1
|
Watanabe D, Hiroshima M, Yasui M, Ueda M. Single molecule tracking based drug screening. Nat Commun 2024; 15:8975. [PMID: 39420015 PMCID: PMC11486946 DOI: 10.1038/s41467-024-53432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
The single-molecule tracking of transmembrane receptors in living cells has provided significant insights into signaling mechanisms, such as mobility and clustering upon their activation/inactivation, making it a potential screening method for drug discovery. Here we show that single-molecule tracking-based screening can be used to explore compounds both detectable and undetectable by conventional methods for disease-related receptors. Using an automated system for a fast large-scale single-molecule analysis, we screen for epidermal growth factor receptor (EGFR) from 1134 of FDA approved drugs. The 18 hit compounds include all EGFR-targeted tyrosine kinase inhibitors (TKIs) in the library that suppress any phosphorylation-dependent mobility shift of EGFR, proving the concept of this approach. The remaining hit compounds are not reported as EGFR-targeted drugs and do not inhibit EGF-induced EGFR phosphorylation. These non-TKI compounds affect the mobility and/or clustering of EGFR without EGF and induce EGFR internalization, to impede EGFR-dependent cell growth. Thus, single-molecule tracking provides an alternative modality for discovering therapeutics on various receptor functions with previously untargeted mechanisms.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
| | - Michio Hiroshima
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan.
| | | | - Masahiro Ueda
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
2
|
Ulucan O. Expanding Beyond Genetic Subtypes in B-Cell Acute Lymphoblastic Leukemia: A Pathway-Based Stratification of Patients for Precision Oncology. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:470-477. [PMID: 39158364 DOI: 10.1089/omi.2024.0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Precision oncology promises individually tailored drugs and clinical care for patients with cancer: That is, "the right drug, for the right patient, at the right dose, and at the right time." Although stratification of the risk for treatment resistance and toxicity is key to precision oncology, there are multiple ways in which such stratification can be achieved, for example, genetic, functional pathway based, among others. Moving toward precision oncology is sorely needed in the case of acute lymphoblastic leukemia (ALL) wherein adult patients display survival rates ranging from 30% to 70%. The present study reports on the pathway activity signature of adult B-ALL, with an eye to precision oncology. Transcriptome profiles from three different expression datasets, comprising 346 patients who were adolescents or adults with B-ALL, were harnessed to determine the activity of signaling pathways commonly disrupted in B-ALL. Pathway activity analyses revealed that Ph-like ALL closely resembles Ph-positive ALL. Although this was the case at the average pathway activity level, the pathway activity patterns in B-ALL differ from genetic subtypes. Importantly, clustering analysis revealed that five distinct clusters exist in B-ALL patients based on pathway activity, with each cluster displaying a unique pattern of pathway activation. Identifying pathway-based subtypes thus appears to be crucial, considering the inherent heterogeneity among patients with the same genetic subtype. In conclusion, a pathway-based stratification of the B-ALL could potentially allow for simultaneously targeting highly active pathways within each ALL subtype, and thus might open up new avenues of innovation for personalized/precision medicine in this cancer that continues to have poor prognosis in adult patients compared with the children.
Collapse
Affiliation(s)
- Ozlem Ulucan
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Bilgi University, Istanbul, Turkiye
| |
Collapse
|
3
|
Calado CRC. Bridging the gap between target-based and phenotypic-based drug discovery. Expert Opin Drug Discov 2024; 19:789-798. [PMID: 38747562 DOI: 10.1080/17460441.2024.2355330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/10/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION The unparalleled progress in science of the last decades has brought a better understanding of the molecular mechanisms of diseases. This promoted drug discovery processes based on a target approach. However, despite the high promises associated, a critical decrease in the number of first-in-class drugs has been observed. AREAS COVERED This review analyses the challenges, advances, and opportunities associated with the main strategies of the drug discovery process, i.e. based on a rational target approach and on an empirical phenotypic approach. This review also evaluates how the gap between these two crossroads can be bridged toward a more efficient drug discovery process. EXPERT OPINION The critical lack of knowledge of the complex biological networks is leading to targets not relevant for the clinical context or to drugs that present undesired adverse effects. The phenotypic systems designed by considering available molecular mechanisms can mitigate these knowledge gaps. Associated with the expansion of the chemical space and other technologies, these designs can lead to more efficient drug discoveries. Technological and scientific knowledge should also be applied to identify, as early as possible, both drug targets and mechanisms of action, leading to a more efficient drug discovery pipeline.
