1
|
Tian Z, Zhang Y, Xu J, Yang Q, Hu D, Feng J, Gai C. Primary cilia in Parkinson's disease: summative roles in signaling pathways, genes, defective mitochondrial function, and substantia nigra dopaminergic neurons. Front Aging Neurosci 2024; 16:1451655. [PMID: 39364348 PMCID: PMC11447156 DOI: 10.3389/fnagi.2024.1451655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Primary cilia (PC) are microtubules-based, independent antennal-like sensory organelles, that are seen in most vertebrate cells of different types, including astrocytes and neurons. They send signals to cells to control many physiological and cellular processes by detecting changes in the extracellular environment. Parkinson's disease (PD), a neurodegenerative disease that progresses over time, is primarily caused by a gradual degradation of the dopaminergic pathway in the striatum nigra, which results in a large loss of neurons in the substantia nigra compact (SNpc) and a depletion of dopamine (DA). PD samples have abnormalities in the structure and function of PC. The alterations contribute to the cause, development, and recovery of PD via influencing signaling pathways (SHH, Wnt, Notch-1, α-syn, and TGFβ), genes (MYH10 and LRRK2), defective mitochondrial function, and substantia nigra dopaminergic neurons. Thus, restoring the normal structure and physiological function of PC and neurons in the brain are effective treatment for PD. This review summarizes the function of PC in neurodegenerative diseases and explores the pathological mechanisms caused by PC alterations in PD, in order to provide references and ideas for future research.
Collapse
Affiliation(s)
- Zijiao Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixin Zhang
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qianwen Yang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Die Hu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Feng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Gahtani RM, Shoaib S, Hani U, Jayachithra R, Alomary MN, Chauhan W, Jahan R, Tufail S, Ansari MA. Combating Parkinson's disease with plant-derived polyphenols: Targeting oxidative stress and neuroinflammation. Neurochem Int 2024; 178:105798. [PMID: 38950626 DOI: 10.1016/j.neuint.2024.105798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disorder predominantly affecting the elderly, characterized by the loss of dopaminergic neurons in the substantia nigra. Reactive oxygen species (ROS) generation plays a central role in the pathogenesis of PD and other neurodegenerative diseases. An imbalance between cellular antioxidant activity and ROS production leads to oxidative stress, contributing to disease progression. Dopamine metabolism, mitochondrial dysfunction, and neuroinflammation in dopaminergic neurons have been implicated in the pathogenesis of Parkinson's disease. Consequently, there is a pressing need for therapeutic interventions capable of scavenging ROS. Current pharmacological approaches, such as L-dihydroxyphenylalanine (levodopa or L-DOPA) and other drugs, provide symptomatic relief but are limited by severe side effects. Researchers worldwide have been exploring alternative compounds with less toxicity to address the multifaceted challenges associated with Parkinson's disease. In recent years, plant-derived polyphenolic compounds have gained significant attention as potential therapeutic agents. These compounds exhibit neuroprotective effects by targeting pathophysiological responses, including oxidative stress and neuroinflammation, in Parkinson's disease. The objective of this review is to summarize the current understanding of the neuroprotective effects of various polyphenols in Parkinson's disease, focusing on their antioxidant and anti-inflammatory properties, and to discuss their potential as therapeutic candidates. This review highlights the progress made in elucidating the molecular mechanisms of action of these polyphenols, identifying potential therapeutic targets, and optimizing their delivery and bioavailability. Well-designed clinical trials are necessary to establish the efficacy and safety of polyphenol-based interventions in the management of Parkinson's disease.
Collapse
Affiliation(s)
- Reem M Gahtani
- Department of clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shoaib Shoaib
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, AL, 35205, USA.
