1
|
Wu S, Xiao X, Zhang Y, Zhang X, Wang G, Peng Q. Novel endotypes of antisynthetase syndrome identified independent of anti-aminoacyl transfer RNA synthetase antibody specificity that improve prognostic stratification. Ann Rheum Dis 2024; 83:775-786. [PMID: 38395605 DOI: 10.1136/ard-2023-225284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVES To systemically analyse the heterogeneity in the clinical manifestations and prognoses of patients with antisynthetase syndrome (ASS) and evaluate the transcriptional signatures related to different clinical phenotypes. METHODS A total of 701 patients with ASS were retrospectively enrolled. The clinical presentation and prognosis were assessed in association with four anti-aminoacyl transfer RNA synthetase (ARS) antibodies: anti-Jo1, anti-PL7, anti-PL12 and anti-EJ. Unsupervised machine learning was performed for patient clustering independent of anti-ARS antibodies. Transcriptome sequencing was conducted in clustered ASS patients and healthy controls. RESULTS Patients with four different anti-ARS antibody subtypes demonstrated no significant differences in the incidence of rapidly progressive interstitial lung disease (RP-ILD) or prognoses. Unsupervised machine learning, independent of anti-ARS specificity, identified three endotypes with distinct clinical features and outcomes. Endotype 1 (RP-ILD cluster, 23.7%) was characterised by a high incidence of RP-ILD and a high mortality rate. Endotype 2 (dermatomyositis (DM)-like cluster, 14.5%) corresponded to patients with DM-like skin and muscle symptoms with an intermediate prognosis. Endotype 3 (arthritis cluster, 61.8%) was characterised by arthritis and mechanic's hands, with a good prognosis. Transcriptome sequencing revealed that the different endotypes had distinct gene signatures and biological processes. CONCLUSIONS Anti-ARS antibodies were not significant in stratifying ASS patients into subgroups with greater homogeneity in RP-ILD and prognoses. Novel ASS endotypes were identified independent of anti-ARS specificity and differed in clinical outcomes and transcriptional signatures, providing new insights into the pathogenesis of ASS.
Collapse
Affiliation(s)
- Shiyu Wu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China
- Department of Rheumatology, Key Lab of Myositis, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Xinyue Xiao
- Department of Rheumatology, Key Lab of Myositis, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Yingfang Zhang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China
- Department of Rheumatology, Key Lab of Myositis, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Xinxin Zhang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China
- Department of Rheumatology, Key Lab of Myositis, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Guochun Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China
- Department of Rheumatology, Key Lab of Myositis, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Qinglin Peng
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China
- Department of Rheumatology, Key Lab of Myositis, China-Japan Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
2
|
Werz O, Stettler H, Theurer C, Seibel J. The 125th Anniversary of Aspirin-The Story Continues. Pharmaceuticals (Basel) 2024; 17:437. [PMID: 38675399 PMCID: PMC11054228 DOI: 10.3390/ph17040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The year 2024 marks the 125th anniversary of aspirin, still one of the most frequently used drugs worldwide. Despite its veritable age, it is still relevant in pharmacotherapy and its use has spread to new areas over time. Due to aspirin's multiple pharmacological actions unified in one single molecule (i.e., analgesic, antipyretic, anti-inflammatory, antithrombotic, and antiviral effects), it continues to attract considerable attention in the scientific community and is subject to intense basic and clinical research. In fact, recent results confirmed aspirin's potential role as an antiviral drug and as an agent that can block harmful platelet functions in inflammatory/immunological processes. These features may open up new horizons for this ancient drug. The future of aspirin looks, therefore, bright and promising. Aspirin is not yet ready for retirement; on the contrary, its success story continues. This 125th anniversary paper will concisely review the various therapeutic uses of aspirin with a particular emphasis on the latest research results and their implications (e.g., use as an antiviral agent). In addition, the reader is provided with future perspectives for this remarkable drug.
