussein MA, Thabet GM, azzam OM, Mohamed AY, farghly MI, Al Hussain E, Alkhalil SS, Abouaggour AAM, Ibrahem Fathy Hassan NA, Iqbal S, Mohamed AA, Hafez W, Mahmoud MO. Evaluation of miRNA-146a, miRNA-34a, and pro-inflammatory cytokines as a potential early indicators for type 1 diabetes mellitus. Noncoding RNA Res 2024; 9:1249-1256. [PMID: 39036602 PMCID: PMC11259987 DOI: 10.1016/j.ncrna.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024] Open
Abstract
Background Type I diabetes mellitus (T1DM) is one of the most common chronic autoimmune diseases worldwide. miRNAs are a class of small non-coding RNA molecules that have been linked to immune system functions, β-cell metabolism, proliferation, and death, all of which contribute to pathogenesis of TIDM. Dysregulated miRNAs have been identified in Egyptian TIDM patients. Aim Several miRNAs were profiled in Egyptian TIDM patients to determine whether they can be used as molecular biomarkers for T1DM. The relationship between the investigated miRNAs and pro-inflammatory cytokines (TNF-α and IL-6) has also been evaluated in the development of TIDM, in addition to the creation of a proposed model for TIDM prediction. Patients & methods Case-control study included 177 Egyptian patients with confirmed type I diabetes mellitus and 177 healthy individuals. MiRNA-34 and miRNA-146 were detected in serum samples using real-time PCR, whereas TNF-α and IL-6 levels were assessed using ELIZA. Results Patients with TIDM showed a significant decrease in the expression of miRNA-146, with a cut-off value ≤ 3.3, 48 % specificity, and 92.1 % sensitivity, whereas miRNA-34 had the highest sensitivity (95.5 %) and specificity (97.2 %) for differentiating diabetic patients from controls. Furthermore, other diagnostic proinflammatory markers showed lower sensitivity and specificity. Conclusion Serum levels of miRNA-34a, miRNA-146, IL-6, and TNF-α provide new insights into T1DM pathogenesis and could be used for screening and diagnosis purposes. They can be also a potential therapeutic target, as well as allowing for more strategies to improve T1DM disease outcomes.
Collapse
Affiliation(s)
- Amal A. Mohamed
- Biochemistry and Molecular Biology Department, National Hepatology and Tropical Medicine Research Institute, GOTHI, Cairo, Egypt
| | - Gamil M. Abdallah
- Biochemistry Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ibrahim T. Ibrahim
- Biochemistry Department, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt
| | - Nada S. Ali
- Biochemistry Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mona A. Hussein
- Internal Medicine Department, National Institute of Diabetes and Endocrinology, GOTHI, Cairo, Egypt
| | - Ghada Maher Thabet
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Omar M. azzam
- Internal Medicine Department, Ahmed Maher Teaching Hospital, GOTHI, Cairo, Egypt
| | - Amira Yones Mohamed
- Internal medicine department, ELmatareya Teaching Hospital, GOTHI, Cairo, Egypt
| | - Maysa I. farghly
- Department of Clinical Pathology, Faculty of Medicine, Suez University, Suez, Egypt
| | - Eman Al Hussain
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samia S. Alkhalil
- Medical Laboratories Department, College of Applied Medical Sciences in Al Quway'iyah, Shaqraa University, Saudi Arabia
| | | | | | | | | | - Wael Hafez
- Internal Medicine Department, Medical Research and Clinical Studies Institute, The National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, Cairo Governorate 12622, Egypt
| | - Mohamed O. Mahmoud
- Biochemistry Department, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt
| |
Collapse
|
5
|