Collapse
Affiliation(s)
- Cecília R C Calado
- ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
- iBB - Institute for Bioengineering and Biosciences, i4HB - The Associate Laboratory Institute for Health and Bioeconomy, IST - Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Otero-Carrasco B, Ugarte Carro E, Prieto-Santamaría L, Diaz Uzquiano M, Caraça-Valente Hernández JP, Rodríguez-González A. Identifying patterns to uncover the importance of biological pathways on known drug repurposing scenarios. BMC Genomics 2024; 25:43. [PMID: 38191292 PMCID: PMC10775474 DOI: 10.1186/s12864-023-09913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Drug repurposing plays a significant role in providing effective treatments for certain diseases faster and more cost-effectively. Successful repurposing cases are mostly supported by a classical paradigm that stems from de novo drug development. This paradigm is based on the "one-drug-one-target-one-disease" idea. It consists of designing drugs specifically for a single disease and its drug's gene target. In this article, we investigated the use of biological pathways as potential elements to achieve effective drug repurposing. METHODS Considering a total of 4214 successful cases of drug repurposing, we identified cases in which biological pathways serve as the underlying basis for successful repurposing, referred to as DREBIOP. Once the repurposing cases based on pathways were identified, we studied their inherent patterns by considering the different biological elements associated with this dataset, as well as the pathways involved in these cases. Furthermore, we obtained gene-disease association values to demonstrate the diminished significance of the drug's gene target in these repurposing cases. To achieve this, we compared the values obtained for the DREBIOP set with the overall association values found in DISNET, as well as with the drug's target gene (DREGE) based repurposing cases using the Mann-Whitney U Test. RESULTS A collection of drug repurposing cases, known as DREBIOP, was identified as a result. DREBIOP cases exhibit distinct characteristics compared with DREGE cases. Notably, DREBIOP cases are associated with a higher number of biological pathways, with Vitamin D Metabolism and ACE inhibitors being the most prominent pathways. Additionally, it was observed that the association values of GDAs in DREBIOP cases were significantly lower than those in DREGE cases (p-value < 0.05). CONCLUSIONS Biological pathways assume a pivotal role in drug repurposing cases. This investigation successfully revealed patterns that distinguish drug repurposing instances associated with biological pathways. These identified patterns can be applied to any known repurposing case, enabling the detection of pathway-based repurposing scenarios or the classical paradigm.
Collapse
Affiliation(s)
- Belén Otero-Carrasco
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Spain
- ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, Boadilla del Monte, 28660, Spain
| | - Esther Ugarte Carro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Spain
| | - Lucía Prieto-Santamaría
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Spain
- ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, Boadilla del Monte, 28660, Spain
| | - Marina Diaz Uzquiano
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Spain
| | | | - Alejandro Rodríguez-González
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Spain.
- ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, Boadilla del Monte, 28660, Spain.
| |
Collapse
|
5
|
Rawat S, Subramaniam K, Subramanian SK, Subbarayan S, Dhanabalan S, Chidambaram SKM, Stalin B, Roy A, Nagaprasad N, Aruna M, Tesfaye JL, Badassa B, Krishnaraj R. Drug Repositioning Using Computer-aided Drug Design (CADD). Curr Pharm Biotechnol 2024; 25:301-312. [PMID: 37605405 DOI: 10.2174/1389201024666230821103601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 08/23/2023]
Abstract
Drug repositioning is a method of using authorized drugs for other unusually complex diseases. Compared to new drug development, this method is fast, low in cost, and effective. Through the use of outstanding bioinformatics tools, such as computer-aided drug design (CADD), computer strategies play a vital role in the re-transformation of drugs. The use of CADD's special strategy for target-based drug reuse is the most promising method, and its realization rate is high. In this review article, we have particularly focused on understanding the various technologies of CADD and the use of computer-aided drug design for target-based drug reuse, taking COVID-19 and cancer as examples. Finally, it is concluded that CADD technology is accelerating the development of repurposed drugs due to its many advantages, and there are many facts to prove that the new ligand-targeting strategy is a beneficial method and that it will gain momentum with the development of technology.