Collapse
Affiliation(s)
- Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Hans Stettler
- Bayer Consumer Care AG, Peter Merian-Strasse 84, 4002 Basel, Switzerland;
| | - Christoph Theurer
- Bayer Vital GmbH, Kaiser-Wilhelm-Allee 70, 51373 Leverkusen, Germany;
| | - Jens Seibel
- Bayer Vital GmbH, Kaiser-Wilhelm-Allee 70, 51373 Leverkusen, Germany;
| |
Collapse
|
3
|
Zhou X, Jin J, Lv T, Song Y. A Narrative Review: The Role of NETs in Acute Respiratory Distress Syndrome/Acute Lung Injury. Int J Mol Sci 2024; 25:1464. [PMID: 38338744 PMCID: PMC10855305 DOI: 10.3390/ijms25031464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
Nowadays, acute respiratory distress syndrome (ARDS) still has a high mortality rate, and the alleviation and treatment of ARDS remains a major research focus. There are various causes of ARDS, among which pneumonia and non-pulmonary sepsis are the most common. Trauma and blood transfusion can also cause ARDS. In ARDS, the aggregation and infiltration of neutrophils in the lungs have a great influence on the development of the disease. Neutrophils regulate inflammatory responses through various pathways, and the release of neutrophils through neutrophil extracellular traps (NETs) is considered to be one of the most important mechanisms. NETs are mainly composed of DNA, histones, and granuloproteins, all of which can mediate downstream signaling pathways that can activate inflammatory responses, generate immune clots, and cause damage to surrounding tissues. At the same time, the components of NETs can also promote the formation and release of NETs, thus forming a vicious cycle that continuously aggravates the progression of the disease. NETs are also associated with cytokine storms and immune balance. Since DNA is the main component of NETs, DNase I is considered a viable drug for removing NETs. Other therapeutic methods to inhibit the formation of NETs are also worthy of further exploration. This review discusses the formation and mechanism of NETs in ARDS. Understanding the association between NETs and ARDS may help to develop new perspectives on the treatment of ARDS.
Collapse
Affiliation(s)
| | | | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China; (X.Z.); (J.J.)
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China; (X.Z.); (J.J.)
| |
Collapse
|
4
|
Borek I, Birnhuber A, Voelkel NF, Marsh LM, Kwapiszewska G. The vascular perspective on acute and chronic lung disease. J Clin Invest 2023; 133:e170502. [PMID: 37581311 PMCID: PMC10425217 DOI: 10.1172/jci170502] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
The pulmonary vasculature has been frequently overlooked in acute and chronic lung diseases, such as acute respiratory distress syndrome (ARDS), pulmonary fibrosis (PF), and chronic obstructive pulmonary disease (COPD). The primary emphasis in the management of these parenchymal disorders has largely revolved around the injury and aberrant repair of epithelial cells. However, there is increasing evidence that the vascular endothelium plays an active role in the development of acute and chronic lung diseases. The endothelial cell network in the capillary bed and the arterial and venous vessels provides a metabolically highly active barrier that controls the migration of immune cells, regulates vascular tone and permeability, and participates in the remodeling processes. Phenotypically and functionally altered endothelial cells, and remodeled vessels, can be found in acute and chronic lung diseases, although to different degrees, likely because of disease-specific mechanisms. Since vascular remodeling is associated with pulmonary hypertension, which worsens patient outcomes and survival, it is crucial to understand the underlying vascular alterations. In this Review, we describe the current knowledge regarding the role of the pulmonary vasculature in the development and progression of ARDS, PF, and COPD; we also outline future research directions with the hope of facilitating the development of mechanism-based therapies.
Collapse
Affiliation(s)
- Izabela Borek
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Norbert F. Voelkel
- Pulmonary Medicine Department, University of Amsterdam Medical Centers, Amsterdam, Netherlands
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
- Institute for Lung Health, German Lung Center (DZL), Cardiopulmonary Institute, Giessen, Germany
| |
Collapse
|
5
|
Gao LC, Gong FQ. [Recent research on platelet-leukocyte aggregates and their role in the pathogenesis of Kawasaki disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:587-594. [PMID: 37382127 DOI: 10.7499/j.issn.1008-8830.2302066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Activated platelets may interact with various types of leukocytes such as monocytes, neutrophils, dendritic cells, and lymphocytes, trigger intercellular signal transduction, and thus lead to thrombosis and synthesis of massive inflammatory mediators. Elevated levels of circulating platelet-leukocyte aggregates have been found in patients with thrombotic or inflammatory diseases. This article reviews the latest research on the formation, function, and detection methods of platelet-leukocyte aggregates and their role in the onset of Kawasaki disease, so as to provide new ideas for studying the pathogenesis of Kawasaki disease.