Gomaa S, Nassef M, Hafez A. Potentials of bone marrow cells-derived from naïve or diabetic mice in autoimmune type 1 diabetes: immunomodulatory, anti-inflammatory, anti hyperglycemic, and antioxidative. Endocrine 2024; 86:959-979. [PMID: 39014283 PMCID: PMC11554735 DOI: 10.1007/s12020-024-03929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND The scarcity of transplanted human islet tissue and the requirement for immunosuppressive drugs to prevent the rejection of allogeneic grafts have hindered the treatment of autoimmune type 1 diabetes mellitus (T1DM) through islet transplantation. However, there is hope in adoptively transferred bone marrow cells (BMCs) therapy, which has emerged as a propitious pathway for forthcoming medications. BMCs have the potential to significantly impact both replacement and regenerative therapies for a range of disorders, including diabetes mellitus, and have demonstrated anti-diabetic effects. AIM The main goal of this study is to evaluate the effectiveness of adoptively transferred bone marrow cells derived from either naïve mice (nBMCs) or diabetic mice (dBMCs) in treating a T1DM mice model. METHODS Male Swiss albino mice were starved for 16 h and then injected with streptozotocin (STZ) at a dose of 40 mg/kg body weight for 5 consecutive days to induce T1DM. After 14 days, the diabetic mice were distributed into four groups. The first group served as a diabetic control treated with sodium citrate buffer, while the other three groups were treated for two weeks, respectively, with insulin (subcutaneously at a dose of 8 U/kg/day), nBMCs (intravenously at a dose of 1 × 106 cells/mouse/once), and dBMCs (intravenously at a dose of 1 × 106 cells/mouse/once). RESULTS It is worth noting that administering adoptively transferred nBMCs or adoptively transferred dBMCs to STZ-induced T1DM mice resulted in a significant amelioration in glycemic condition, accompanied by a considerable reduction in the level of blood glucose and glycosylated hemoglobin % (HbA1C %), ultimately restoring serum insulin levels to their initial state in control mice. Administering nBMCs or dBMCs to STZ-induced T1DM mice led to a remarkable decrease in levels of inflammatory cytokine markers in the serum, including interferon-γ (INF-γ), tumor necrosis factor- α (TNF-α), tumor growth factor-β (TGF-β), interleukin-1 β (L-1β), interlekin-4 (IL-4), interleukin-6 (IL-6), and interleukin-10 (IL-10). Additionally, STZ-induced T1DM mice, when treated with nBMCs or dBMCs, experienced a notable rise in total immunoglobulin (Ig) level. Furthermore, there was a significant reduction in the levels of islet cell autoantibodies (ICA) and insulin autoantibodies (IAA). Furthermore, the serum of STZ-induced T1DM mice showed a significant increase in Zinc transporter 8 antigen protein (ZnT8), islet antigen 2 protein (IA-2), and glutamic acid decarboxylase antigen protein (GAD) levels. Interestingly, the administration of nBMCs or dBMCs resulted in a heightened expression of IA-2 protein in STZ-induced T1DM mice treated with nBMCs or dBMCs. Furthermore, the level of malondialdehyde (MDA) was increased, while the levels of catalase (CAT) and superoxide dismutase (SOD) were decreased in non-treated STZ-induced T1DM mice. However, when nBMCs or dBMCs were administered to STZ-induced T1DM mice, it had a significant impact on reducing oxidative stress. This was accomplished by reducing the levels of MDA in the serum and enhancing the activities of enzymatic antioxidants like CAT and SOD. STZ-induced T1DM mice displayed a significant elevation in the levels of liver enzymes ALT and AST, as well as heightened levels of creatinine and urea. Considering the crucial roles of the liver and kidney in metabolism and excretion, this research further examined the effects of administering nBMCs or dBMCs to STZ-induced T1DM mice. Notably, the administration of these cells alleviated the observed effects. CONCLUSION The present study suggests that utilizing adoptively transferred nBMCs or adoptively transferred dBMCs in the treatment of T1DM led to noteworthy decreases in blood glucose levels, possibly attributed to their capacity to enhance insulin secretion and improve the performance of pancreatic islets. Additionally, BMCs may exert their beneficial effects on the pancreatic islets of diabetic mice through their immunomodulatory, antioxidant, anti-inflammatory, and anti-oxidative stress properties.
