1
|
Sastri KT, Gupta NV, Kannan A, Dutta S, Ali M Osmani R, V B, Ramkishan A, S S. The next frontier in multiple sclerosis therapies: Current advances and evolving targets. Eur J Pharmacol 2024; 985:177080. [PMID: 39491741 DOI: 10.1016/j.ejphar.2024.177080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Recent advancements in research have significantly enhanced our comprehension of the intricate immune components that contribute to multiple sclerosis (MS) pathogenesis. By conducting an in-depth analysis of complex molecular interactions involved in the immunological cascade of the disease, researchers have successfully identified novel therapeutic targets, leading to the development of innovative therapies. Leveraging pioneering technologies in proteomics, genomics, and the assessment of environmental factors has expedited our understanding of the vulnerability and impact of these factors on the progression of MS. Furthermore, these advances have facilitated the detection of significant biomarkers for evaluating disease activity. By integrating these findings, researchers can design novel molecules to identify new targets, paving the way for improved treatments and enhanced patient care. Our review presents recent discoveries regarding the pathogenesis of MS, highlights their genetic implications, and proposes an insightful approach for engaging with newer therapeutic targets in effectively managing this debilitating condition.
Collapse
Affiliation(s)
- K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Suman Dutta
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - Balamuralidhara V
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - A Ramkishan
- Deputy Drugs Controller (India), Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | | |
Collapse
|
2
|
Fan L, Zhang Y, Huang S, Chen J, Wang J, Meng F, Zhang J, Xue Q. Effects of multiple treatments with stem cell therapy in patients with multiple sclerosis. Mult Scler Relat Disord 2024; 92:105944. [PMID: 39442287 DOI: 10.1016/j.msard.2024.105944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/29/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE This study was to evaluate the effectiveness of stem cell therapies (AHSCT: autologous hematopoietic stem cell transplantation and MSCs: mesenchymal stem cells) compared to non-stem cell therapies in multiple sclerosis (MS) patients. DESIGN Clinical trials to investigate the therapeutic effects of stem cells therapy was searched by PubMed, Embase, Web of Science, and the Cochrane Library. The Cochrane Risk of Bias Assessment Tool and data analysis software will be applied. RESULTS Data were collected between the earliest available date and August 2023. Ten studies were included, with a sample size of 5288 used in the studies. Results showed that human umbilical cord-derived mesenchymal stem cells reduced the Annualized Relapse Rate (SUCRA: 70.9 %) and Expanded Disability Status Scale (SUCRA: 77.1 %) of MS patients, AHSCT reduced mortality rate (SUCRA: 69.8 %), autologous peripheral blood stem cell transplantation (APBSCT) reduced recurrence rate (SUCRA: 86.7 %) and improved No Evidence of Disease Activity-3 (SUCRA: 92.8 %). CONCLUSION At present, AHSCT and MSCs have been demonstrated to reduce the recurrence rate of multiple sclerosis and improve disability, particularly in the case of hUC-MSCs. However, APBSCT and AHSCT in the context of the NEDA-3 criteria have not yielded the desired outcomes.
Collapse
Affiliation(s)
- Liding Fan
- Jining Medical University, Second Clinical Medical College, Shandong, 272067, China
| | - Yunfei Zhang
- Jining Medical University, School of Clinical Medicine, Shandong, 272067, China
| | - Shuo Huang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, 215123, China
| | - Jie Chen
- Jining Medical University, School of Clinical Medicine, Shandong, 272067, China
| | - Junying Wang
- Jining Medical University, School of Clinical Medicine, Shandong, 272067, China
| | - Furen Meng
- Jining Medical University, School of Clinical Medicine, Shandong, 272067, China
| | - Jiarui Zhang
- Jining Medical University, Second Clinical Medical College, Shandong, 272067, China
| | - Qingjie Xue
- Jining Medical University, Second Clinical Medical College, Shandong, 272067, China.
| |
Collapse
|
3
|
Vaheb S, Afshin S, Ghoshouni H, Ghaffary EM, Farzan M, Shaygannejad V, Thapa S, Zabeti A, Mirmosayyeb O. Neurological efficacy and safety of mesenchymal stem cells (MSCs) therapy in people with multiple sclerosis (pwMS): An updated systematic review and meta-analysis. Mult Scler Relat Disord 2024; 87:105681. [PMID: 38838423 DOI: 10.1016/j.msard.2024.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Current therapeutic strategies for multiple sclerosis (MS) aim to suppress the immune response and reduce relapse rates. As alternative treatments, mesenchymal stem cells (MSCs) are being explored. MSCs show promise in repairing nerve tissue and reducing autoimmune responses in people with MS (pwMS). OBJECTIVE This review delves into the literature on the efficacy and safety of MSC therapy for pwMS. METHODS A comprehensive search strategy was employed to identify relevant articles from five databases until January 2024. The inclusion criteria encompassed interventional studies. Efficacy and safety data concerning MSC therapy in relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), and primary progressive MS (PPMS) groups were extracted and analyzed. RESULTS A comprehensive analysis encompassing 30 studies revealed that individuals who underwent intrathecal (IT) protocol-based transplantation of MSCs experienced a noteworthy improvement in their expanded disability status scale (EDSS) compared to the placebo group. Weighted mean difference (WMD) was -0.28; 95 % CI -0.53 to -0.03, I2 = 0 %, p-value = 0.028); however, the intravenous (IV) group did not show significant changes in EDSS scores. The annualized relapse rate (ARR) did not significantly decrease among pwMS (WMD = -0.34; 95 % CI -1.05 to 0.38, I2 = 98 %, p-value = 0.357). Favorable results were observed in magnetic resonance imaging (MRI), with only 19.11 % of pwMS showing contrast-enhanced lesions (CEL) in the short term and no long-term MRI activity. The most common complications in both short-term and long-term follow-ups were infection, back pain, and gastrointestinal symptoms. CONCLUSIONS The study highlights the safety potential of MSC therapy for pwMS. While MRI-based neural regeneration shows significant treatment potential, the effectiveness of MSC therapy remains uncertain due to study limitations and ineffective outcome measures. Further research is needed to establish efficacy and optimize evaluation methods for MSC therapy on pwMS.
Collapse
Affiliation(s)
- Saeed Vaheb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahra Afshin
- Department of Neurology, School of Medicine, Hormozgan University of Medical Sciences, Bandarabbas, Iran
| | - Hamed Ghoshouni
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Moases Ghaffary
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahour Farzan
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sangharsha Thapa
- Jacobs School of Biomedical Sciences, University of Buffalo, Department of Neurology, Buffalo, USA
| | - Aram Zabeti
- University of Cincinnati, Cincinnati, OH, USA
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Sharma S, Risen S, Gilberto VS, Boland S, Chatterjee A, Moreno JA, Nagpal P. Targeted-Neuroinflammation Mitigation Using Inflammasome-Inhibiting Nanoligomers is Therapeutic in an Experimental Autoimmune Encephalomyelitis Mouse Model. ACS Chem Neurosci 2024; 15:1596-1608. [PMID: 38526238 DOI: 10.1021/acschemneuro.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Multiple sclerosis (MS) is a debilitating autoimmune disease that impacts millions of patients worldwide, disproportionately impacting women (4:1), and often presenting at highly productive stages of life. This disease affects the spinal cord and brain and is characterized by severe neuroinflammation, demyelination, and subsequent neuronal damage, resulting in symptoms like loss of mobility. While untargeted and pan-immunosuppressive therapies have proven to be disease-modifying and manage (or prolong the time between) symptoms in many patients, a significant fraction are unable to achieve remission. Recent work has suggested that targeted neuroinflammation mitigation through selective inflammasome inhibition can offer relief to patients while preserving key components of immune function. Here, we show a screening of potential therapeutic targets using inflammasome-inhibiting Nanoligomers (NF-κB1, TNFR1, TNF-α, IL-6) that meet or far-exceed commercially available small-molecule counterparts like ruxolitinib, MCC950, and deucravacitinib. Using the human brain organoid model, top Nanoligomer combinations (NF-κB1 + TNFR1: NI111, and NF-κB1 + NLRP3: NI112) were shown to significantly reduce neuroinflammation without any observable negative impact on organoid function. Further testing of these top Nanoligomer combinations in an aggressive experimental autoimmune encephalomyelitis (EAE) mouse model for MS using intraperitoneal (IP) injections showed that NF-κB1 and NLRP3 targeting Nanoligomer combination NI112 rescues mice without observable loss of mobility or disability, minimal inflammation in brain and spinal cord histology, and minimal to no immune cell infiltration of the spinal cord and no demyelination, similar to or at par with mice that received no EAE injections (negative control). Mice receiving NI111 (NF-κB1 + TNFR1) also showed reduced neuroinflammation compared to saline (sham)-treated EAE mice and at par/similar to other inflammasome-inhibiting small molecule treatments, although it was significantly higher than NI112 leading to subsequent worsening clinical outcomes. Furthermore, treatment with an oral formulation of NI112 at lower doses showed a significant reduction in EAE severity, albeit with higher variance owing to administration and formulation/fill-and-finish variability. Overall, these results point to the potential of further development and testing of these inflammasome-targeting Nanoliogmers as an effective neuroinflammation treatment for multiple neurodegenerative diseases and potentially benefit several patients suffering from such debilitating autoimmune diseases like MS.