Collapse
Affiliation(s)
- Li-Chao Gao
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine/National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Fang-Qi Gong
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine/National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
6
|
Sandeep B, Xiao Z, Zhao F, Feng Q, Gao K. Role of Platelets in Acute Lung Injury After Extracorporeal Circulation in Cardiac Surgery Patients: A Systemic Review. Curr Probl Cardiol 2022; 47:101088. [PMID: 34936908 DOI: 10.1016/j.cpcardiol.2021.101088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 11/15/2022]
Abstract
In vitro circulation (cardiopulmonary bypass, CPB) has been widely used in heart surgery. In the past, it was believed that the reduction of platelet count and impaired platelet function during cardiac surgery were the main causes of acute lung injury (ALI). ALI is a life-threatening clinical syndrome in critically ill patients due to an uncontrolled systemic inflammatory response resulting from direct injury to the lung or indirect injury in the setting of a systemic process. Platelets have an emerging and incompletely understood role in a myriad of ALI after extracorporeal circulation in cardiac surgery patients. An electronic literature search was performed using Pubmed, Scopus and Cinahl investigating ALI, pathogenesis, and role of platelets, treatment and management for ALI patients. Many studies have shown that in vitro circulation is a nonphysiological process that can lead to a decrease in the number of platelets and impaired platelet function, as well as varying degrees of lung damage. The relationship between the effects of in vitro circulation on platelets and acute lung injury is still controversial. This review article discusses the role of platelets in lung injury after cardiopulmonary bypass and resent development in the management of ALI.
Collapse
Affiliation(s)
- Bhushan Sandeep
- Department of Cardiothoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Zongwei Xiao
- Department of Cardiothoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Fengying Zhao
- Department of Intensive Care Unit, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Qianru Feng
- Department of Intensive Care Unit, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Ke Gao
- Department of Cardiothoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Ngo ATP, Gollomp K. Building a better
NET
: Neutrophil extracellular trap targeted therapeutics in the treatment of infectious and inflammatory disorders. Res Pract Thromb Haemost 2022. [DOI: 10.1002/rth2.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Anh T. P. Ngo
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Kandace Gollomp
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
8
|
Jahn K, Kohler TP, Swiatek LS, Wiebe S, Hammerschmidt S. Platelets, Bacterial Adhesins and the Pneumococcus. Cells 2022; 11:cells11071121. [PMID: 35406684 PMCID: PMC8997422 DOI: 10.3390/cells11071121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/25/2023] Open
Abstract
Systemic infections with pathogenic or facultative pathogenic bacteria are associated with activation and aggregation of platelets leading to thrombocytopenia and activation of the clotting system. Bacterial proteins leading to platelet activation and aggregation have been identified, and while platelet receptors are recognized, induced signal transduction cascades are still often unknown. In addition to proteinaceous adhesins, pathogenic bacteria such as Staphylococcus aureus and Streptococcus pneumoniae also produce toxins such as pneumolysin and alpha-hemolysin. They bind to cellular receptors or form pores, which can result in disturbance of physiological functions of platelets. Here, we discuss the bacteria-platelet interplay in the context of adhesin–receptor interactions and platelet-activating bacterial proteins, with a main emphasis on S. aureus and S. pneumoniae. More importantly, we summarize recent findings of how S. aureus toxins and the pore-forming toxin pneumolysin of S. pneumoniae interfere with platelet function. Finally, the relevance of platelet dysfunction due to killing by toxins and potential treatment interventions protecting platelets against cell death are summarized.
Collapse
|
9
|
Oxidative Stress and Inflammation: From Mechanisms to Therapeutic Approaches. Biomedicines 2022; 10:biomedicines10040753. [PMID: 35453503 PMCID: PMC9031318 DOI: 10.3390/biomedicines10040753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress and inflammation are two phenomena that are directly involved in practically all pathologies and especially in aging [...].
Collapse
|
10
|
Immune Modulatory Effects of Nonsteroidal Anti-inflammatory Drugs in the Perioperative Period and Their Consequence on Postoperative Outcome. Anesthesiology 2022; 136:843-860. [PMID: 35180291 DOI: 10.1097/aln.0000000000004141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonsteroidal anti-inflammatory drugs are among the most commonly administered drugs in the perioperative period due to their prominent role in pain management. However, they potentially have perioperative consequences due to immune-modulating effects through the inhibition of prostanoid synthesis, thereby affecting the levels of various cytokines. These effects may have a direct impact on the postoperative outcome of patients since the immune system aims to restore homeostasis and plays an indispensable role in regeneration and repair. By affecting the immune response, consequences can be expected on various organ systems. This narrative review aims to highlight these potential immune system-related consequences, which include systemic inflammatory response syndrome, acute respiratory distress syndrome, immediate and persistent postoperative pain, effects on oncological and neurologic outcome, and wound, anastomotic, and bone healing.