Collapse
Affiliation(s)
- Sona Rawat
- School of Life Sciences, Jaipur National University, Jaipur-302017, India
| | - Kanmani Subramaniam
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore-641407, Tamil Nadu, India
| | - Selva Kumar Subramanian
- Department of Sciences, Amrita School of Engineering, Coimbatore - 641112, Tamil Nadu, India
| | - Saravanan Subbarayan
- Department of Civil Engineering, National Institute of Technology, Trichy-620015, Tamil Nadu, India
| | - Subramanian Dhanabalan
- Department of Mechanical Engineering, M. Kumarasamy College of Engineering, Karur - 639113, Tamil Nadu, India
| | | | - Balasubramaniam Stalin
- Department of Mechanical Engineering, Anna University, Regional Campus Madurai, Madurai - 625 019, Tamil Nadu, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India
| | - Nagaraj Nagaprasad
- Department of Mechanical Engineering, ULTRA College of Engineering and Technology, Madurai - 625104, Tamilnadu, India
| | - Mahalingam Aruna
- College of Engineering and Computing, Al Ghurair University, Academic City, Dubai, UAE
| | - Jule Leta Tesfaye
- Dambi Dollo University, College of Natural and Computational Science, Department of Physics, Ethiopia
- Centre for Excellence-Indigenous Knowledge, Innovative Technology Transfer and Entrepreneurship, Dambi Dollo University, Dambi Dollo, Ethiopia
- Ministry of innovation and technology, Ethiopia
| | - Bayissa Badassa
- Department of Mechanical Engineering, Dambi Dollo University, Dambi Dollo, Ethiopia
| | - Ramaswamy Krishnaraj
- Centre for Excellence-Indigenous Knowledge, Innovative Technology Transfer and Entrepreneurship, Dambi Dollo University, Dambi Dollo, Ethiopia
- Ministry of innovation and technology, Ethiopia
- Department of Mechanical Engineering, Dambi Dollo University, Dambi Dollo, Ethiopia
| |
Collapse
|
6
|
Müller J, Hemphill A. Toxoplasma gondii infection: novel emerging therapeutic targets. Expert Opin Ther Targets 2023; 27:293-304. [PMID: 37212443 PMCID: PMC10330558 DOI: 10.1080/14728222.2023.2217353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Toxoplasmosis constitutes a challenge for public health, animal production, and welfare. So far, only a limited panel of drugs has been marketed for clinical applications. In addition to classical screening, the investigation of unique targets of the parasite may lead to the identification of novel drugs. AREAS COVERED Herein, the authors describe the methodology to identify novel drug targets in Toxoplasma gondii and review the literature with a focus on the last two decades. EXPERT OPINION Over the last two decades, the investigation of essential proteins of T. gondii as potential drug targets has fostered the hope of identifying novel compounds for the treatment of toxoplasmosis. Despite good efficacies in vitro, only a few classes of these compounds are effective in suitable rodent models, and none has cleared the hurdle to applications in humans. This shows that target-based drug discovery is in no way better than classical screening approaches. In both cases, off-target effects and adverse side effects in the hosts must be considered. Proteomics-driven analyses of parasite- and host-derived proteins that physically bind drug candidates may constitute a suitable tool to characterize drug targets, irrespectively of the drug discovery methods.
Collapse
Affiliation(s)
- Joachim Müller
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Brogi S, Tabanelli R, Calderone V. Combinatorial approaches for novel cardiovascular drug discovery: a review of the literature. Expert Opin Drug Discov 2022; 17:1111-1129. [PMID: 35853260 DOI: 10.1080/17460441.2022.2104247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION In this article, authors report an inclusive discussion about the combinatorial approach for the treatment of cardiovascular diseases (CVDs) and for counteracting the cardiovascular risk factors. The mentioned strategy was demonstrated to be useful for improving the efficacy of pharmacological treatments and in CVDs showed superior efficacy with respect to the classical monotherapeutic approach. AREAS COVERED According to this topic, authors analyzed the combinatorial treatments that are available on the market, highlighting clinical studies that demonstrated the efficacy of combinatorial drug strategies to cure CVDs and related risk factors. Furthermore, the review gives an outlook on the future perspective of this therapeutic option, highlighting novel drug targets and disease models that could help the future cardiovascular drug discovery. EXPERT OPINION The use of specifically designed and increasingly rational and effective drug combination therapies can therefore be considered the evolution of polypharmacy in cardiometabolic and CVDs. This approach can allow to intervene on multiple etiopathogenetic mechanisms of the disease or to act simultaneously on different pathologies/risk factors, using the combinations most suitable from a pharmacodynamic, pharmacokinetic, and toxicological perspective, thus finding the most appropriate therapeutic option.