Collapse
Affiliation(s)
- Sadhana Sharma
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 80027, United States
| | - Sydney Risen
- Environmental & Radiological Health Sciences, and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Vincenzo S Gilberto
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 80027, United States
| | - Sean Boland
- Environmental & Radiological Health Sciences, and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Anushree Chatterjee
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 80027, United States
| | - Julie A Moreno
- Environmental & Radiological Health Sciences, and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Prashant Nagpal
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 80027, United States
| |
Collapse
|
5
|
Shokati A, Naser Moghadasi A, Ghashghaei A, Sahraian MA, Chahardouli B, Mousavi SA, Ai J, Nikbakht M. Good manufacturing practices production of human placental derived mesenchymal stem cells for therapeutic applications: focus on multiple sclerosis. Mol Biol Rep 2024; 51:460. [PMID: 38551770 DOI: 10.1007/s11033-024-09372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/21/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Among neurological diseases, multiple sclerosis (MS) affects mostly young adults and can cause long-term disability. While most medications with approval from regulatory agencies are very effective in treating MS disease, they are unable to repair the tissue damage found in the central nervous system (CNS). Consequently, Cell-based therapy particularly using mesenchymal stem/stromal cells (MSCs), holds promise for neuroprotection and tissue repair in MS treatment. Furthermore, placenta-derived MSCs (PLMSCs) have shown the potential to treat MS due to their abundance, noninvasive isolation from discarded tissues, no ethical problems, anti-inflammatory, and reparative properties. Accordingly, good manufacturing practices (GMPs) plays a crucial part in clinical SCs manufacturing. The purpose of our article is to discuss GMP-grade PLMSC protocols for treating MS as well as other clinical applications. METHODS AND RESULTS Placental tissue obtained of a healthy donor during the caesarean delivery and PLMSCs isolated by GMP standards. Flow cytometry was used to assess the expression of the CD markers CD34, CD105, CD90, and CD73 in the MSCs and the mesodermal differentiation ability was evaluated. Furthermore, Genetic evaluation of PLMSCs was done by G-banded karyotyping and revealed no chromosomal instability. In spite of the anatomical origin of the starting material, PLMSCs using this method of culture were maternal in origin. CONCLUSIONS We hope that our protocol for clinical manufacturing of PLMSCs according to GMP standards will assist researchers in isolating MSCs from placental tissue for clinical and pre-clinical applications.
Collapse
Affiliation(s)
- Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Andisheh Ghashghaei
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Bahram Chahardouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Asadollah Mousavi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohsen Nikbakht
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Kargar Shomali Street, P. O. Box.: 1411713131, Tehran, Iran.
| |
Collapse
|
6
|
Pasternak-Mnich K, Szwed-Georgiou A, Ziemba B, Pieszyński I, Bryszewska M, Kujawa J. Effect of photobiomodulation therapy on the morphology, intracellular calcium concentration, free radical generation, apoptosis and necrosis of human mesenchymal stem cells-an in vitro study. Lasers Med Sci 2024; 39:75. [PMID: 38383862 DOI: 10.1007/s10103-024-04008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
The aim of the study was to investigate the impact of multiwave locked system (MLS M1) emitting synchronized laser radiation at 2 wavelength simultaneous (λ = 808 nm, λ = 905 nm) on the mesenchymal stem cells (MSCs). Human MSCs were exposed to MLS M1 system laser radiation with the power density 195-318 mW/cm2 and doses of energy 3-20 J, in continuous wave emission (CW) or pulsed emission (PE). After irradiation exposure in doses of energy 3 J, 10 J (CW, ƒ = 1000 Hz), and 20 J (ƒ = 2000 Hz), increased proliferation of MSCs was observed. Significant reduction of Fluo-4 Direct™ Ca2+ indicator fluorescence over controls after CW and PE with 3 J, 10 J, and 20 J was noticed. A decrease in fluorescence intensity after the application of radiation with a frequency of 2000 Hz in doses of 3 J, 10 J, and 20 J was observed. In contrary, an increase in DCF fluorescence intensity after irradiation with laser radiation of 3 J, 10 J, and 20 J (CW, ƒ = 1000 Hz and ƒ = 2000 Hz) was also shown. Laser irradiation at a dose of 20 J, emitted at 1000 Hz and 2000 Hz, and 3 J emitted at a frequency of 2000 Hz caused a statistically significant loss of MSC viability. The applied photobiomodulation therapy induced a strong pro-apoptotic effect dependent on the laser irradiation exposure time, while the application of a sufficiently high-energy dose and frequency with a sufficiently long exposure time significantly increased intracellular calcium ion concentration and free radical production by MSCs.
Collapse
Affiliation(s)
- Kamila Pasternak-Mnich
- Department of Medical Rehabilitation, Faculty of Health Sciences, Medical University of Lodz, 251 Pomorska St., 92-213, Lodz, Poland.
| | - Aleksandra Szwed-Georgiou
- Department of General Biophysics, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
- Department of Immunology and Infectious Biology, University of Lodz, 12/16 Banacha St., 90-236, Lodz, Poland
| | - Barbara Ziemba
- Department of Clinical Genetic, Medical University of Lodz, 251 Pomorska St., 92-213, Lodz, Poland
| | - Ireneusz Pieszyński
- Department of Medical Rehabilitation, Faculty of Health Sciences, Medical University of Lodz, 251 Pomorska St., 92-213, Lodz, Poland
| | - Maria Bryszewska
- Department of General Biophysics, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Jolanta Kujawa
- Department of Medical Rehabilitation, Faculty of Health Sciences, Medical University of Lodz, 251 Pomorska St., 92-213, Lodz, Poland
| |
Collapse
|
7
|
Zolfaghari Baghbadorani P, Rayati Damavandi A, Moradi S, Ahmadi M, Bemani P, Aria H, Mottedayyen H, Rayati Damavandi A, Eskandari N, Fathi F. Current advances in stem cell therapy in the treatment of multiple sclerosis. Rev Neurosci 2023; 34:613-633. [PMID: 36496351 DOI: 10.1515/revneuro-2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/18/2022] [Indexed: 08/04/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease related to the central nervous system (CNS) with a significant global burden. In this illness, the immune system plays an essential role in its pathophysiology and progression. The currently available treatments are not recognized as curable options and, at best, might slow the progression of MS injuries to the CNS. However, stem cell treatment has provided a new avenue for treating MS. Stem cells may enhance CNS healing and regulate immunological responses. Likewise, stem cells can come from various sources, including adipose, neuronal, bone marrow, and embryonic tissues. Choosing the optimal cell source for stem cell therapy is still a difficult verdict. A type of stem cell known as mesenchymal stem cells (MSCs) is obtainable from different sources and has a strong immunomodulatory impact on the immune system. According to mounting data, the umbilical cord and adipose tissue may serve as appropriate sources for the isolation of MSCs. Human amniotic epithelial cells (hAECs), as novel stem cell sources with immune-regulatory effects, regenerative properties, and decreased antigenicity, can also be thought of as a new upcoming contender for MS treatment. Overall, the administration of stem cells in different sets of animal and clinical trials has shown immunomodulatory and neuroprotective results. Therefore, this review aims to discuss the different types of stem cells by focusing on MSCs and their mechanisms, which can be used to treat and improve the outcomes of MS disease.