Collapse
Affiliation(s)
- Soha Gomaa
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Mohamed Nassef
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Amira Hafez
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Schädlich P, Symmank J, Dost A, Jacobs C, Wagner Y. Oral Health of Children and Adolescents with Diabetes Mellitus. J Clin Med 2024; 13:6742. [PMID: 39597886 PMCID: PMC11595264 DOI: 10.3390/jcm13226742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Aim: To examine the oral health of children and adolescents with and without diabetes mellitus. Background: Diabetes mellitus is the most common metabolic disease in childhood and demonstrates an increasing incidence. Many children live with gingivitis as a precursor to periodontitis. If left untreated, it can cause the development of periodontitis. The links between periodontitis and diabetes mellitus are known but have been little studied in the age group of children and adolescents. Materials and Methods: Clinical examination and collection of sulcus fluid from participants aged 5 to 21 years was performed. The following data were collected: demographic variables, caries prevalence, DMF-T, VPI, PUFA, salivary flow rate, HbA1c, PSI, and the concentration of IL-1β, IL-6, MMP-8, and TNF-α. Results: Patients with diabetes mellitus showed a significantly lower salivary flow rate with higher concentrations of MMP-8 and IL-1β. The data indicate that at this age, regular visits to the dentist are of great importance for the promotion of oral health in children and adolescents regardless of diabetes and that patients with diabetes mellitus in particular benefit from prevention, as they belong to the periodontitis risk group. Conclusions: Patients with low salivary flow rates and increased inflammatory mediators are high-risk patients for whom dental preventive measures play a major role.
Collapse
Affiliation(s)
- Pauline Schädlich
- Center for Dental, Oral and Maxillofacial Medicine, Section Preventive and Pediatric Dentistry, University Hospital Jena, 07743 Jena, Germany;
| | - Judit Symmank
- Center for Dental, Oral and Maxillofacial Medicine, Department for Orthodontics, University Hospital Jena, 07743 Jena, Germany; (J.S.) (C.J.)
| | - Axel Dost
- Clinic for Pediatric and Adolescent Medicine, Section Diabetology, University Hospital Jena, 07747 Jena, Germany;
| | - Collin Jacobs
- Center for Dental, Oral and Maxillofacial Medicine, Department for Orthodontics, University Hospital Jena, 07743 Jena, Germany; (J.S.) (C.J.)
| | - Yvonne Wagner
- Dental Training Center Stuttgart, 70174 Stuttgart, Germany
| |
Collapse
|
7
|
Riera CE. Diabetes, IL-10 and the brain's microvascular crisis. Nat Metab 2024; 6:2029-2030. [PMID: 39496926 DOI: 10.1038/s42255-024-01161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Affiliation(s)
- Celine E Riera
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Syed Khaja AS, Binsaleh NK, Beg MMA, Ashfaq F, Khan MI, Almutairi MG, Qanash H, Saleem M, Ginawi IAM. Clinical importance of cytokine (IL-6, IL-8, and IL-10) and vitamin D levels among patients with Type-1 diabetes. Sci Rep 2024; 14:24225. [PMID: 39414864 PMCID: PMC11484771 DOI: 10.1038/s41598-024-73737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024] Open
Abstract
Type-1 diabetes (T1D) is an autoimmune disorder characterized by impaired insulin release by islet β cells. It has been shown that proinflammatory cytokines released during the disease can exacerbate the condition, while anti-inflammatory cytokines offer protection. This study analyzed the clinical role of interleukin (IL)-6, -8, -10, and vitamin D levels in T1D patients compared to healthy controls. The levels of IL-6, IL-8, IL-10, and vitamin D in the participants' serum samples were analyzed using ELISA. The findings showed that T1D patients had significantly increased levels (p < 0.0001) of fasting blood glucose, HbA1c, systolic blood pressure, low-density lipoprotein, triglycerides, cholesterol, and very low-density lipoprotein and decreased levels of high-density lipoprotein and vitamin D (p < 0.0001) compared to healthy controls. Moreover, the levels of IL-6, IL-8, and IL-10 were also significantly greater (p < 0.0001) in T1D patients. The study also determined the significance of these cytokines among T1D patients and healthy controls using ROC curves. Furthermore, we found that smokers had significantly higher levels of IL-6 (p = 0.01) and IL-8 (p = 0.003) than non-smokers. These results showed that elevated levels of IL-6, IL-8, and IL-10, decreased vitamin D levels, and smoking among T1D participants could contribute to the worsening of T1D disease and could serve as predictive indicators.