Collapse
Affiliation(s)
- Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
8
|
Efforts Made to Eliminate Drug-Resistant Malaria and Its Challenges. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5539544. [PMID: 34497848 PMCID: PMC8421183 DOI: 10.1155/2021/5539544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023]
Abstract
Since 2000, a good deal of progress has been made in malaria control. However, there is still an unacceptably high burden of the disease and numerous challenges limiting advancement towards its elimination and ultimate eradication. Among the challenges is the antimalarial drug resistance, which has been documented for almost all antimalarial drugs in current use. As a result, the malaria research community is working on the modification of existing treatments as well as the discovery and development of new drugs to counter the resistance challenges. To this effect, many products are in the pipeline and expected to be marketed soon. In addition to drug and vaccine development, mass drug administration (MDA) is under scientific scrutiny as an important strategy for effective utilization of the developed products. This review discusses the challenges related to malaria elimination, ongoing approaches to tackle the impact of drug-resistant malaria, and upcoming antimalarial drugs.
Collapse
|
9
|
Singh VK, Seed TM. How necessary are animal models for modern drug discovery? Expert Opin Drug Discov 2021; 16:1391-1397. [PMID: 34455867 DOI: 10.1080/17460441.2021.1972255] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
10
|
Jain P, Jain SK, Jain M. Harnessing Drug Repurposing for Exploration of New Diseases: An Insight to Strategies and Case Studies. Curr Mol Med 2021; 21:111-132. [PMID: 32560606 DOI: 10.2174/1566524020666200619125404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Traditional drug discovery is time consuming, costly, and risky process. Owing to the large investment, excessive attrition, and declined output, drug repurposing has become a blooming approach for the identification and development of new therapeutics. The method has gained momentum in the past few years and has resulted in many excellent discoveries. Industries are resurrecting the failed and shelved drugs to save time and cost. The process accounts for approximately 30% of the new US Food and Drug Administration approved drugs and vaccines in recent years. METHODS A systematic literature search using appropriate keywords were made to identify articles discussing the different strategies being adopted for repurposing and various drugs that have been/are being repurposed. RESULTS This review aims to describe the comprehensive data about the various strategies (Blinded search, computational approaches, and experimental approaches) used for the repurposing along with success case studies (treatment for orphan diseases, neglected tropical disease, neurodegenerative diseases, and drugs for pediatric population). It also inculcates an elaborated list of more than 100 drugs that have been repositioned, approaches adopted, and their present clinical status. We have also attempted to incorporate the different databases used for computational repurposing. CONCLUSION The data presented is proof that drug repurposing is a prolific approach circumventing the issues poised by conventional drug discovery approaches. It is a highly promising approach and when combined with sophisticated computational tools, it also carries high precision. The review would help researches in prioritizing the drugrepositioning method much needed to flourish the drug discovery research.
Collapse
Affiliation(s)
- Priti Jain
- Department of Pharmaceutical Chemistry and Computational Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule (425405) Maharashtra, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Munendra Jain
- SVKM's Department of Sciences, Narsee Monjee Institute of Management Studies, Indore, Madhya Pradesh, India
| |
Collapse
|
11
|
Placha D, Jampilek J. Chronic Inflammatory Diseases, Anti-Inflammatory Agents and Their Delivery Nanosystems. Pharmaceutics 2021; 13:pharmaceutics13010064. [PMID: 33419176 PMCID: PMC7825503 DOI: 10.3390/pharmaceutics13010064] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory diseases, whether caused by excessive stress on certain tissues/parts of the body or arising from infections accompanying autoimmune or secondary diseases, have become a problem, especially in the Western world today. Whether these are inflammations of visceral organs, joints, bones, or the like, they are always a physiological reaction of the body, which always tries to eradicate noxious agents and restore tissue homeostasis. Unfortunately, this often results in damage, often irreversible, to the affected tissues. Nevertheless, these inflammatory reactions of the body are the results of excessive stress, strain, and the generally unhealthy environment, in which the people of Western civilization live. The pathophysiology and pathobiochemistry of inflammatory/autoimmune processes are being studied in deep detail, and pharmaceutical companies are constantly developing new drugs that modulate/suppress inflammatory responses and endogenous pro-inflammatory agents. In addition to new specifically targeted drugs for a variety of pro-inflammatory agents, a strategy can be found for the use of older drugs, which are formulated into special nanodrug delivery systems with targeted distribution and often modified release. This contribution summarizes the current state of research and development of nanoformulated anti-inflammatory agents from both conventional drug classes and experimental drugs or dietary supplements used to alleviate inflammatory reactions.