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - R Jayachithra
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical & Health Sciences University, P.O. Box 11172, Ras Al Khaimah, United Arab Emirates
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Waseem Chauhan
- Division of Hematology, Duke Comprehensive Sickle Cell Center, Department of Medicine, Duke University School of Medicine, Research Drive, Durham, NC, 27710, USA
| | - Roshan Jahan
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Saba Tufail
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, AL, 35205, USA
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
3
|
Deliz JR, Tanner CM, Gonzalez-Latapi P. Epidemiology of Parkinson's Disease: An Update. Curr Neurol Neurosci Rep 2024; 24:163-179. [PMID: 38642225 DOI: 10.1007/s11910-024-01339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF REVIEW In recent decades, epidemiological understanding of Parkinson disease (PD) has evolved significantly. Major discoveries in genetics and large epidemiological investigations have provided a better understanding of the genetic, behavioral, and environmental factors that play a role in the pathogenesis and progression of PD. In this review, we provide an epidemiological update of PD with a particular focus on advances in the last five years of published literature. RECENT FINDINGS We include an overview of PD pathophysiology, followed by a detailed discussion of the known distribution of disease and varied determinants of disease. We describe investigations of risk factors for PD, and provide a critical summary of current knowledge, knowledge gaps, and both clinical and research implications. We emphasize the need to characterize the epidemiology of the disease in diverse populations. Despite increasing understanding of PD epidemiology, recent paradigm shifts in the conceptualization of PD as a biological entity will also impact epidemiological research moving forward and guide further work in this field.
Collapse
Affiliation(s)
- Juan R Deliz
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Caroline M Tanner
- Weill Institute for Neurosciences, Department of Neurology, University of California -San Francisco, San Francisco, CA, USA
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
4
|
Surguchov A, Surguchev AA. Association between Parkinson's Disease and Cancer: New Findings and Possible Mediators. Int J Mol Sci 2024; 25:3899. [PMID: 38612708 PMCID: PMC11011322 DOI: 10.3390/ijms25073899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Epidemiological evidence points to an inverse association between Parkinson's disease (PD) and almost all cancers except melanoma, for which this association is positive. The results of multiple studies have demonstrated that patients with PD are at reduced risk for the majority of neoplasms. Several potential biological explanations exist for the inverse relationship between cancer and PD. Recent results identified several PD-associated proteins and factors mediating cancer development and cancer-associated factors affecting PD. Accumulating data point to the role of genetic traits, members of the synuclein family, neurotrophic factors, the ubiquitin-proteasome system, circulating melatonin, and transcription factors as mediators. Here, we present recent data about shared pathogenetic factors and mediators that might be involved in the association between these two diseases. We discuss how these factors, individually or in combination, may be involved in pathology, serve as links between PD and cancer, and affect the prevalence of these disorders. Identification of these factors and investigation of their mechanisms of action would lead to the discovery of new targets for the treatment of both diseases.
Collapse
Affiliation(s)
- Andrei Surguchov
- Department of Neurology, Kansas University Medical Center, Kansas City, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Alexei A Surguchev
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Zhang R, Jiang W, Wang G, Zhang Y, Liu W, Li M, Yu J, Yan X, Zhou F, Du W, Qian K, Xiao Y, Liu T, Ju L, Wang X. Parkin inhibits proliferation and migration of bladder cancer via ubiquitinating Catalase. Commun Biol 2024; 7:245. [PMID: 38424181 PMCID: PMC10904755 DOI: 10.1038/s42003-024-05935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
PRKN is a key gene involved in mitophagy in Parkinson's disease. However, recent studies have demonstrated that it also plays a role in the development and metastasis of several types of cancers, both in a mitophagy-dependent and mitophagy-independent manner. Despite this, the potential effects and underlying mechanisms of Parkin on bladder cancer (BLCA) remain unknown. Therefore, in this study, we investigated the expression of Parkin in various BLCA cohorts derived from human. Here we show that PRKN expression was low and that PRKN acts as a tumor suppressor by inhibiting the proliferation and migration of BLCA cells in a mitophagy-independent manner. We further identified Catalase as a binding partner and substrate of Parkin, which is an important antioxidant enzyme that regulates intracellular ROS levels during cancer progression. Our data showed that knockdown of CAT led to increased intracellular ROS levels, which suppressed cell proliferation and migration. Conversely, upregulation of Catalase decreased intracellular ROS levels, promoting cell growth and migration. Importantly, we found that Parkin upregulation partially restored these effects. Moreover, we discovered that USP30, a known Parkin substrate, could deubiquitinate and stabilize Catalase. Overall, our study reveals a novel function of Parkin and identifies a potential therapeutic target in BLCA.