Collapse
Affiliation(s)
| | - Amirmasoud Rayati Damavandi
- Students' Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Keshavarz Blvrd, Vesal Shirazi St., Tehran 1417613151, Iran
| | - Samira Moradi
- School of Medicine, Hormozgan University of Medical Sciences Chamran Blvrd., Hormozgan 7919693116, Bandar Abbass, Iran
| | - Meysam Ahmadi
- School of Medicine, Shiraz University of Medical Sciences, Fars, Zand St., Shiraz 7134814336, Iran
| | - Peyman Bemani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| | - Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fars, Ibn Sina Sq., Fasa 7461686688, Iran
| | - Hossein Mottedayyen
- Department of Immunology, School of Medicine, Kashan University of Medical Sciences, Ravandi Blvrd, Isfahan, Kashan 8715988141, Iran
| | - Amirhossein Rayati Damavandi
- Student's Research Committee, Pharmaceutical Sciences Branch, Islamic Azad University, Yakhchal St., Tehran 193951498, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| | - Farshid Fathi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| |
Collapse
|
8
|
van Schaik TA, Moreno-Lama L, Aligholipour Farzani T, Wang M, Chen KS, Li W, Cai L, Zhang YS, Shah K. Engineered cell-based therapies in ex vivo ready-made CellDex capsules have therapeutic efficacy in solid tumors. Biomed Pharmacother 2023; 162:114665. [PMID: 37062216 PMCID: PMC10165501 DOI: 10.1016/j.biopha.2023.114665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023] Open
Abstract
Encapsulated cell-based therapies for solid tumors have shown promising results in pre-clinical settings. However, the inability to culture encapsulated therapeutic cells prior to their transplantation has limited their translation into clinical settings. In this study, we created a wide variety of engineered therapeutic cells (ThC) loaded in micropore-forming gelatin methacryloyl (GelMA) hydrogel (CellDex) capsules that can be cultured in vitro prior to their transplantation in surgically debulked solid tumors. We show that both allogeneic and autologous engineered cells, such as stem cells (SCs), macrophages, NK cells, and T cells, proliferate within CellDex capsules and migrate out of the gel in vitro and in vivo. Furthermore, tumor cell specific therapeutic proteins and oncolytic viruses released from CellDex capsules retain and prolong their anti-tumor effects. In vivo, ThCs in pre-manufactured Celldex capsules persist long-term and track tumor cells. Moreover, chimeric antigen receptor (CAR) T cell bearing CellDex (T-CellDex) and human SC releasing therapeutic proteins (hSC-CellDex) capsules show therapeutic efficacy in metastatic and primary brain tumor resection models that mimic standard of care of tumor resection in patients. Overall, this unique approach of pre-manufactured micropore-forming CellDex capsules offers an effective off-the-shelf clinically viable strategy to treat solid tumors locally.
Collapse
Affiliation(s)
- Thijs A van Schaik
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lucia Moreno-Lama
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Touraj Aligholipour Farzani
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mian Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Kok-Siong Chen
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wanlu Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Ling Cai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
9
|
Lohrasbi F, Ghasemi-Kasman M, Soghli N, Ghazvini S, Vaziri Z, Abdi S, Darban YM. The Journey of iPSC-derived OPCs in Demyelinating Disorders: From In vitro Generation to In vivo Transplantation. Curr Neuropharmacol 2023; 21:1980-1991. [PMID: 36825702 PMCID: PMC10514531 DOI: 10.2174/1570159x21666230220150010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 02/22/2023] Open
Abstract
Loss of myelination is common among neurological diseases. It causes significant disability, even death, if it is not treated instantly. Different mechanisms involve the pathophysiology of demyelinating diseases, such as genetic background, infectious, and autoimmune inflammation. Recently, regenerative medicine and stem cell therapy have shown to be promising for the treatment of demyelinating disorders. Stem cells, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cells (ASCs), can differentiate into oligodendrocyte progenitor cells (OPCs), which may convert to oligodendrocytes (OLs) and recover myelination. IPSCs provide an endless source for OPCs generation. However, the restricted capacity of proliferation, differentiation, migration, and myelination of iPSC-derived OPCs is a notable gap for future studies. In this article, we have first reviewed stem cell therapy in demyelinating diseases. Secondly, methods of different protocols have been discussed among in vitro and in vivo studies on iPSC-derived OPCs to contrast OPCs' transplantation efficacy. Lastly, we have reviewed the results of iPSCs-derived OLs production in each demyelination model.
Collapse
Affiliation(s)
- Fatemeh Lohrasbi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
- Department of Physiology, School of Medical Sciences, Babol University of Medical Science, Babol, Iran
| | - Negar Soghli
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Sobhan Ghazvini
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Zahra Vaziri
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Sadaf Abdi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | | |
Collapse
|
10
|
Ahmed T. Neural stem cell engineering for the treatment of multiple sclerosis. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
11
|
Immunopathogenesis, Diagnosis, and Treatment of Multiple Sclerosis. Neurol Clin 2022; 41:87-106. [DOI: 10.1016/j.ncl.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Dong Z, Wu L, Zhao L. A concise review of the orofacial mesenchymal stromal cells as a novel therapy for neurological diseases and injuries. J Tissue Eng Regen Med 2022; 16:775-787. [PMID: 35716051 DOI: 10.1002/term.3333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/10/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022]
Abstract
Orofacial mesenchymal stromal cells (OFMSCs) are mesenchymal stromal cells isolated from the oral and facial regions, which possess typical mesenchymal stromal cell features such as self-renewing, multilineage differentiation, and immunoregulatory properties. Recently, increasing studies have been carried out on the neurotrophic and neuroregenerative properties of OFMSCs as well as their potential to treat neurological diseases. In this review, we summarize the current evidence and discuss the prospects regarding the therapeutic potential of OFMSCs as a new approach to treat different neurological diseases and injuries.
Collapse
Affiliation(s)
- Zhili Dong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liping Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.,South China Center of Craniofacial Stem Cell Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Mönch D, Reinders MEJ, Dahlke MH, Hoogduijn MJ. How to Make Sense out of 75,000 Mesenchymal Stromal Cell Publications? Cells 2022; 11:cells11091419. [PMID: 35563725 PMCID: PMC9101744 DOI: 10.3390/cells11091419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stromal cells have been the subject of an expanding number of studies over the past decades. Today, over 75,000 publications are available that shine light on the biological properties and therapeutic effects of these versatile cells in numerous pre-clinical models and early-phase clinical trials. The massive number of papers makes it hard for researchers to comprehend the whole field, and furthermore, they give the impression that mesenchymal stromal cells are wonder cells that are curative for any condition. It is becoming increasingly difficult to dissect how and for what conditions mesenchymal stromal cells exhibit true and reproducible therapeutic effects. This article tries to address the question how to make sense of 75,000, and still counting, publications on mesenchymal stromal cells.
Collapse
Affiliation(s)
- Dina Mönch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany;
- University of Tübingen, 72074 Tübingen, Germany
| | - Marlies E. J. Reinders
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Marc H. Dahlke
- Department of Surgery, Robert-Bosch-Hospital, 70376 Stuttgart, Germany;
| | - Martin J. Hoogduijn
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
14
|
Tan L, Liu X, Dou H, Hou Y. Characteristics and regulation of mesenchymal stem cell plasticity by the microenvironment — specific factors involved in the regulation of MSC plasticity. Genes Dis 2022; 9:296-309. [PMID: 35224147 PMCID: PMC8843883 DOI: 10.1016/j.gendis.2020.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs), multipotent stromal cells, have attracted extensive attention in the field of regenerative medicine and cell therapy due to the capacity of self-renewal, multilineage differentiation, and immune regulation. MSCs have different cellular effects in different diseases, and even have markedly different curative effects with different tissue sources, indicating the plasticity of MSCs. The phenotypes, secreted factors, and proliferative, migratory, differentiating, and immunomodulatory effects of MSCs depend on certain mediators present in their microenvironment. Understanding microenvironmental factors and their internal mechanisms in MSC responses may help in subsequent prediction and improvement of clinical benefits. This review highlighted the recent advances in MSC plasticity in the physiological and pathological microenvironment and multiple microenvironmental factors regulating MSC plasticity. It also highlighted some progress in the underlying molecular mechanisms of MSC remodeling in the microenvironment. It might provide references for the improvement in vitro culture of MSCs, clinical application, and in vivo induction.