Collapse
Affiliation(s)
- Azharuddin Sajid Syed Khaja
- Department of Pathology, College of Medicine, University of Hail, Hail, 55476, Saudi Arabia.
- Medical and Diagnostic Research Centre, University of Hail, Hail, 55476, Saudi Arabia.
| | - Naif K Binsaleh
- Medical and Diagnostic Research Centre, University of Hail, Hail, 55476, Saudi Arabia
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, 55476, Saudi Arabia
| | - Mirza Masroor Ali Beg
- Faculty of Medicine, Alatoo International University, Bishkek, 720048, Kyrgyzstan.
- Centre for Promotion of Medical Research, Alatoo International University, Bishkek, 720048, Kyrgyzstan.
| | - Fauzia Ashfaq
- Department of Clinical Nutrition, College of Nursing and Health Sciences, Jazan University, Jazan, 82817, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Malak Ghazi Almutairi
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hafr Albatin, Hafr Albatin, Saudi Arabia
| | - Husam Qanash
- Medical and Diagnostic Research Centre, University of Hail, Hail, 55476, Saudi Arabia
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, 55476, Saudi Arabia
| | - Mohd Saleem
- Department of Pathology, College of Medicine, University of Hail, Hail, 55476, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Hail, 55476, Saudi Arabia
| | | |
Collapse
|
9
|
Fogarasi M, Dima S. Immunomodulatory Functions of TNF-Related Apoptosis-Inducing Ligand in Type 1 Diabetes. Cells 2024; 13:1676. [PMID: 39451194 PMCID: PMC11506310 DOI: 10.3390/cells13201676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF protein superfamily and was initially identified as a protein capable of inducing apoptosis in cancer cells. In addition, TRAIL can promote pro-survival and proliferation signaling in various cell types. Subsequent studies have demonstrated that TRAIL plays several important roles in immunoregulation, immunosuppression, and immune effector functions. Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia due to the loss of insulin-producing β-cells, primarily driven by T-cell-mediated pancreatic islet inflammation. Various genetic, epigenetic, and environmental factors, in conjunction with the immune system, contribute to the initiation, development, and progression of T1D. Recent reports have highlighted TRAIL as an important immunomodulatory molecule with protective effects on pancreatic islets. Experimental data suggest that TRAIL protects against T1D by reducing the proliferation of diabetogenic T cells and pancreatic islet inflammation and restoring normoglycemia in animal models. In this review, we aimed to summarize the consequences of TRAIL action in T1D, focusing on and discussing its signaling mechanisms, role in the immune system, and protective effects in T1D.
Collapse
Affiliation(s)
- Marton Fogarasi
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Simona Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
10
|
Uvarova AN, Zheremyan EA, Ustiugova AS, Murashko MM, Bogomolova EA, Demin DE, Stasevich EM, Kuprash DV, Korneev KV. Autoimmunity-Associated SNP rs3024505 Disrupts STAT3 Binding in B Cells, Leading to IL10 Dysregulation. Int J Mol Sci 2024; 25:10196. [PMID: 39337678 PMCID: PMC11432243 DOI: 10.3390/ijms251810196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Interleukin 10 (IL10) is a major anti-inflammatory cytokine that acts as a master regulator of the immune response. A single nucleotide polymorphism rs3024505(C/T), located downstream of the IL10 gene, is associated with several aggressive inflammatory diseases, including systemic lupus erythematosus, Sjögren's syndrome, Crohn's disease, and ulcerative colitis. In such autoimmune pathologies, IL10-producing B cells play a protective role by decreasing the level of inflammation and restoring immune homeostasis. This study demonstrates that rs3024505 is located within an enhancer that augments the activity of the IL10 promoter in a reporter system based on a human B cell line. The common rs3024505(C) variant creates a functional binding site for the transcription factor STAT3, whereas the risk allele rs3024505(T) disrupts STAT3 binding, thereby reducing the IL10 promoter activity. Our findings indicate that B cells from individuals carrying the minor rs3024505(T) allele may produce less IL10 due to the disrupted STAT3 binding site, contributing to the progression of inflammatory pathologies.