Collapse
Affiliation(s)
- Renjie Zhang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenyu Jiang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Wei Liu
- Department of Urology, Peking University Aerospace Center Hospital, Beijing, China
| | - Mingxing Li
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingtian Yu
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin Yan
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fenfang Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenzhi Du
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tongzu Liu
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Shejul PP, Doshi GM. Glutamate Receptors and C-ABL Inhibitors: A New Therapeutic Approach for Parkinson's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:22-44. [PMID: 38273763 DOI: 10.2174/0118715249268627231206115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 01/27/2024]
Abstract
Parkinson's disease (PD) is the second-most prevalent central nervous system (CNS) neurodegenerative condition. Over the past few decades, suppression of BCR-Abelson tyrosine kinase (c-Abl), which serves as a marker of -synuclein aggregation and oxidative stress, has shown promise as a potential therapy target in PD. c-Abl inhibition has the potential to provide neuroprotection against PD, as shown by experimental results and the first-in-human trial, which supports the strategy in bigger clinical trials. Furthermore, glutamate receptors have also been proposed as potential therapeutic targets for the treatment of PD since they facilitate and regulate synaptic neurotransmission throughout the basal ganglia motor system. It has been noticed that pharmacological manipulation of the receptors can change normal as well as abnormal neurotransmission in the Parkinsonian brain. The review study contributes to a comprehensive understanding of the approach toward the role of c-Abl and glutamate receptors in Parkinson's disease by highlighting the significance and urgent necessity to investigate new pharmacotherapeutic targets. The article covers an extensive insight into the concept of targeting, pathophysiology, and c-Abl interaction with α-synuclein, parkin, and cyclin-dependent kinase 5 (Cdk5). Furthermore, the concepts of Nmethyl- D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPA) receptor, and glutamate receptors are discussed briefly. Conclusion: This review article focuses on in-depth literature findings supported by an evidence-based discussion on pre-clinical trials and clinical trials related to c-Abl and glutamate receptors that act as potential therapeutic targets for PD.
Collapse
Affiliation(s)
- Priya P Shejul
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
7
|
el Bouhaddani S, Höllerhage M, Uh HW, Moebius C, Bickle M, Höglinger G, Houwing-Duistermaat J. Statistical integration of multi-omics and drug screening data from cell lines. PLoS Comput Biol 2024; 20:e1011809. [PMID: 38295113 PMCID: PMC10878536 DOI: 10.1371/journal.pcbi.1011809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/20/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Data integration methods are used to obtain a unified summary of multiple datasets. For multi-modal data, we propose a computational workflow to jointly analyze datasets from cell lines. The workflow comprises a novel probabilistic data integration method, named POPLS-DA, for multi-omics data. The workflow is motivated by a study on synucleinopathies where transcriptomics, proteomics, and drug screening data are measured in affected LUHMES cell lines and controls. The aim is to highlight potentially druggable pathways and genes involved in synucleinopathies. First, POPLS-DA is used to prioritize genes and proteins that best distinguish cases and controls. For these genes, an integrated interaction network is constructed where the drug screen data is incorporated to highlight druggable genes and pathways in the network. Finally, functional enrichment analyses are performed to identify clusters of synaptic and lysosome-related genes and proteins targeted by the protective drugs. POPLS-DA is compared to other single- and multi-omics approaches. We found that HSPA5, a member of the heat shock protein 70 family, was one of the most targeted genes by the validated drugs, in particular by AT1-blockers. HSPA5 and AT1-blockers have been previously linked to α-synuclein pathology and Parkinson's disease, showing the relevance of our findings. Our computational workflow identified new directions for therapeutic targets for synucleinopathies. POPLS-DA provided a larger interpretable gene set than other single- and multi-omic approaches. An implementation based on R and markdown is freely available online.