Collapse
|
11
|
Tantry US, Schror K, Navarese EP, Jeong YH, Kubica J, Bliden KP, Gurbel PA. Aspirin as an Adjunctive Pharmacologic Therapy Option for COVID-19: Anti-Inflammatory, Antithrombotic, and Antiviral Effects All in One Agent. J Exp Pharmacol 2021; 13:957-970. [PMID: 34908882 PMCID: PMC8665864 DOI: 10.2147/jep.s330776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Pharmacologic therapy options for COVID-19 should include antiviral, anti-inflammatory, and anticoagulant agents. With the limited effectiveness, currently available virus-directed therapies may have a substantial impact on global health due to continued reports of mutant variants affecting repeated waves of COVID-19 around the world. Methods We searched articles pertaining to aspirin, COVID-19, acute lung injury and pharmacology in PubMed and provide a comprehensive appraisal of potential use of aspirin in the management of patients with COVID-19. The scope of this article is to provide an overview of the rationale and currently available clinical evidence that supports aspirin as an effective therapeutic option in COVID-19. Results Experimental and clinical evidence are available for the potential use of aspirin in patients with COVID-19. Discussion Aspirin targets the intracellular signaling pathway that is essential for viral replication, and resultant inflammatory responses, hypercoagulability, and platelet activation. With these multiple benefits, aspirin can be a credible adjunctive therapeutic option for the treatment of COVID-19. In addition, inhaled formulation with its rapid effects may enhance direct delivery to the lung, which is the key organ damaged in COVID-19 during the critical initial course of the disease, whereas the 150-325 mg/day can be used for long-term treatment to prevent thrombotic event occurrences. Being economical and widely available, aspirin can be exploited globally, particularly in underserved communities and remote areas of the world to combat the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Udaya S Tantry
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, LifeBridge Health, Baltimore, MD, USA
| | - Karsten Schror
- Department of Pharmacology and Clinical Pharmacology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eliano Pio Navarese
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Young-Hoon Jeong
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Cardiovascular Center, Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Jacek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Kevin P Bliden
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, LifeBridge Health, Baltimore, MD, USA
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, LifeBridge Health, Baltimore, MD, USA
| |
Collapse
|
12
|
Sandeep B, Xiao Z, Zhao F, Feng Q, Gao K. Role of Platelets in Acute Lung Injury After Extracorporeal Circulation in Cardiac Surgery Patients: A Systemic Review. Curr Probl Cardiol 2021. [DOI: https://doi.org/10.1016/j.cpcardiol.2021.101088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Kirolos SA, Rijal R, Consalvo KM, Gomer RH. Using Dictyostelium to Develop Therapeutics for Acute Respiratory Distress Syndrome. Front Cell Dev Biol 2021; 9:710005. [PMID: 34350188 PMCID: PMC8326840 DOI: 10.3389/fcell.2021.710005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) involves damage to lungs causing an influx of neutrophils from the blood into the lung airspaces, and the neutrophils causing further damage, which attracts more neutrophils in a vicious cycle. There are ∼190,000 cases of ARDS per year in the US, and because of the lack of therapeutics, the mortality rate is ∼40%. Repelling neutrophils out of the lung airspaces, or simply preventing neutrophil entry, is a potential therapeutic. In this minireview, we discuss how our lab noticed that a protein called AprA secreted by growing Dictyostelium cells functions as a repellent for Dictyostelium cells, causing cells to move away from a source of AprA. We then found that AprA has structural similarity to a human secreted protein called dipeptidyl peptidase IV (DPPIV), and that DPPIV is a repellent for human neutrophils. In animal models of ARDS, inhalation of DPPIV or DPPIV mimetics blocks neutrophil influx into the lungs. To move DPPIV or DPPIV mimetics into the clinic, we need to know how this repulsion works to understand possible drug interactions and side effects. Combining biochemistry and genetics in Dictyostelium to elucidate the AprA signal transduction pathway, followed by drug studies in human neutrophils to determine similarities and differences between neutrophil and Dictyostelium chemorepulsion, will hopefully lead to the safe use of DPPIV or DPPIV mimetics in the clinic.