Collapse
Affiliation(s)
- Daniela Placha
- Nanotechnology Centre, CEET, VSB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
- Centre ENET, CEET, VSB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
- Correspondence: (D.P.); (J.J.)
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
- Correspondence: (D.P.); (J.J.)
| |
Collapse
|
12
|
Emmerich CH, Gamboa LM, Hofmann MCJ, Bonin-Andresen M, Arbach O, Schendel P, Gerlach B, Hempel K, Bespalov A, Dirnagl U, Parnham MJ. Improving target assessment in biomedical research: the GOT-IT recommendations. Nat Rev Drug Discov 2021; 20:64-81. [PMID: 33199880 PMCID: PMC7667479 DOI: 10.1038/s41573-020-0087-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Academic research plays a key role in identifying new drug targets, including understanding target biology and links between targets and disease states. To lead to new drugs, however, research must progress from purely academic exploration to the initiation of efforts to identify and test a drug candidate in clinical trials, which are typically conducted by the biopharma industry. This transition can be facilitated by a timely focus on target assessment aspects such as target-related safety issues, druggability and assayability, as well as the potential for target modulation to achieve differentiation from established therapies. Here, we present recommendations from the GOT-IT working group, which have been designed to support academic scientists and funders of translational research in identifying and prioritizing target assessment activities and in defining a critical path to reach scientific goals as well as goals related to licensing, partnering with industry or initiating clinical development programmes. Based on sets of guiding questions for different areas of target assessment, the GOT-IT framework is intended to stimulate academic scientists' awareness of factors that make translational research more robust and efficient, and to facilitate academia-industry collaboration.
Collapse
Affiliation(s)
| | - Lorena Martinez Gamboa
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| | - Martine C J Hofmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine & Pharmacology TMP, Frankfurt am Main, Germany
| | - Marc Bonin-Andresen
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Olga Arbach
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- SPARK-Validation Fund, Berlin Institute of Health, Berlin, Germany
| | - Pascal Schendel
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Katja Hempel
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Anton Bespalov
- PAASP GmbH, Heidelberg, Germany
- Valdman Institute of Pharmacology, Pavlov Medical University, St. Petersburg, Russia
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine & Pharmacology TMP, Frankfurt am Main, Germany
- Faculty of Biochemistry, Chemistry & Pharmacy, J.W. Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Kos J, Bak A, Kozik V, Jankech T, Strharsky T, Swietlicka A, Michnova H, Hosek J, Smolinski A, Oravec M, Devinsky F, Hutta M, Jampilek J. Biological Activities and ADMET-Related Properties of Novel Set of Cinnamanilides. Molecules 2020; 25:molecules25184121. [PMID: 32916979 PMCID: PMC7570544 DOI: 10.3390/molecules25184121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
A series of nineteen novel ring-substituted N-arylcinnamanilides was synthesized and characterized. All investigated compounds were tested against Staphylococcus aureus as the reference strain, two clinical isolates of methicillin-resistant S. aureus (MRSA), and Mycobacterium tuberculosis. (2E)-N-[3-Fluoro-4-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide showed even better activity (minimum inhibitory concentration (MIC) 25.9 and 12.9 µM) against MRSA isolates than the commonly used ampicillin (MIC 45.8 µM). The screening of the cell viability was performed using THP1-Blue™ NF-κB cells and, except for (2E)-N-(4-bromo-3-chlorophenyl)-3-phenylprop-2-enamide (IC50 6.5 µM), none of the discussed compounds showed any significant cytotoxic effect up to 20 μM. Moreover, all compounds were tested for their anti-inflammatory potential; several compounds attenuated the lipopolysaccharide-induced NF-κB activation and were more potent than the parental cinnamic acid. The lipophilicity values were specified experimentally as well. In addition, in silico approximation of the lipophilicity values was performed employing a set of free/commercial clogP estimators, corrected afterwards by the corresponding pKa calculated at physiological pH and subsequently cross-compared with the experimental parameters. The similarity-driven property space evaluation of structural analogs was carried out using the principal component analysis, Tanimoto metrics, and Kohonen mapping.
Collapse
Affiliation(s)
- Jiri Kos
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic; (J.K.); (T.S.); (H.M.); (J.H.)
| | - Andrzej Bak
- Department of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland; (V.K.); (A.S.)