Collapse
Affiliation(s)
| | | | - Hae-Won Uh
- Dept. Data science & Biostatistics, UMC Utrecht, Utrecht, Netherlands
| | - Claudia Moebius
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marc Bickle
- Roche Institute for Translational Bioengineering, Basel, Switzerland
| | - Günter Höglinger
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Department of Neurology, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jeanine Houwing-Duistermaat
- Dept. Data science & Biostatistics, UMC Utrecht, Utrecht, Netherlands
- Dept. of Mathematics, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
8
|
Zhou TY, Ma RX, Li J, Zou B, Yang H, Ma RY, Wu ZQ, Li J, Yao Y. Review of PINK1-Parkin-mediated mitochondrial autophagy in Alzheimer's disease. Eur J Pharmacol 2023; 959:176057. [PMID: 37751832 DOI: 10.1016/j.ejphar.2023.176057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
Mitochondrial autophagy plays an important role in maintaining the complexity of mitochondrial functions and removing damaged mitochondria, of which the PINK1-Parkin signal pathway is one of the most classical pathways. Thus, a comprehensive and in-depth interpretation of the PINK1-Parkin signal pathway might deepen our understanding on the impacts of mitochondrial autophagy. Alzheimer's disease (AD) is a classical example of neurodegenerative disease. Research on the pathogenesis and treatments of AD has been a focus of scientific research because of its complexity and the limitations of current drug therapies. It was reported that the pathogenesis of AD might be related to mitochondrial autophagy due to excessive deposition of Aβ protein and aggravation of the phosphorylation of Tau protein. Two key proteins in the PINK1-Parkin signaling pathway, PINK1 and Parkin, have important roles in the folding and accumulation of Aβ protein and the phosphorylation of Tau protein. In addition, the intermediate signal molecules in the PINK1-Parkin signal pathway also have certain effects on AD. In this paper, we first described the role of PINK1-Parkin signal pathway on mitochondrial autophagy, then discussed and analyzed the effect of the PINK1-Parkin signal pathway in AD and other metabolic diseases. Our aim was to provide a theoretical direction to further elucidate the pathogenesis of AD and highlight the key molecules related to AD that could be important targets used for AD drug development.
Collapse
Affiliation(s)
- Ting-Yuan Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Rui-Xia Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Jia Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Bin Zou
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Hui Yang
- Research Center of Medical Science and Technology, Ningxia Medical University, Yinchuan, 750004, China
| | - Rui-Yin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Zi-Qi Wu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Characteristic Chinese Medicine, and Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
9
|
Afzal S, Abdul Manap AS, Attiq A, Albokhadaim I, Kandeel M, Alhojaily SM. From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front Pharmacol 2023; 14:1269581. [PMID: 37927596 PMCID: PMC10622810 DOI: 10.3389/fphar.2023.1269581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Increased production and buildup of reactive oxygen species (ROS) can lead to various health issues, including metabolic problems, cancers, and neurological conditions. Our bodies counteract ROS with biological antioxidants such as SOD, CAT, and GPx, which help prevent cellular damage. However, if there is an imbalance between ROS and these antioxidants, it can result in oxidative stress. This can cause genetic and epigenetic changes at the molecular level. This review delves into how ROS plays a role in disorders caused by oxidative stress. We also look at animal models used for researching ROS pathways. This study offers insights into the mechanism, pathology, epigenetic changes, and animal models to assist in drug development and disease understanding.