Collapse
|
15
|
Inojosa H, Proschmann U, Akgün K, Ziemssen T. The need for a strategic therapeutic approach: multiple sclerosis in check. Ther Adv Chronic Dis 2022; 13:20406223211063032. [PMID: 35070250 PMCID: PMC8777338 DOI: 10.1177/20406223211063032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is the most common chronic autoimmune neurological disease. Its therapeutic management has drastically evolved in the recent years with the development of specific disease-modifying therapies (DMTs). Together with the established injectables, oral and intravenous alternatives are now available for MS patients with significant benefits to modulate the disease course. Certain drugs present with a higher efficacy than the others, profiles and frequencies of adverse events differentiate as well. Thus due to the several and different treatment alternatives, the therapeutic approach adopted by neurologists requires a tactical focus for a targeted, timed, and meaningful treatment decision. An integration of rational and emotional control with proper communication skills is necessary for shared decision-making with patients. In this perspective paper, we reinforce the necessary concept of strategic MS treatment approach using all available therapies based on scientific evidence and current experience. We apply a didactic analogy to the strategic game chess. The opening with oriented attack (i.e. already in early disease stages as clinical isolated syndrome), a correct choice of chess pieces to move (i.e. among the several DMTs), a re-assessment reaction to different scenarios (e.g. sustained disease activity, adverse events, and family planning) and the advantage of real-world data are discussed to try the best approach to ultimately successfully approach the best personalized MS treatment.
Collapse
Affiliation(s)
- Hernan Inojosa
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Undine Proschmann
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr. 74, 01307 Dresden, Germany
| |
Collapse
|
16
|
Allanach JR, Farrell JW, Mésidor M, Karimi-Abdolrezaee S. Current status of neuroprotective and neuroregenerative strategies in multiple sclerosis: A systematic review. Mult Scler 2022; 28:29-48. [PMID: 33870797 PMCID: PMC8688986 DOI: 10.1177/13524585211008760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/13/2021] [Accepted: 03/21/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Immune-mediated demyelination and consequent degeneration of oligodendrocytes and axons are hallmark features of multiple sclerosis (MS). Remyelination declines in progressive MS, causing permanent axonal loss and irreversible disabilities. Strategies aimed at enhancing remyelination are critical to attenuate disease progression. OBJECTIVE We systematically reviewed recent advances in neuroprotective and regenerative therapies for MS, covering preclinical and clinical studies. METHODS We searched three biomedical databases using defined keywords. Two authors independently reviewed articles for inclusion based on pre-specified criteria. The data were extracted from each study and assessed for risk of bias. RESULTS Our search identified 7351 studies from 2014 to 2020, of which 221 met the defined criteria. These studies reported 262 interventions, wherein 92% were evaluated in animal models. These interventions comprised protein, RNA, lipid and cellular biologics, small molecules, inorganic compounds, and dietary and physiological interventions. Small molecules were the most highly represented strategy, followed by antibody therapies and stem cell transplantation. CONCLUSION While significant strides have been made to develop regenerative treatments for MS, the current evidence illustrates a skewed representation of the types of strategies that advance to clinical trials. Further examination is thus required to address current barriers to implementing experimental treatments in clinical settings.
Collapse
Affiliation(s)
- Jessica R Allanach
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - John W. Farrell
- Department of Health and Human Performance, Texas State University, San Marcos, TX, USA
| | - Miceline Mésidor
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada/Department of Social and Preventive Medicine, Université de Montréal, Montréal, QC, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada/Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
17
|
González LM, Ospina LN, Sperling LE, Chaparro O, Cucarián JD. Therapeutic Effects of Physical Exercise and the Mesenchymal Stem Cell Secretome by Modulating Neuroinflammatory Response in Multiple Sclerosis. Curr Stem Cell Res Ther 2021; 17:621-632. [PMID: 34886779 DOI: 10.2174/1574888x16666211209155333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022]
Abstract
Multiple sclerosis (MS) is a neurodegenerative, demyelinating, and chronic inflammatory disease characterized by central nervous system (CNS) lesions that lead to high levels of disability and severe physical and cognitive disturbances. Conventional therapies are not enough to control the neuroinflammatory process in MS and are not able to inhibit ongoing damage to the CNS. Thus, the secretome of mesenchymal stem cells (MSC-S) has been postulated as a potential therapy that could mitigate symptoms and disease progression. We considered that its combination with physical exercise (EX) could induce superior effects and increase the MSC-S effectiveness in this condition. Recent studies have revealed that both EX and MSC-S share similar mechanisms of action that mitigate auto-reactive T cell infiltration, regulate the local inflammatory response, modulate the proinflammatory profile of glial cells, and reduce neuronal damage. Clinical and experimental studies have reported that these treatments in an isolated way also improve myelination, regeneration, promote the release of neurotrophic factors, and increase the recruitment of endogenous stem cells. Together, these effects reduce disease progression and improve patient functionality. Despite these results, the combination of these methods has not yet been studied in MS. In this review, we focus on molecular elements and cellular responses induced by these treatments in a separate way, showing their beneficial effects in the control of symptoms and disease progression in MS, as well as indicating their contribution in clinical fields. In addition, we propose the combined use of EX and MSC-S as a strategy to boost their reparative and immunomodulatory effects in this condition, combining their benefits on synaptogenesis, neurogenesis, remyelination, and neuroinflammatory response. The findings here reported are based on the scientific evidence and our professional experience that will bring significant progress to regenerative medicine to deal with this condition.
Collapse
Affiliation(s)
- Lina María González
- Physiotherapy Program, School of Medicine and Health Sciences, Universidad del Rosario AK 24 #63c-69, Bogotá. Colombia
| | - Laura Natalia Ospina
- Physiotherapy Program, School of Medicine and Health Sciences, Universidad del Rosario AK 24 #63c-69, Bogotá. Colombia
| | - Laura Elena Sperling
- Faculty of Pharmacy & Fundamental Health Science Institute, Federal University of Rio Grande do Sul Rua Ramiro Barcelos, 2600-Prédio Anexo - Floresta, Porto Alegre. Brazil
| | - Orlando Chaparro
- Physiology Department, Faculty of Medicine, Universidad Nacional de Colombia Ak 30 #45-03, Bogotá. Colombia
| | - Jaison Daniel Cucarián
- Physiotherapy Program, School of Medicine and Health Sciences, Universidad del Rosario AK 24 #63c-69, Bogotá. Colombia
| |
Collapse
|
18
|
Xiao Y, Tian J, Wu WC, Gao YH, Guo YX, Song SJ, Gao R, Wang LB, Wu XY, Zhang Y, Li X. Targeting central nervous system extracellular vesicles enhanced triiodothyronine remyelination effect on experimental autoimmune encephalomyelitis. Bioact Mater 2021; 9:373-384. [PMID: 34820577 PMCID: PMC8586265 DOI: 10.1016/j.bioactmat.2021.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
The lack of targeted and high-efficiency drug delivery to the central nervous system (CNS) nidus is the main problem in the treatment of demyelinating disease. Extracellular vesicles (EVs) possess great promise as a drug delivery vector given their advanced features. However, clinical applications are limited because of their inadequate targeting ability and the “dilution effects” after systemic administration. Neural stem cells (NSCs) supply a plentiful source of EVs on account of their extraordinary capacity for self-renewal. Here, we have developed a novel therapeutic system using EVs from modified NSCs with high expressed ligand PDGF-A (EVPs) and achieve local delivery. It has been demonstrated that EVPs greatly enhance the target capability on oligodendrocyte lineage. Moreover, EVPs are used for embedding triiodothyronine (T3), a thyroid hormone that is critical for oligodendrocyte development but has serious side effects when systemically administered. Our results demonstrated that systemic injection of EVPs + T3, versus EVPs or T3 administration individually, markedly alleviated disease development, enhanced oligodendrocyte survival, inhibited myelin damage, and promoted myelin regeneration in the lesions of experimental autoimmune encephalomyelitis mice. Taken together, our findings showed that engineered EVPs possess a remarkable CNS lesion targeting potential that offers a potent therapeutic strategy for CNS demyelinating diseases as well as neuroinflammation. NSC-derived EV-PDGFA dramatically increased targeting efficiency to the lineage of OLGs and the demyelinated area in the CNS. EVPs-T3 exert the therapeutic ability in the lesion suppressed the disease development and protected myelin loss. EVPs-T3 increased numbers of OLGs in the lesion and TEM data evidenced that EVPs-T3 promotes myelin regeneration in vivo.