- Correspondence: (A.B.); (J.J.)
| | - Violetta Kozik
- Department of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland; (V.K.); (A.S.)
| | - Timotej Jankech
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia; (T.J.); (M.H.)
| | - Tomas Strharsky
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic; (J.K.); (T.S.); (H.M.); (J.H.)
| | - Aleksandra Swietlicka
- Department of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland; (V.K.); (A.S.)
| | - Hana Michnova
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic; (J.K.); (T.S.); (H.M.); (J.H.)
| | - Jan Hosek
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic; (J.K.); (T.S.); (H.M.); (J.H.)
| | - Adam Smolinski
- Central Mining Institute, Pl. Gwarkow 1, 40166 Katowice, Poland;
| | - Michal Oravec
- Global Change Research Institute CAS, Belidla 986/4a, 60300 Brno, Czech Republic;
| | - Ferdinand Devinsky
- Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia;
| | - Milan Hutta
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia; (T.J.); (M.H.)
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia; (T.J.); (M.H.)
- Correspondence: (A.B.); (J.J.)
| |
Collapse
|
14
|
Oyewole RO, Oyebamiji AK, Semire B. Theoretical calculations of molecular descriptors for anticancer activities of 1, 2, 3-triazole-pyrimidine derivatives against gastric cancer cell line (MGC-803): DFT, QSAR and docking approaches. Heliyon 2020; 6:e03926. [PMID: 32462084 PMCID: PMC7243141 DOI: 10.1016/j.heliyon.2020.e03926] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/26/2020] [Accepted: 05/01/2020] [Indexed: 02/08/2023] Open
Abstract
This work used quantum chemical method via DFT to calculate molecular descriptors for the development of QSAR model to predict bioactivity (IC50- 50% inhibition concentration) of the selected 1, 2, 3-triazole-pyrimidine derivatives against receptor (human gastric cancer cell line, MGC-803). The selected molecular parameters were obtained by B3LYP/6-31G∗∗. QSAR model linked the molecular parameters of the studied compounds to their cytotoxicity and reproduced their observed bioactivities against MGC-803. The calculated IC50 tailored the observed IC50 and greater than standard compound, 5-fluorouracil, suggesting that the developed QSAR model reproduced the observed bioactivity. Statistical analyses (including R2, CV. R2 andR a 2 gave 0.950, 0.970 and 0.844 respectively) revealed a very good fitness. Molecular docking studies revealed the hydrogen bonding with the amino acid residues in the binding site, as well as ligand conformations which are essential feature for ligand-receptor interactions. Therefore, the methods used in this study are veritable tools that can be employed in pharmacological and medicinal chemistry researches in designing better drugs with improve potency.
Collapse
Affiliation(s)
- Rhoda Oyeladun Oyewole
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Abel Kolawole Oyebamiji
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Basic Sciences, Adeleke University, P.M.B. 250, Ede, Osun State, Nigeria
| | - Banjo Semire
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
15
|
Oláh J, Ovádi J. Pharmacological targeting of α-synuclein and TPPP/p25 in Parkinson's disease: challenges and opportunities in a Nutshell. FEBS Lett 2019; 593:1641-1653. [PMID: 31148150 DOI: 10.1002/1873-3468.13464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/10/2023]
Abstract
With the aging of population, neurological disorders, and especially disorders involving defects in protein conformation (also known as proteopathies) pose a serious socio-economic problem. So far there is no effective treatment for most proteopathies, including Parkinson's disease (PD). The mechanism underlying PD pathogenesis is largely unknown, and the hallmark proteins, α-synuclein (SYN) and tubulin polymerization promoting protein (TPPP/p25) are challenging drug targets. These proteins are intrinsically disordered with high conformational plasticity, and have diverse physiological and pathological functions. In the healthy brain, SYN and TPPP/p25 occur in neurons and oligodendrocytes, respectively; however, in PD and multiple system atrophy, they are co-enriched and co-localized in both cell types, thereby marking pathogenesis. Although large inclusions appear at a late disease stage, small, soluble assemblies of SYN promoted by TPPP/p25 are pathogenic. In the light of these issues, we established a new innovative strategy for the validation of a specific drug target based upon the identification of contact surfaces of the pathological SYN-TPPP/p25 complex that may lead to the development of peptidomimetic foldamers suitable for pharmaceutical intervention.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Judit Ovádi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
16
|
Singh VK, Seed TM, Olabisi AO. Drug discovery strategies for acute radiation syndrome. Expert Opin Drug Discov 2019; 14:701-715. [PMID: 31008662 DOI: 10.1080/17460441.2019.1604674] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: There are at the minimum two major, quite different approaches to advance drug discovery. The first being the target-based drug discovery (TBDD) approach that is commonly referred to as the molecular approach. The second approach is the phenotype-based drug discovery (PBDD), also known as physiology-based drug discovery or empirical approach. Area covered: The authors discuss, herein, the need for developing radiation countermeasure agents for various sub-syndromes of acute radiation syndromes (ARS) following TBDD and PBDD approaches. With time and continuous advances in radiation countermeasure drug development research, the expectation is to have multiple radiation countermeasure agents for each sub-syndrome made available to radiation exposed victims. Expert opinion: The majority of the countermeasures currently being developed for ARS employ the PBDD approach, while the TBDD approach is clearly under-utilized. In the future, an improved drug development strategy might be a 'hybrid' strategy that is more reliant on TBDD for the initial drug discovery via large-scale screening of potential candidate agents, while utilizing PBDD for secondary screening of those candidates, followed by tertiary analytics phase in order to pinpoint efficacious candidates that target the specific sub-syndromes of ARS.