Collapse
Affiliation(s)
- Aksinya N. Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elina A. Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alina S. Ustiugova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Matvey M. Murashko
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Elvina A. Bogomolova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Denis E. Demin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina M. Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Dmitry V. Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Kirill V. Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
11
|
Neubauer-Geryk J, Myśliwiec M, Zorena K, Bieniaszewski L. The Impact of Thyroiditis on the Immune Profile in Young Patients with Uncomplicated Type 1 Diabetes. Int J Mol Sci 2024; 25:9721. [PMID: 39273664 PMCID: PMC11395292 DOI: 10.3390/ijms25179721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
Autoimmune thyroid disease (AIT) is the most frequently linked autoimmune condition to type 1 diabetes (T1D). The analysis of immune profiles could provide valuable insights into the study of these diseases. This knowledge could play a crucial role in understanding the relationship between immune profiles and microcirculation structures and functions. The present study aimed to test the hypothesis that cytokine levels in T1D patients without and those with comorbid Hashimoto's disease differ significantly. The total study group (total T1D) consisted of 62 diabetic young patients: 43 T1D and 19 T1D + AIT matched for age, age at onset, and duration of diabetes. The control group consisted of 32 healthy young subjects. The levels of cytokines (including TNF-α, IL-35, IL-4, IL-10, IL-18, IL-12, VEGF, and angiogenin) were quantified throughout this investigation. A comparative assessment of the cytokines profiles between the control group and total T1D revealed a statistically significant elevation in the levels of IL-4, TNF-α, IL-18, VEGF, and angiogenin, accompanied by a notable decline in IL-10. However, IL-35 and IL-12 exhibited comparable levels between the two groups. A comparison of cytokine levels between T1D + AIT and T1D groups revealed that only angiogenin levels were statistically significantly higher in T1D + AIT. The results of our study indicated that the alterations in cytokine levels associated with AIT did not correspond to the observed changes in T1D-related outcomes. The sole notable observation was the elevation of angiogenin expression, an angiogenic factor.
Collapse
Affiliation(s)
- Jolanta Neubauer-Geryk
- Clinical Physiology Unit, Medical Simulation Centre, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Małgorzata Myśliwiec
- Department of Pediatrics, Diabetology and Endocrinology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Leszek Bieniaszewski
- Clinical Physiology Unit, Medical Simulation Centre, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
12
|
Sameir M, Soleimanifar N, Assadiasl S, Selman N, Sadr M, Mojtahedi H, Mohammed AJ, Abdulhussein RH, Hamid Al-Gawwam ZM, Hussein S, Saber AF, Nicknam MH. The Increased Frequency of Type 1 Regulatory T (Tr1) Cells and the Altered Expression of Aryl Hydrocarbon Receptor (AHR) and Interferon Regulatory Factor-4 (IRF4) Genes in Type 1 Diabetes: A Case-Control Study. Cureus 2024; 16:e65749. [PMID: 39211721 PMCID: PMC11361286 DOI: 10.7759/cureus.65749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background and aim Type 1 diabetes is an autoimmune disorder characterized by the destruction of pancreatic beta cells, leading to insulin deficiency and hyperglycemia. Regulatory T cells (Tregs), particularly type 1 regulatory T (Tr1) cells, play a crucial role in modulating autoimmune responses. Therefore, this study aimed to evaluate the frequency of Tr1 cells and their association with aryl hydrocarbon receptor (AHR) and interferon regulatory factor-4 (IRF4) gene expression levels in type 1 diabetes mellitus (T1DM) compared to the healthy controls. Method A case-control study design was used. The case group included patients diagnosed with T1DM, while the control group consisted of healthy individuals, matched for age and sex. Blood samples were collected, and peripheral blood mononuclear cells (PBMCs) were isolated. Serum interleukin 10 (IL-10) and interleukin 21 (IL-21) levels were measured using enzyme-linked immunosorbent assay (ELISA). The gene expression of AHR and IRF4 was analyzed using quantitative real-time polymerase chain reaction (qPCR), and Tr1 cell populations were determined using flow cytometry. Data were summarized with mean and standard error of the mean (SEM) for quantitative variables. Independent