Collapse
Affiliation(s)
- Yun Xiao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Jing Tian
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Wen-Cheng Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yu-Han Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yu-Xin Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Sheng-Jiao Song
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Rui Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Li-Bin Wang
- The General Hospital of Ningxia Medical University, Yinchuan, 750001, China
| | - Xiao-Yu Wu
- The General Hospital of Ningxia Medical University, Yinchuan, 750001, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| |
Collapse
|
19
|
He J, Huang Y, Liu J, Lan Z, Tang X, Hu Z. The Efficacy of Mesenchymal Stem Cell Therapies in Rodent Models of Multiple Sclerosis: An Updated Systematic Review and Meta-Analysis. Front Immunol 2021; 12:711362. [PMID: 34512632 PMCID: PMC8427822 DOI: 10.3389/fimmu.2021.711362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/05/2021] [Indexed: 01/22/2023] Open
Abstract
Studies have demonstrated the potential of mesenchymal stem cell (MSC) administration to promote functional recovery in preclinical studies of multiple sclerosis (MS), yet the effects of MSCs on remyelination are poorly understood. We wished to evaluate the therapeutic effects of MSCs on functional and histopathological outcomes in MS; therefore, we undertook an updated systematic review and meta-analysis of preclinical data on MSC therapy for MS. We searched mainstream databases from inception to July 15, 2021. Interventional studies of therapy using naïve MSCs in in vivo rodent models of MS were included. From each study, the clinical score was extracted as the functional outcome, and remyelination was measured as the histopathological outcome. Eighty-eight studies published from 2005 to 2021 met the inclusion criteria. Our results revealed an overall positive effect of MSCs on the functional outcome with a standardized mean difference (SMD) of −1.99 (95% confidence interval (CI): −2.32, −1.65; p = 0.000). MSCs promoted remyelination by an SMD of −2.31 (95% CI: −2.84, −1.79; p = 0.000). Significant heterogeneity among studies was observed. Altogether, our meta-analysis indicated that MSC administration improved functional recovery and promoted remyelination prominently in rodent models of MS.
Collapse
Affiliation(s)
- Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ziwei Lan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Abstract
Neuropsychiatric sequalae to coronavirus disease 2019 (COVID-19) infection are beginning to emerge, like previous Spanish influenza and severe acute respiratory syndrome episodes. Streptococcal infection in paediatric patients causing obsessive compulsive disorder (PANDAS) is another recent example of an infection-based psychiatric disorder. Inflammation associated with neuropsychiatric disorders has been previously reported but there is no standard clinical management approach established. Part of the reason is that it is unclear what factors determine the specific neuronal vulnerability and the efficacy of anti-inflammatory treatment in neuroinflammation. The emerging COVID-19 data suggested that in the acute stage, widespread neuronal damage appears to be the result of abnormal and overactive immune responses and cytokine storm is associated with poor prognosis. It is still too early to know if there are long-term-specific neuronal or brain regional damages associated with COVID-19, resulting in distinct neuropsychiatric disorders. In several major psychiatric disorders where neuroinflammation is present, patients with abnormal inflammatory markers may also experience less than favourable response or treatment resistance when standard treatment is used alone. Evidence regarding the benefits of co-administered anti-inflammatory agents such as COX-2 inhibitor is encouraging in selected patients though may not benefit others. Disease-modifying therapies are increasingly being applied to neuropsychiatric diseases characterised by abnormal or hyperreactive immune responses. Adjunct anti-inflammatory treatment may benefit selected patients and is definitely an important component of clinical management in the presence of neuroinflammation.
Collapse
|
21
|
Mansilla MJ, Presas-Rodríguez S, Teniente-Serra A, González-Larreategui I, Quirant-Sánchez B, Fondelli F, Djedovic N, Iwaszkiewicz-Grześ D, Chwojnicki K, Miljković Đ, Trzonkowski P, Ramo-Tello C, Martínez-Cáceres EM. Paving the way towards an effective treatment for multiple sclerosis: advances in cell therapy. Cell Mol Immunol 2021; 18:1353-1374. [PMID: 33958746 PMCID: PMC8167140 DOI: 10.1038/s41423-020-00618-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a leading cause of chronic neurological disability in young to middle-aged adults, affecting ~2.5 million people worldwide. Currently, most therapeutics for MS are systemic immunosuppressive or immunomodulatory drugs, but these drugs are unable to halt or reverse the disease and have the potential to cause serious adverse events. Hence, there is an urgent need for the development of next-generation treatments that, alone or in combination, stop the undesired autoimmune response and contribute to the restoration of homeostasis. This review analyzes current MS treatments as well as different cell-based therapies that have been proposed to restore homeostasis in MS patients (tolerogenic dendritic cells, regulatory T cells, mesenchymal stem cells, and vaccination with T cells). Data collected from preclinical studies performed in the experimental autoimmune encephalomyelitis (EAE) model of MS in animals, in vitro cultures of cells from MS patients and the initial results of phase I/II clinical trials are analyzed to better understand which parameters are relevant for obtaining an efficient cell-based therapy for MS.
Collapse
Affiliation(s)
- M J Mansilla
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - S Presas-Rodríguez
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - A Teniente-Serra
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - I González-Larreategui
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - B Quirant-Sánchez
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - F Fondelli
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - N Djedovic
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - D Iwaszkiewicz-Grześ
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland.,Poltreg S.A., Gdańsk, Poland
| | - K Chwojnicki
- Department of Anaesthesiology & Intensive Care, Medical University of Gdańsk, Gdańsk, Poland
| | - Đ Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - P Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland.,Poltreg S.A., Gdańsk, Poland
| | - C Ramo-Tello
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - E M Martínez-Cáceres
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
22
|
Orlewska K, Bogusz K, Podlecka-Piętowska A, Nojszewska M, Markiewicz M, Liwoch R, Orlewski P, Śliwczyński A, Zakrzewska-Pniewska B, Snarski E. Impact of Immunoablation and Autologous Hematopoietic Stem Cell Transplantation (AHSCT) on Treatment Cost of Multiple Sclerosis: Real-World Nationwide Study. Value Health Reg Issues 2021; 25:104-107. [PMID: 33865219 DOI: 10.1016/j.vhri.2020.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To provide real-world data on the impact of autologous hematopoietic stem cell transplantation (AHSCT) on treatment costs of patients with multiple sclerosis (MS) in Poland. METHODS Medical data of 105 patients who underwent AHSCT in the years 2011 to 2016 were obtained from the National Health Fund (NHF) database. Treatment costs were calculated from the public payer's perspective per patient-year for the total available period as well as 12 months before and after AHSCT. The statistical analysis was performed using MATLAB 2016b. RESULTS Mean treatment-related costs covered by the NHF per patient-year before and after the transplantation were €4314.9 and €1188.8 , respectively. The average cost of disease-modifying drugs per patient was reduced from €2497.9/year before to €65.3/year after AHSCT. CONCLUSIONS Although the initial cost of AHSCT is high, the costs involving AHSCT and post-AHSCT treatment could, according to our analysis, pay off in 3.9 years, when compared to the costs of disease-modifying drug therapy in aggressive MS. The study provides evidence that the AHSCT can lead to significant savings in treatment costs of aggressive MS from the public payer's perspective.