Collapse
Affiliation(s)
- Vijay K Singh
- a Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Scientific Research Department , Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | | | - Ayodele O Olabisi
- b Scientific Research Department , Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
17
|
Lumefantrine and o-choline - Parasite metabolism specific drug molecules inhibited in vitro growth of Theileria equi and Babesia caballi in MASP culture system. Ticks Tick Borne Dis 2019; 10:568-574. [PMID: 30733146 DOI: 10.1016/j.ttbdis.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/10/2019] [Accepted: 01/20/2019] [Indexed: 01/01/2023]
Abstract
Theileria equi and Babesia caballi are tick-borne apicomplexan haemoprotozoan parasites of equines and are responsible for considerable economic losses to stakeholders. Chemotherapeutic drugs that are available not only require multiple dosages but also prompt multiple organ toxicity in treated host though incapable of clearing parasitaemia completely. In this study, we have screened the in vitro inhibitory efficacy of four different drug molecules (o-choline, DABCO®, lumefantrine and eugenol) against T. equi and B. caballi, targeting different parasite metabolism pathways. Imidocarb dipropionate and diminazene aceturate were used as reference control drugs. The 50% in vitro growth inhibitory concentration (IC50) of lumefantrine, o-choline, DABCO® and eugenol for T. equi were: 30.90 μM; 84.38 μM; 443 μM; 120 μM and for B. caballi growth inhibition were: 5.58 μM; 135.29 μM; 150 μM; 197.05 μM, respectively. Imidocarb dipropionate inhibited the in vitro growth of T. equi at IC50 of 257.5 nM, while diminazene aceturate inhibited the in vitro growth of B. caballi at IC50 of 22 nM. DABCO® and eugenol were not so effective in inhibiting the in vitro growth of T. equi and B. caballi, while lumefantrine and o-choline significantly (p ≤ 0.05) inhibited the in vitro growth of these piroplasms targeting haem digestion and parasite membrane phospholipid synthesis.
Collapse
|
18
|
Current Screening Methodologies in Drug Discovery for Selected Human Diseases. Mar Drugs 2018; 16:md16080279. [PMID: 30110923 PMCID: PMC6117650 DOI: 10.3390/md16080279] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/11/2018] [Indexed: 01/31/2023] Open
Abstract
The increase of many deadly diseases like infections by multidrug-resistant bacteria implies re-inventing the wheel on drug discovery. A better comprehension of the metabolisms and regulation of diseases, the increase in knowledge based on the study of disease-born microorganisms’ genomes, the development of more representative disease models and improvement of techniques, technologies, and computation applied to biology are advances that will foster drug discovery in upcoming years. In this paper, several aspects of current methodologies for drug discovery of antibacterial and antifungals, anti-tropical diseases, antibiofilm and antiquorum sensing, anticancer and neuroprotectors are considered. For drug discovery, two different complementary approaches can be applied: classical pharmacology, also known as phenotypic drug discovery, which is the historical basis of drug discovery, and reverse pharmacology, also designated target-based drug discovery. Screening methods based on phenotypic drug discovery have been used to discover new natural products mainly from terrestrial origin. Examples of the discovery of marine natural products are provided. A section on future trends provides a comprehensive overview on recent advances that will foster the pharmaceutical industry.