Collapse
Affiliation(s)
| | | | | | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
14
|
Rauf MA, Tasleem M, Bhise K, Tatiparti K, Sau S, Iyer AK. Nano-therapeutic strategies to target coronavirus. VIEW 2021; 2:20200155. [PMID: 34766165 PMCID: PMC8250313 DOI: 10.1002/viw.20200155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/28/2020] [Accepted: 12/24/2020] [Indexed: 01/05/2023] Open
Abstract
The coronaviruses have caused severe acute respiratory syndrome (SARS), the Middle East respiratory syndrome (MERS), and the more recent coronavirus pneumonia (COVID-19). The global COVID-19 pandemic requires urgent action to develop anti-virals, new therapeutics, and vaccines. In this review, we discuss potential therapeutics including human recombinant ACE2 soluble, inflammatory cytokine inhibitors, and direct anti-viral agents such as remdesivir and favipiravir, to limit their fatality. We also discuss the structure of the SARS-CoV-2, which is crucial to the timely development of therapeutics, and previous attempts to generate vaccines against SARS-CoV and MERS-CoV. Finally, we provide an overview of the role of nanotechnology in the development of therapeutics as well as in the diagnosis of the infection. This information is key for computational modeling and nanomedicine-based new therapeutics by counteracting the variable proteins in the virus. Further, we also try to effectively share the latest information about many different aspects of COVID-19 vaccine developments and possible management to further scientific endeavors.
Collapse
Affiliation(s)
- Mohd Ahmar Rauf
- Use‐inspired Biomaterials & Integrated Nano Delivery (U‐BiND) Systems LaboratoryDepartment of Pharmaceutical SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| | - Munazzah Tasleem
- Bioinformatics Infrastructure Facility, Department of Computer ScienceJamia Millia Islamia UniversityNew Delhi110025India
| | - Ketki Bhise
- Use‐inspired Biomaterials & Integrated Nano Delivery (U‐BiND) Systems LaboratoryDepartment of Pharmaceutical SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| | - Katyayani Tatiparti
- Use‐inspired Biomaterials & Integrated Nano Delivery (U‐BiND) Systems LaboratoryDepartment of Pharmaceutical SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| | - Samaresh Sau
- Use‐inspired Biomaterials & Integrated Nano Delivery (U‐BiND) Systems LaboratoryDepartment of Pharmaceutical SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| | - Arun K. Iyer
- Use‐inspired Biomaterials & Integrated Nano Delivery (U‐BiND) Systems LaboratoryDepartment of Pharmaceutical SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
- Molecular Imaging ProgramBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMichigan
| |
Collapse
|
15
|
de Oliveira MTP, Coutinho DDS, Guterres SS, Pohlmann AR, Silva PMRE, Martins MA, Bernardi A. Resveratrol-Loaded Lipid-Core Nanocapsules Modulate Acute Lung Inflammation and Oxidative Imbalance Induced by LPS in Mice. Pharmaceutics 2021; 13:pharmaceutics13050683. [PMID: 34068619 PMCID: PMC8151102 DOI: 10.3390/pharmaceutics13050683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/05/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are inflammatory and oxidative imbalance lung conditions with no successful pharmacological therapy and a high mortality rate. Resveratrol (RSV) is a plant-derived stilbene that presents anti-inflammatory and antioxidant effects. However, its therapeutic application remains limited due to its poor bioavailability, which can be solved by the use of nanocarriers. Previously, we demonstrated that nanoencapsulated RSV (RSV-LNC) pre-treatment, performed 4 h before lipopolysaccharide (LPS) stimulation in mice, increased its anti-inflammatory properties. In this study, we evaluated the anti-inflammatory and antioxidant effects, and lung distribution of RSV-LNCs administered therapeutically (6 h post LPS exposure) in a lung injury mouse model. The results showed that RSV-LNCs posttreatment improved lung function and diminished pulmonary inflammation. Moreover, RSV-LNC treatment enhanced the antioxidant catalase level together with a decrease in the oxidative biomarker in mouse lungs, which was accompanied by an increase in pulmonary Nrf2 antioxidant expression. Finally, the presence of RSV in lung tissue was significantly detected when mice received RSV-LNCs but not when they received RSV in its free form. Together, our results confirm that RSV nanoencapsulation promotes an increase in RSV bioavailability, enhancing its therapeutic effects in an LPS-induced lung injury model.
Collapse
Affiliation(s)
- Maria Talita Pacheco de Oliveira
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (M.T.P.d.O.); (P.M.R.eS.); (M.A.M.)
| | - Diego de Sá Coutinho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (M.T.P.d.O.); (P.M.R.eS.); (M.A.M.)