Collapse
Affiliation(s)
- Katarzyna Orlewska
- Medical University of Warsaw, Hematology, Oncology, and Internal Diseases, Warsaw, Poland
| | - Krzysztof Bogusz
- Medical University of Warsaw, Hematology, Oncology, and Internal Diseases, Warsaw, Poland
| | | | - Monika Nojszewska
- Medical University of Warsaw, Department of Neurology, Warsaw, Poland
| | - Mirosław Markiewicz
- Department of Hematology, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland
| | - Robert Liwoch
- Medical University of Silesia, Department of Hematology and Bone Marrow Transplantation, School of Medicine in Katowice, Katowice, Poland
| | - Pawel Orlewski
- ETH Zurich, Institute of Process Engineering, Zurich, Switzerland
| | | | | | - Emilian Snarski
- Medical University of Warsaw, Hematology, Oncology, and Internal Diseases, Warsaw, Poland.
| |
Collapse
|
23
|
Regulatory Effect of Mesenchymal Stem Cells on T Cell Phenotypes in Autoimmune Diseases. Stem Cells Int 2021; 2021:5583994. [PMID: 33859701 PMCID: PMC8024100 DOI: 10.1155/2021/5583994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Research on mesenchymal stem cells (MSCs) starts from the earliest assumption that cells derived from the bone marrow have the ability to repair tissues. Several scientists have since documented the crucial role of bone marrow-derived MSCs (BM-MSCs) in processes such as embryonic bone and cartilage formation, adult fracture and tissue repair, and immunomodulatory activities in therapeutic applications. In addition to BM-MSCs, several sources of MSCs have been reported to possess tissue repair and immunoregulatory abilities, making them potential treatment options for many diseases. Therefore, the therapeutic potential of MSCs in various diseases including autoimmune conditions has been explored. In addition to an imbalance of T cell subsets in most patients with autoimmune diseases, they also exhibit complex disease manifestations, overlapping symptoms among diseases, and difficult treatment. MSCs can regulate T cell subsets to restore their immune homeostasis toward disease resolution in autoimmune conditions. This review summarizes the role of MSCs in relieving autoimmune diseases via the regulation of T cell phenotypes.
Collapse
|
24
|
Ebrahimi T, Abasi M, Seifar F, Eyvazi S, Hejazi MS, Tarhriz V, Montazersaheb S. Transplantation of Stem Cells as a Potential Therapeutic Strategy in Neurodegenerative Disorders. Curr Stem Cell Res Ther 2021; 16:133-144. [PMID: 32598273 DOI: 10.2174/1574888x15666200628141314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 11/22/2022]
Abstract
Stem cells are considered to have significant capacity to differentiate into various cell types in humans and animals. Unlike specialized cells, these cells can proliferate several times to produce millions of cells. Nowadays, pluripotent stem cells are important candidates to provide a renewable source for the replacement of cells in tissues of interest. The damage to neurons and glial cells in the brain or spinal cord is present in neurological disorders such as Amyotrophic lateral sclerosis, stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, Huntington's disease, spinal cord injury, lysosomal storage disorder, epilepsy, and glioblastoma. Therefore, stem cell transplantation can be used as a novel therapeutic approach in cases of brain and spinal cord damage. Recently, researchers have generated neuron-like cells and glial-like cells from embryonic stem cells, mesenchymal stem cells, and neural stem cells. In addition, several experimental studies have been performed for developing stem cell transplantation in brain tissue. Herein, we focus on stem cell therapy to regenerate injured tissue resulting from neurological diseases and then discuss possible differentiation pathways of stem cells to the renewal of neurons.
Collapse
Affiliation(s)
- Tahereh Ebrahimi
- Department of Biotechnology research center, Pasteur institute of Iran, Tehran, Iran
| | - Mozhgan Abasi
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Seifar
- Stem Cell Research Center, Aging Research institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammas Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Červenka J, Tylečková J, Kupcová Skalníková H, Vodičková Kepková K, Poliakh I, Valeková I, Pfeiferová L, Kolář M, Vaškovičová M, Pánková T, Vodička P. Proteomic Characterization of Human Neural Stem Cells and Their Secretome During in vitro Differentiation. Front Cell Neurosci 2021; 14:612560. [PMID: 33584205 PMCID: PMC7876319 DOI: 10.3389/fncel.2020.612560] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Cell therapies represent a promising approach to slow down the progression of currently untreatable neurodegenerative diseases (e.g., Alzheimer's and Parkinson's disease or amyotrophic lateral sclerosis), as well as to support the reconstruction of functional neural circuits after spinal cord injuries. In such therapies, the grafted cells could either functionally integrate into the damaged tissue, partially replacing dead or damaged cells, modulate inflammatory reaction, reduce tissue damage, or support neuronal survival by secretion of cytokines, growth, and trophic factors. Comprehensive characterization of cells and their proliferative potential, differentiation status, and population purity before transplantation is crucial to preventing safety risks, e.g., a tumorous growth due to the proliferation of undifferentiated stem cells. We characterized changes in the proteome and secretome of human neural stem cells (NSCs) during their spontaneous (EGF/FGF2 withdrawal) differentiation and differentiation with trophic support by BDNF/GDNF supplementation. We used LC-MS/MS in SWATH-MS mode for global cellular proteome profiling and quantified almost three thousand cellular proteins. Our analysis identified substantial protein differences in the early stages of NSC differentiation with more than a third of all the proteins regulated (including known neuronal and NSC multipotency markers) and revealed that the BDNF/GDNF support affected more the later stages of the NSC differentiation. Among the pathways identified as activated during both spontaneous and BDNF/GDNF differentiation were the HIF-1 signaling pathway, Wnt signaling pathway, and VEGF signaling pathway. Our follow-up secretome analysis using Luminex multiplex immunoassay revealed significant changes in the secretion of VEGF and IL-6 during NSC differentiation. Our results further demonstrated an increased expression of neuropilin-1 as well as catenin β-1, both known to participate in the regulation of VEGF signaling, and showed that VEGF-A isoform 121 (VEGF121), in particular, induces proliferation and supports survival of differentiating cells.
Collapse
Affiliation(s)
- Jakub Červenka
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Jiřina Tylečková
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia
| | - Helena Kupcová Skalníková
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia
| | - Kateřina Vodičková Kepková
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia
| | - Ievgeniia Poliakh
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Ivona Valeková
- Laboratory of Cell Regeneration and Plasticity, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia
| | - Lucie Pfeiferová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia.,Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Michaela Vaškovičová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia.,Laboratory of DNA Integrity, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia
| | - Tereza Pánková
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Petr Vodička
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia
| |
Collapse
|
26
|
Khan RS, Ross AG, Willett K, Dine K, Banas R, Brown LR, Shindler KS. Amnion-Derived Multipotent Progenitor Cells Suppress Experimental Optic Neuritis and Myelitis. Neurotherapeutics 2021; 18:448-459. [PMID: 33067748 PMCID: PMC8116466 DOI: 10.1007/s13311-020-00949-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
The human amnion has been used for decades in wound healing, particularly burns. Amnion epithelial cells (AECs) have been the focus of extensive research based on their possible pluripotent differentiation ability. A novel, cultured cell population derived from AECs, termed human amnion-derived multipotent progenitor (AMP) cells, secrete numerous cytokines and growth factors that enhance tissue regeneration and reduce inflammation. This AMP cell secretome, termed ST266, is a unique biological solution that accumulates in eyes and optic nerves following intranasal delivery, resulting in selective suppression of optic neuritis in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis, but not myelitis at the administered dose. We tested the hypothesis that systemic AMP cell administration could suppress both optic neuritis and myelitis in EAE. Intravenous and intraperitoneal administration of AMP cells significantly reduced ascending paralysis and attenuated visual dysfunction in EAE mice. AMP cell treatment increased retinal ganglion cell (RGC) survival and decreased optic nerve inflammation, with variable improvement in optic nerve demyelination and spinal cord inflammation and demyelination. Results show systemic AMP cell administration inhibits RGC loss and visual dysfunction similar to previously demonstrated effects of intranasally delivered ST266. Importantly, AMP cells also promote neuroprotective effects in EAE spinal cords, marked by reduced paralysis. Protective effects of systemically administered AMP cells suggest they may serve as a potential novel treatment for multiple sclerosis.
Collapse
Affiliation(s)
- Reas S Khan
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmara G Ross
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Keirnan Willett
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly Dine
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rick Banas
- Noveome Biotherapeutics, Inc., Pittsburgh, PA, USA
| | | | - Kenneth S Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA.