Collapse
|
19
|
Kim H, Han H. Computer-Aided Multi-Target Management of Emergent Alzheimer's Disease. Bioinformation 2018; 14:167-180. [PMID: 29983487 PMCID: PMC6016757 DOI: 10.6026/97320630014167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) represents an enormous global health burden in terms of human suffering and economic cost. AD management requires a shift from the prevailing paradigm targeting pathogenesis to design and develop effective drugs with adequate success in clinical trials. Therefore, it is of interest to report a review on amyloid beta (Aβ) effects and other multi-targets including cholinesterase, NFTs, tau protein and TNF associated with brain cell death to be neuro-protective from AD. It should be noted that these molecules have been generated either by target-based or phenotypic methods. Hence, the use of recent advancements in nanomedicine and other natural compounds screening tools as a feasible alternative for circumventing specific liabilities is realized. We review recent developments in the design and identification of neuro-degenerative compounds against AD generated using current advancements in computational multi-target modeling algorithms reflected by theragnosis (combination of diagnostic tests and therapy) concern.
Collapse
Affiliation(s)
- Hyunjo Kim
- Department of Medical Informatics, Ajou Medical University Hospital, Suwon, Kyeounggido province, South Korea
| | - Hyunwook Han
- Department of Informatics, School of Medicine, CHA University, Seongnam, South Korea
- Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam, South Korea
| |
Collapse
|
20
|
Perez-Castillo Y, Sánchez-Rodríguez A, Tejera E, Cruz-Monteagudo M, Borges F, Cordeiro MNDS, Le-Thi-Thu H, Pham-The H. A desirability-based multi objective approach for the virtual screening discovery of broad-spectrum anti-gastric cancer agents. PLoS One 2018; 13:e0192176. [PMID: 29420638 PMCID: PMC5805264 DOI: 10.1371/journal.pone.0192176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/17/2018] [Indexed: 01/09/2023] Open
Abstract
Gastric cancer is the third leading cause of cancer-related mortality worldwide and despite advances in prevention, diagnosis and therapy, it is still regarded as a global health concern. The efficacy of the therapies for gastric cancer is limited by a poor response to currently available therapeutic regimens. One of the reasons that may explain these poor clinical outcomes is the highly heterogeneous nature of this disease. In this sense, it is essential to discover new molecular agents capable of targeting various gastric cancer subtypes simultaneously. Here, we present a multi-objective approach for the ligand-based virtual screening discovery of chemical compounds simultaneously active against the gastric cancer cell lines AGS, NCI-N87 and SNU-1. The proposed approach relays in a novel methodology based on the development of ensemble models for the bioactivity prediction against each individual gastric cancer cell line. The methodology includes the aggregation of one ensemble per cell line using a desirability-based algorithm into virtual screening protocols. Our research leads to the proposal of a multi-targeted virtual screening protocol able to achieve high enrichment of known chemicals with anti-gastric cancer activity. Specifically, our results indicate that, using the proposed protocol, it is possible to retrieve almost 20 more times multi-targeted compounds in the first 1% of the ranked list than what is expected from a uniform distribution of the active ones in the virtual screening database. More importantly, the proposed protocol attains an outstanding initial enrichment of known multi-targeted anti-gastric cancer agents.
Collapse
Affiliation(s)
- Yunierkis Perez-Castillo
- Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito, Ecuador
- * E-mail: (YPC); (HPT)
| | | | - Eduardo Tejera
- Facultad de Ingenieria y Ciencias Agropecuarias, Universidad de Las Américas, Quito, Ecuador
| | - Maykel Cruz-Monteagudo
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- REQUIMTE/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Department of General Education, West Coast University—Miami Campus, Doral, Florida, United States of America
| | - Fernanda Borges
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - M. Natália D. S. Cordeiro
- REQUIMTE/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Huong Le-Thi-Thu
- VNU School of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | - Hai Pham-The
- Hanoi University of Pharmacy, Hanoi, Vietnam
- * E-mail: (YPC); (HPT)
| |
Collapse
|
21
|
Fontana BD, Mezzomo NJ, Kalueff AV, Rosemberg DB. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Exp Neurol 2018; 299:157-171. [DOI: 10.1016/j.expneurol.2017.10.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/15/2017] [Accepted: 10/04/2017] [Indexed: 12/30/2022]
|