sample t-test, chi-square test, and the Mann-Whitney U test were used to compare groups. Statistical analyses were performed using SPSS version 25 (IBM SPSS Statistics, Armonk, NY), with significance levels set at p < 0.05. Figures were created using GraphPad Prism (GraphPad Software, San Diego, CA). Results A total of 45 cases were enrolled in the study, with 30 T1DM patients and 15 healthy controls. The mean IL-10 concentration was significantly higher in the patients (10.4 ± 1.1 pg/mL) compared to the healthy controls (5.1 ± 0.7 pg/mL), with a p-value of 0.001. There was no significant difference in IL-21 levels between the patients (76.1 ± 9.0 pg/mL) and healthy controls (88.2 ± 17.5 pg/mL), indicated by a p-value of 0.480. AHR gene expression was significantly lower in patients, with a p-value of 0.037. Although IRF4 gene expression was higher in patients, the difference was not statistically significant (p = 0.449). Tr1 cell frequency was significantly higher in T1DM patients (1.45% of cluster of differentiation 4+ {CD4+} T cells) compared to the healthy controls (0.40% of CD4+ T cells), with a p-value of 0.045. Conclusions The study demonstrated that T1DM is associated with higher IL-10 levels, decreased AHR gene expression, and a higher frequency of Tr1 cells. Policymakers should focus on developing targeted immunomodulatory therapies to address these immunological abnormalities. Healthcare providers should prioritize monitoring cytokine levels and gene expression in T1DM patients to tailor treatment plans effectively. Further research is needed to explore the therapeutic potential of modulating Tr1 cells and their related pathways in T1DM management.
Collapse
Affiliation(s)
- Mohammed Sameir
- Department of Clinical Autoimmune Therapy, Hammurabi College of Medicine, University of Babylon, Hilla, IRQ
| | - Narjes Soleimanifar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, IRN
| | - Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, IRN
| | - Nihad Selman
- College of Medicine, University of Babylon, Hilla, IRQ
| | - Maryam Sadr
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, IRN
| | - Hanieh Mojtahedi
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, IRN
| | - Ali J Mohammed
- Department of Physiology, Hammurabi College of Medicine, University of Babylon, Hilla, IRQ
| | - Rasha H Abdulhussein
- Department of Pediatrics, Hammurabi College of Medicine, University of Babylon, Hilla, IRQ
| | | | - Safin Hussein
- Department of Molecular Medicine, Tehran University of Medical Sciences, Tehran, IRN
- Department of Biology, University of Raparin, Ranya, IRQ
| | - Abdulmalik F Saber
- Department of Psychiatry and Mental Health Nursing, College of Nursing, Hawler Medical University, Erbil, IRQ
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, IRN
| |
Collapse
|
13
|
Azad A, Altunbas HA, Manguoglu AE. From islet transplantation to beta-cell regeneration: an update on beta-cell-based therapeutic approaches in type 1 diabetes. Expert Rev Endocrinol Metab 2024; 19:217-227. [PMID: 38693782 DOI: 10.1080/17446651.2024.2347263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 03/06/2024] [Indexed: 05/03/2024]
Abstract
INTRODUCTION Type 1 diabetes (T1D) mellitus is an autoimmune disease in which immune cells, predominantly effector T cells, destroy insulin-secreting beta-cells. Beta-cell destruction led to various consequences ranging from retinopathy and nephropathy to neuropathy. Different strategies have been developed to achieve normoglycemia, including exogenous glucose compensation, whole pancreas transplantation, islet transplantation, and beta-cell replacement. AREAS COVERED The last two decades of experience have shown that indigenous glucose compensation through beta-cell regeneration and protection is a peerless method for T1D therapy. Tremendous studies have tried to find an unlimited source for beta-cell regeneration, on the one hand, and beta-cell protection against immune attack, on the other hand. Recent advances in stem cell technology, gene editing methods, and immune modulation approaches provide a unique opportunity for both beta-cell regeneration and protection. EXPERT OPINION Pluripotent stem cell differentiation into the beta-cell is considered an unlimited source for beta-cell regeneration. Devising engineered pancreas-specific regulatory T cells using Chimeric Antigen Receptor (CAR) technology potentiates an effective immune tolerance induction for beta-cell protection. Beta-cell regeneration using pluripotent stem cells and beta-cell protection using pancreas-specific engineered regulatory T cells promises to develop a curative protocol in T1D.