- F.M. Kirby Center for Molecular Ophthalmology, Department of Ophthalmology, University of Pennsylvania Scheie Eye Institute, Stellar-Chance Laboratories, 3rd Floor, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
27
|
Eslami A, Dehbashi M, Ashja-Arvan M, Salehi H, Azimzadeh M, Ganjalikhani-Hakemi M. Assessment of ability of human adipose derived stem cells for long term overexpression of IL-11 and IL-13 as therapeutic cytokines. Cytotechnology 2020; 72:773-784. [PMID: 32935166 PMCID: PMC7547926 DOI: 10.1007/s10616-020-00421-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/02/2020] [Indexed: 02/05/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) are a type of mesenchymal stem cells with the therapeutic effects that make them one of the best sources for cell therapy. In this study, we aimed to assess the ability of human ADSCs for constant expression of IL-11 and IL-13, simultaneously. In this study, the characterized hADSCs were transduced with a lentiviral vector (PCDH-513B) containing IL-11 and IL-13 genes, and the ability of long-term expression of the transgenes was evaluated by ELISA technique on days 15, 45 and 75 after transduction. Our results indicated a high rate of transduction (more than 90%) in the isolated hADSCs. Our data showed the highest rate of expression on days 75 after transduction which was 242.67 pg/ml for IL-11 and 303.6 pg/ml for IL-13 compared with 35.2 pg/ml and 35.6 pg/ml in untreated cells, respectively (p = 0.001). Besides, MTT assay showed transduction of hADSCs with lentiviral viruses containing IL-11 and IL-13 had no adverse effect on hADSCs proliferation (p-value = 0.89). Finally, we successfully constructed a hADSC population stably overexpressing IL-11 as the neurotrophic cytokine and IL-13 as the anti-inflammatory cytokine and this transduced cells can be used for further studies in EAE mice model.
Collapse
Affiliation(s)
- Asma Eslami
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Moein Dehbashi
- Division of Genetics, Department of Cell and Molecular Biology, Faculty of Biological Sciences and Technologies, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Mehnoosh Ashja-Arvan
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Azimzadeh
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
28
|
Zeng Y, Li Z, Zhu H, Gu Z, Zhang H, Luo K. Recent Advances in Nanomedicines for Multiple Sclerosis Therapy. ACS APPLIED BIO MATERIALS 2020; 3:6571-6597. [PMID: 35019387 DOI: 10.1021/acsabm.0c00953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, California 91711, United States
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
Aly RM. Current state of stem cell-based therapies: an overview. Stem Cell Investig 2020; 7:8. [PMID: 32695801 DOI: 10.21037/sci-2020-001] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022]
Abstract
Recent research reporting successful translation of stem cell therapies to patients have enriched the hope that such regenerative strategies may one day become a treatment for a wide range of vexing diseases. In fact, the past few years witnessed, a rather exponential advancement in clinical trials revolving around stem cell-based therapies. Some of these trials resulted in remarkable impact on various diseases. In this review, the advances and challenges for the development of stem-cell-based therapies are described, with focus on the use of stem cells in dentistry in addition to the advances reached in regenerative treatment modalities in several diseases. The limitations of these treatments and ongoing challenges in the field are also discussed while shedding light on the ethical and regulatory challenges in translating autologous stem cell-based interventions, into safe and effective therapies.
Collapse
Affiliation(s)
- Riham Mohamed Aly
- Department of Basic Dental Science, National Research Centre, Cairo, Egypt.,Stem Cell Laboratory, Center of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt
| |
Collapse
|
30
|
Talmont F, Hatzoglou A, Cuvillier O. La sclérose en plaques et les médicaments immuno-modulateurs des récepteurs de la sphingosine 1-phosphate. Med Sci (Paris) 2020; 36:243-252. [DOI: 10.1051/medsci/2020026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
La sclérose en plaques (SEP) est une maladie du système nerveux central à composante inflammatoire, très invalidante qui atteint généralement de jeunes adultes (20 à 40 ans). Cette maladie se caractérise par la destruction progressive, par les cellules du système immunitaire, de la gaine de myéline des axones, ce qui aboutit à une dégénérescence neuronale. Les lymphocytes T et B sont les acteurs principaux de cette maladie qui peut être rémittente ou progressive. Parmi les médicaments utilisés dans le cadre de son traitement, le fingolimod, un immunosuppresseur dont les cibles sont les récepteurs de la sphingosine 1-phosphate, administré par voie orale, agit en empêchant les lymphocytes de quitter le thymus et les ganglions lymphatiques, et de rejoindre les foyers inflammatoires cérébraux. Une recherche intense pour développer des traitements et des médicaments curatifs est actuellement en cours et d’autres immunosuppresseurs interagissant avec les récepteurs de sphingosine 1-phosphate sont en cours de développement.
Collapse
|
31
|
Neumann B, Segel M, Chalut KJ, Franklin RJM. Remyelination and ageing: Reversing the ravages of time. Mult Scler 2019; 25:1835-1841. [PMID: 31687878 PMCID: PMC7682531 DOI: 10.1177/1352458519884006] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 12/19/2022]
Abstract
Remyelination is a neuroprotective regenerative response to demyelination that restores saltatory conduction and decreases the vulnerability of axons to irreversible degeneration. It is a highly efficient process: however, as with all regenerative processes, its efficiency declines with ageing. Here we argue that this age-related decline in remyelination has a major impact on the natural history of multiple sclerosis (MS), a disease often of several decades' duration. We describe recent work on (1) how ageing changes the function of oligodendrocyte progenitor cells (OPCs), the cells primarily responsible for generating new myelin-forming oligodendrocytes in remyelination, (2) how these changes are induced by age-related changes in the OPC niche and (3) how these changes can be reversed, thereby opening up the possibility of therapeutically maintaining remyelination efficiency throughout the disease, preserving axonal health and treating the progressive phase of MS.
Collapse
Affiliation(s)
- Bjoern Neumann
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Michael Segel
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Kevin J Chalut
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Robin JM Franklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
32
|
Olcum M, Tastan B, Kiser C, Genc S, Genc K. Microglial NLRP3 inflammasome activation in multiple sclerosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:247-308. [PMID: 31997770 DOI: 10.1016/bs.apcsb.2019.08.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune and neuroinflammatory disease of the central nervous system (CNS) mediated by autoreactive T cells directed against myelin antigens. Although the crucial role of adaptive immunity is well established in MS, the contribution of innate immunity has only recently been appreciated. Microglia are the main innate immune cells of the CNS. Similar to other myeloid cells, microglia recognize both exogenous and host-derived endogenous danger signals through pattern recognition receptors (PRRs) localized on their cell surface such as Toll Like receptor 4, or in the cytosol such as NLRP3. The second one is the sensor protein of the multi-molecular NLRP3 inflammasome complex in activated microglia that promotes the maturation and secretion of proinflammatory cytokines, interleukin-1β and interleukin-18. Overactivation of microglia and aberrant activation of the NLRP3 inflammasome have been implicated in the pathogenesis of MS. Indeed, experimental data, together with post-mortem and clinical studies have revealed an increased expression of NLRP3 inflammasome complex elements in microglia and other immune cells. In this review, we focus on microglial NLRP3 inflammasome activation in MS. First, we overview the basic knowledge about MS, microglia and the NLRP3 inflammasome. Then, we summarize studies about microglial NLRP3 inflammasome activation in MS and its animal models. We also highlight experimental therapeutic approaches that target different steps of NLRP inflammasome activation. Finally, we discuss future research avenues and new methods in this rapidly evolving area.
Collapse
Affiliation(s)
- Melis Olcum
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus Balcova, Izmir, Turkey
| | - Bora Tastan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus Balcova, Izmir, Turkey; Izmir International Biomedicine and Genome Institute (iBG-Izmir), Dokuz Eylul University Health Campus, Balcova, Izmir, Turkey
| | - Cagla Kiser
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus Balcova, Izmir, Turkey; Izmir International Biomedicine and Genome Institute (iBG-Izmir), Dokuz Eylul University Health Campus, Balcova, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus Balcova, Izmir, Turkey; Izmir International Biomedicine and Genome Institute (iBG-Izmir), Dokuz Eylul University Health Campus, Balcova, Izmir, Turkey; Department of Neuroscience, Institute of Health and Science, Dokuz Eylul University Health Campus, Balcova, Izmir, Turkey
| | - Kursad Genc
- Department of Neuroscience, Institute of Health and Science, Dokuz Eylul University Health Campus, Balcova, Izmir, Turkey
| |
Collapse
|
33
|
Oliveira AG, Gonçalves M, Ferreira H, M Neves N. Growing evidence supporting the use of mesenchymal stem cell therapies in multiple sclerosis: A systematic review. Mult Scler Relat Disord 2019; 38:101860. [PMID: 31765999 DOI: 10.1016/j.msard.2019.101860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/29/2019] [Accepted: 11/16/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) typically arises in early/middle adulthood and is characterized by a progressive disability of the central nervous system (CNS). Currently approved therapies do not promote tissue repair or stop disease progression. Emerging data demonstrate that stem cells present a great potential in regenerative medicine and, consequently, have also been widely investigated as a potential treatment for MS. Therefore, the aim of this study was to conduct a systematic review to inquire into the safety, tolerability, and efficacy of mesenchymal stem cells (MSCs) therapies in MS. METHODS Three electronic databases (Web of Science, PubMed, and Cochrane) were searched from April until June 2019. Clinical trials or case reports with information related to the effects of MSC therapies in MS patients were considered for this review. RESULTS 10 manuscripts were selected, namely 7 uncontrolled clinical trials, 2 randomized controlled clinical trials, and 1 case report. The overall quality of the studies was considered good. Besides minor adverse events (AEs), it was reported one case of encephalopathy with seizures and two cases of iatrogenic meningitis, which were not related to the treatment, but with the administration route. The analyses of the expanded disability status scale (EDSS) in the uncontrolled clinical trials demonstrated that 48 patients improved, 39 maintained and 16 worsened their clinical condition. Regarding the randomized studies, one did not show statistically significant variations in the mean EDSS score and in the other the mean EDSS score was statistically significantly lower for the experimental group. The case report also showed an improvement in the EDSS score. CONCLUSIONS MSCs transplantation proved to be a safe and tolerable therapy. Their potential therapeutic benefits were also validated. However, larger placebo controlled blinded clinical trials will be required to establish the long term safety and efficacy profile of these therapies for MS. Their translation into the clinical practice can provide a new hope for the patients of this highly debilitating disease.