- Correspondence: or (D.d.S.C.); (A.B.)
| | - Sílvia Stanisçuaski Guterres
- Pharmaceutical Sciences Post-Graduation Program, College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (S.S.G.); (A.R.P.)
| | - Adriana Raffin Pohlmann
- Pharmaceutical Sciences Post-Graduation Program, College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (S.S.G.); (A.R.P.)
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Patrícia Machado Rodrigues e Silva
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (M.T.P.d.O.); (P.M.R.eS.); (M.A.M.)
| | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (M.T.P.d.O.); (P.M.R.eS.); (M.A.M.)
| | - Andressa Bernardi
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (M.T.P.d.O.); (P.M.R.eS.); (M.A.M.)
- Correspondence: or (D.d.S.C.); (A.B.)
| |
Collapse
|
16
|
|
17
|
Lariccia V, Magi S, Serfilippi T, Toujani M, Gratteri S, Amoroso S. Challenges and Opportunities from Targeting Inflammatory Responses to SARS-CoV-2 Infection: A Narrative Review. J Clin Med 2020; 9:E4021. [PMID: 33322733 PMCID: PMC7763517 DOI: 10.3390/jcm9124021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) is a global pandemic that continues to sweep across the world, posing an urgent need for effective therapies and prevention of the spread of the severe acute respiratory syndrome related to coronavirus-2 (SARS-CoV-2). A major hypothesis that is currently guiding research and clinical care posits that an excessive and uncontrolled surge of pro-inflammatory cytokines (the so-called "cytokine storm") drives morbidity and mortality in the most severe cases. In the overall efforts made to develop effective and safe therapies (including vaccines) for COVID-19, clinicians are thus repurposing ready-to-use drugs with direct or indirect anti-inflammatory and immunomodulatory activities. Speculatively, there are many opportunities and challenges in targeting immune/inflammatory processes in the evolving settings of COVID-19 disease because of the need to safely balance the fight against virus and aggressive inflammation versus the suppression of host immune defenses and the risk of additional harms in already compromised patients. To this end, many studies are globally underway to weigh the pros and cons of tailoring drugs used for inflammatory-driven conditions to COVID-19 patient care, and the next step will be to summarize the growing clinical trial experience into clean clinical practice. Based on the current evidence, anti-inflammatory drugs should be considered as complementary approaches to anti-viral drugs that need to be timely introduced in the management of COVID-19 according to disease severity. While drugs that target SARS-CoV-2 entry or replication are expected to confer the greatest benefits at the early stage of the infection, anti-inflammatory drugs would be more effective in limiting the inflammatory processes that drive the worsening of the disease.
Collapse
Affiliation(s)
- Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (S.M.); (T.S.); (M.T.)
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (S.M.); (T.S.); (M.T.)
| | - Tiziano Serfilippi
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (S.M.); (T.S.); (M.T.)
| | - Marwa Toujani
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (S.M.); (T.S.); (M.T.)
| | - Santo Gratteri
- Institute of Legal Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy;
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (S.M.); (T.S.); (M.T.)
| |
Collapse
|
18
|
Dehghani T, Panitch A. Endothelial cells, neutrophils and platelets: getting to the bottom of an inflammatory triangle. Open Biol 2020; 10:200161. [PMID: 33050789 PMCID: PMC7653352 DOI: 10.1098/rsob.200161] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Severe fibrotic and thrombotic events permeate the healthcare system, causing suffering for millions of patients with inflammatory disorders. As late-state consequences of chronic inflammation, fibrosis and thrombosis are the culmination of pathological interactions of activated endothelium, neutrophils and platelets after vessel injury. Coupling of these three cell types ensures a pro-coagulant, cytokine-rich environment that promotes the capture, activation and proliferation of circulating immune cells and recruitment of key pro-fibrotic cell types such as myofibroblasts. As the first responders to sterile inflammatory injury, it is important to understand how endothelial cells, neutrophils and platelets help create this environment. There has been a growing interest in this intersection over the past decade that has helped shape the development of therapeutics to target these processes. Here, we review recent insights into how neutrophils, platelets and endothelial cells guide the development of pathological vessel repair that can also result in underlying tissue fibrosis. We further discuss recent efforts that have been made to translate this knowledge into therapeutics and provide perspective as to how a compound or combination therapeutics may be most efficacious when tackling fibrosis and thrombosis that is brought upon by chronic inflammation.
Collapse
Affiliation(s)
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, GBSF 2303, Davis, CA, USA
| |
Collapse
|