Collapse
Affiliation(s)
- Asef Azad
- Department of Medical Biology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hasan Ali Altunbas
- Department of Endocrinology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ayse Esra Manguoglu
- Department of Medical Biology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
14
|
Bai X, Zhang X, Xiao J, Lin X, Lin R, Zhang R, Deng X, Zhang M, Wei W, Lan B, Weng S, Chen M. Endowing Polyetheretherketone with Anti-Infection and Immunomodulatory Properties through Guanidination Carbon Dots Modification to Promote Osseointegration in Diabetes with MRSA Infection. Adv Healthc Mater 2024; 13:e2302873. [PMID: 38041688 DOI: 10.1002/adhm.202302873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/17/2023] [Indexed: 12/03/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection and compromised immunity are the severe complications associated with implantation surgery in diabetes mellitus. Enhancing the antibacterial and immunomodulatory properties of implants represents an effective approach to improve the osseointegration of implant in diabetes mellitus. Herein, guanidination carbon dots (GCDs) with antibacterial and immunoregulatory functions are synthesized. The GCDs demonstrate killing effect on MRSA without detectable induced resistance. Additionally, they promote the polarization of macrophages from the M1 to M2 subtype, with the inhibiting pro-inflammatory cytokines and promoting anti-inflammatory factors. Correspondingly, GCDs are immobilized onto sulfonated polyether ether ketone (SP@GCDs) using a polyvinyl butyraldehyde (PVB) coating layer through soaking-drying technique. SP@GCDs maintain stable antibacterial efficacy against MRSA for six consecutive days and retain the immunomodulatory function, while also possessing the long-term storage stability and biocompatibility of more than 6 months. Moreover, SP@GCDs significantly promote the proliferation and mineralization of osteoblasts. SP@GCDs facilitate osteogenesis through immunoregulatory. Additionally, SP@GCDs exert stable antibacterial and immune regulatory functions in implantation site of a diabetes rat, effectively promoting implant osseointegration regardless of the MRSA infection. These findings provide valuable insights into implant modification through designing nanomaterials with multifunction for enhancing osseointegration of diabetes mellitus, suggesting the promising clinical application prospects.