Collapse
Affiliation(s)
| | - Margarida Gonçalves
- Medicine School, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Helena Ferreira
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Nuno M Neves
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, Guimarães 4805-017, Portugal.
| |
Collapse
|
34
|
Fattahi M, Eskandari N, Sotoodehnejadnematalahi F, Shaygannejad V, Kazemi M. Comparison of The Expression of miR-326 between Interferon beta Responders and Non-Responders in Relapsing-Remitting Multiple Sclerosis. CELL JOURNAL 2019; 22:92-95. [PMID: 31606972 PMCID: PMC6791062 DOI: 10.22074/cellj.2020.6486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/27/2019] [Indexed: 12/20/2022]
Abstract
Objective Multiple sclerosis (MS) is an inflammatory disease resulting in demyelination of the central nervous system
(CNS). T helper 17 (Th17) subset protects the human body against pathogens and induces neuroinflammation, which
leads to neurodegeneration. MicroRNAs (miRNAs) are a specific class of small (~22 nt) non-coding RNAs that act as
post-transcriptional regulators. The expression of the miR-326 is highly associated with the pathogenesis of MS disease
in patients through the promotion of Th17 development. Recently, studies showed that disease-modifying therapies
(DMTs) could balance the dysregulation of miRNAs in the immune cells of patients with relapsing-remitting MS (RRMS).
Interferon-beta (IFN-β) has emerged as one of the most common drugs for the treatment of RR-MS patients. The
purpose of this study was to evaluate the expression of the miR-326 in RRMS patients who were responders and non-
responders to IFN-β treatment.
Materials and Methods In this cross-sectional study, a total of 70 patients (35 responders and 35 non-responders)
were enrolled. We analyzed the expression of the miR-326 in peripheral blood mononuclear cells (PBMCs) of RRMS
patients at least one year after the initiation of IFN-β therapy. Real-time polymerase chain reaction (RT-PCR) was
applied to measure the expression of the miR-326.
Results The results showed no substantial change in the expression of the miR-326 between responders and non-
responders concerning the treatment with IFN-β. Although the expression of the miR-326 was slightly reduced in
IFN-β-responders compared with IFN-β-non-responders; however, the reduction of the miR-326 was not statistically
significant.
Conclusion Overall, since IFN-β doesn’t normalize abnormal expression of miR-326, this might suggest that IFN-β
affects Th17 development through epigenetic mechanisms other than miR-326 regulation.
Collapse
Affiliation(s)
- Mahtab Fattahi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.Electronic Address: .,Applied Physiology Research Centre, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Vahid Shaygannejad
- Department of Neurology, Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetic and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
35
|
Mansoor SR, Zabihi E, Ghasemi-Kasman M. The potential use of mesenchymal stem cells for the treatment of multiple sclerosis. Life Sci 2019; 235:116830. [PMID: 31487529 DOI: 10.1016/j.lfs.2019.116830] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease of the central nervous system (CNS). In attempt to identify an appropriate treatment for improving the neurological symptoms and remyelination process, autologous and allogenic transplantation of mesenchymal stem cells (MSCs) have been introduced as an effective therapeutic strategy in MS. MSCs are a heterogeneous subset of pluripotent non-hematopoietic stromal cells that are isolated from bone marrow, adipose tissue, placenta and other sources. MSCs have considerable therapeutic effects due to their ability in differentiation, migration, immune-modulation and neuroregeneration. To date, numerous experimental and clinical studies demonstrated that MSCs therapy improves the CNS repair and modulates functional neurological symptoms. Here, we provided an overview of the current knowledge about the clinical applications of MSCs in MS. Furthermore, the major challenges and risks of MSCs therapy in MS patients have been elucidated.
Collapse
Affiliation(s)
- Sahar Rostami Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
36
|
Autologous Hematopoietic Cell Transplantation in Multiple Sclerosis: Changing Paradigms in the Era of Novel Agents. Stem Cells Int 2019; 2019:5840286. [PMID: 31341484 PMCID: PMC6612973 DOI: 10.1155/2019/5840286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/22/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022] Open
Abstract
Autologous hematopoietic stem cell transplantation (AHSCT) is established as a standard of care for diseases ranging from hematological malignancies to other neoplastic pathologies and severe immunological deficiencies. In April 1995, our group performed the first AHSCT in progressive multiple sclerosis (MS). Since then, a plethora of studies have been published with encouraging but controversial results. Major challenges in the field include appropriate patient selection, improvements in AHSCT procedure, and timing of this treatment modality. Beyond AHSCT, several new intravenous or oral agents have been developed and approved over the last 20 years in MS. The emergence of multiple effective therapies for MS has created a challenging scenario for both treating physicians and patients. Novel cell-based therapies other than AHSCT are also currently investigated in MS patients with promising results. Our review is aimed at summarizing state-of-the-art knowledge on basic principles and results of AHSCT in MS and its role compared to novel agents.
Collapse
|
37
|
Galeshi A, Ghasemi-Kasman M, Feizi F, Davoodian N, Zare L, Abedian Z. Co-administration of aspirin and adipose-derived stem cell conditioned medium improves the functional recovery of the optic pathway in a lysolecithin-induced demyelination model. Neuropsychiatr Dis Treat 2019; 15:2681-2694. [PMID: 31571884 PMCID: PMC6756276 DOI: 10.2147/ndt.s218594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Based on beneficial effects of aspirin and mesenchymal stem cells (MSCs) on myelin repair, in a preset study, effects of co-administration of aspirin and conditioned medium from adipose tissue-derived stem cells (ADSC-CM) on functional recovery of optic pathway, demyelination levels, and astrocytes' activation were evaluated in a lysolecithin (LPC)-induced demyelination model of optic chiasm. METHODS LPC (1%, 2 µL) was injected into the rat optic chiasm and animals underwent daily intraperitoneal (i.p.) injections of ADSCs-CM and oral gavage of aspirin at a dose of 25 mg/kg for 14 days post LPC injection. The conductivity of visual signals was assessed using visual evoked potential recordings (VEPs) before LPC injection and on days 7 and 14 post lesion. Immunostaining against PDGFRα as oligodendrocyte precursor cells marker, MOG as mature myelin marker, and GFAP as astrocyte marker was performed on brain sections at day 14 post LPC injection. FluoroMyelin staining was also used to measure the extent of demyelination areas. RESULTS Our results showed that administration of ADSCs-CM and aspirin significantly reduced the latency of VEP waves in LPC receiving animals. In addition, demyelination levels and GFAP expressing cells were attenuated while the number of oligodendrocyte precursor cells significantly increased in rats treated with ADSCs-CM and aspirin. CONCLUSION Overall, our results suggest that co-administration of ADSCs-CM and aspirin improves the functional recovery of optic pathway through amelioration of astrocyte activation and attenuation of demyelination level.
Collapse
Affiliation(s)
- Adel Galeshi
- Babol University of Medical Sciences, Babol, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Farideh Feizi
- Department of Anatomical Sciences, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Nahid Davoodian
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Leila Zare
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Abedian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|