Collapse
Affiliation(s)
- Xinxin Bai
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Xintian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Jiecheng Xiao
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Xingyu Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Rui Zhang
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Xiaoqin Deng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Menghan Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Wenqin Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P. R. China
| | - Bin Lan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P. R. China
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Min Chen
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| |
Collapse
|
15
|
Zhao Y, Chen Y, Xiao Q, Li W. Arachidonic acid alleviates autoimmune diabetes in NOD mice. Int Immunopharmacol 2024; 127:111340. [PMID: 38091831 DOI: 10.1016/j.intimp.2023.111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Arachidonic acid (AA) is considered to link nutrient metabolism, to inflammation and immunity, suggesting it may have a role in autoimmune diseases. Our previous study suggests that DPP-4 inhibitors (DPP-4i) might regulate AA - relative signaling in type 1 diabetes. AIMS To examine the effect of AA on autoimmune diabetes and its cross-talk with DPP-4i in The Non-Obese Diabetic (NOD) mice. METHODS The NOD mice were divided randomly and equally into three groups: AA group, AA plus DPP-4i group and control group. The incidence of diabetes, blood glucose, insulitis and cytokine profiles were monitored. At the end of the experiment, pancreatic tissues were stained by H&E. Serum cytokine profiles were examined using a Mesco Scale Discovery multiplexed-assay kit. RESULTS Even though AA or AA plus DPP-4i treatment has no effect on incidence of diabetes and weight, AA treatment reduces blood glucose, preserves islet morphology and alleviates inflammatory cell infiltration into pancreatic islets in NOD mice, accompanying with increased serum levels of IL-10, IL-1 β, IL-6, IL-5, KC/GRO and TNF-α and decreased serum levels of IL-2. CONCLUSION We observed that AA treatment alleviates autoimmune diabetes in NOD mice by reducing hyperglycemia, alleviating insulitis and improving cytokine profiles. DPP-4i might alleviate the effect of AA by cross-talk. We provide evidence of AA treatment to alleviate type 1 diabetes in NOD mice, which may provide a novel therapeutic option for type 1 diabetes.
Collapse
Affiliation(s)
- Yunjuan Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Yimei Chen
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Qiwen Xiao
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China.
| |
Collapse
|
16
|
Menegucci T, Chagas EFB, de Oliveira Zanuso B, Quesada K, dos Santos Haber JF, Menegucci Zutin TL, Felipe Pimenta L, Cressoni Araújo A, Landgraf Guiguer E, Rucco P. Detregiachi C, Gabaldi Rocha M, Cincotto dos Santos Bueno P, Fornari Laurindo L, Barbalho SM. The Influence of Body Fat and Lean Mass on HbA1c and Lipid Profile in Children and Adolescents with Type 1 Diabetes Mellitus. Diseases 2023; 11:125. [PMID: 37873769 PMCID: PMC10594441 DOI: 10.3390/diseases11040125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023] Open
Abstract
Glycated hemoglobin (HbA1c) is used to assess glycemic control in Type 1 diabetes (DM1) patients. Apolipoproteins play an essential role in DM1 pathophysiology and may be associated with complications and HbA1c. This cross-sectional observational study of 81 children and adolescents of both sexes diagnosed with DM1 investigated the relationship between body fat distribution and lean mass with HbA1C and apolipoprotein values, analyzing biochemical and body composition measurements. A Shapiro-Wilk test with Lilliefors correction, a non-parametric Mann-Whitney test, and others were used with a significance level of 5%. The sample had a diagnosis time of 4.32 years and high blood glucose levels (mean 178.19 mg/dL) and HbA1c (mean 8.57%). Subjects also had a moderate level of adiposity, as indicated by arm and thigh fat areas. The study also found significant differences in the distribution of patients concerning levels of apolipoproteins A and B, with a smaller proportion of patients having undesirable levels. Finally, the study found a significant difference in the distribution of patients with estimated cardiovascular risk based on the ApoB/ApoA-I ratio. Conclusively, visceral fat in children and adolescents with DM1 may increase the risk of DM1 long-term complications owing to its association with elevated HbA1C and apolipoprotein values.
Collapse
Affiliation(s)
- Thais Menegucci
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.M.)
| | - Eduardo Federighi Baisi Chagas
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.M.)
- Postgraduate Program of Health and Aging, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
- Interdisciplinary Center on Diabetes (CENID), Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Barbara de Oliveira Zanuso
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Jesselina Francisco dos Santos Haber
- Interdisciplinary Center on Diabetes (CENID), Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
| | - Tereza Laís Menegucci Zutin
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.M.)
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
| | - Luis Felipe Pimenta
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.M.)
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.M.)
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.M.)
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Claudia Rucco P. Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.M.)
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
| | - Marcia Gabaldi Rocha
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
| | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Sandra M. Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.M.)
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| |
Collapse
|