Collapse
Affiliation(s)
- Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Aimi Syamima Abdul Manap
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Ibrahim Albokhadaim
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sameer M. Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
10
|
Lu X, Yao Y, Ma Y, Zhang X, Peng H, Pei Y, Lu Y, Wang L. Low expression of PINK1 and PARK2 predicts poor prognosis in patients with esophageal squamous cell carcinoma. World J Surg Oncol 2023; 21:321. [PMID: 37833780 PMCID: PMC10571472 DOI: 10.1186/s12957-023-03206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The Parkinson's disease (PD) gene family expression is strongly linked to tumor development and progression; PINK1 and PARK2 are essential members of the PD gene family. However, the relationship between PINK1 and PARK2 and esophageal squamous cell carcinoma (ESCC) remains unknown. This research aims to clarify the prognostic value of PINK1 and PARK2 in ESCC. METHODS PINK1 and PARK2 protein levels in 232 ESCC specimens, and 125 matched adjacent normal tissues were detected by immunohistochemistry. The relationship between PINK1 and PARK2 protein expression and clinicopathological features were analyzed. Kaplan-Meier survival analysis was performed to estimate the prognostic value of the PINK1 and PARK2 proteins in patients. Cox univariate and multivariate analyses were used to assess the risk factors affecting the OS for patients with ESCC. RESULTS PINK1 and PARK2 had low expression in ESCC. Patients with low PINK1 had worse differentiation and advanced T and TNM stages. Lower PARK2 expression was linked to lymph node metastases and an advanced TNM stage. Furthermore, reduced PINK1 and PARK2 levels were associated with a poor prognosis for ESCC. Cox univariate and multivariate analyses revealed that PINK1, PARK2, and tumor size were closely associated with the prognosis of patients with ESCC, and PARK2 was an independent risk factor for patients with ESCC. Finally, the PINK1 and PARK2 proteins were closely related and shared the same signal pathway. CONCLUSIONS PINK1 and PARK2 could work as tumor suppressors in ESCC and are likely to become new treatment targets for ESCC.
Collapse
Affiliation(s)
- Xiangyun Lu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, the First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yongkun Yao
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, the First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yandi Ma
- Department of Pathology, Nanyang Central Hospital, Nanyang, Henan, China
| | - Xudong Zhang
- Department of Pathology, the First Clinical Medical College of Weifang Medical University, Weifang People's Hospital, Weifang, Shangdong, China
| | - Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, the First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yuhui Pei
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, the First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yulin Lu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, the First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lianghai Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, the First Affiliated Hospital/Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
11
|
Tang Y, Zhang D, Robinson S, Zheng J. Inhibition of Pancreatic Cancer Cells by Different Amyloid Proteins Reveals an Inverse Relationship between Neurodegenerative Diseases and Cancer. Adv Biol (Weinh) 2023; 7:e2300070. [PMID: 37080947 DOI: 10.1002/adbi.202300070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/22/2023] [Indexed: 04/22/2023]
Abstract
Neurodegenerative diseases and cancers are considered to be two families of diseases caused by completely opposite cell-death mechanisms: the former caused by premature cell death, with the latter due to the increased resistance to cell death. Growing epidemiologic evidence appear to suggest an inverse correlation between neurodegenerative diseases and cancers. However, pathological links, particularly from a protein-cell interaction perspective, between these two families of diseases remains to be proven. Here, a fundamental study investigates the effects of three amyloid proteins of Aβ (associated with AD), hIAPP (associated with T2D), and hCT (associated with MTC) on pancreatic cancer (PANC-1) cells. Collective results demonstrate a general inhibitory activity of all of three amyloid proteins on cancer cell proliferation, but inhibition efficiencies are strongly dependent on amyloid sequence (Aβ, hIAPP, hCT), concentration (IC25, IC50, IC75), and aggregation states (monomers, oligomers). Amyloid proteins exhibit two pathways against cancer cells: amyloid monomer-induced ROS production to inhibit cell growth and amyloid oligomer-induced membrane disruption to kill cells. Collectively, the results demonstrate a general inhibition function of amyloid proteins to induce cancer cell death by preventing cell proliferation, suppressing cell migration, promoting reactive oxygen species production, and disrupting cell membranes.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Sarah Robinson
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
12
|
Koros C, Simitsi AM, Bougea A, Papagiannakis N, Antonelou R, Pachi I, Angelopoulou E, Prentakis A, Zachou A, Chrysovitsanou C, Beratis I, Fragkiadaki S, Kontaxopoulou D, Eftymiopoulou E, Stanitsa E, Potagas C, Papageorgiou SG, Karavasilis E, Velonakis G, Prassopoulos V, Geronicola-Trapali X, Stefanis L. Double Trouble: Association of Malignant Melanoma with Sporadic and Genetic Forms of Parkinson's Disease and Asymptomatic Carriers of Related Genes: A Brief Report. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1360. [PMID: 37629650 PMCID: PMC10456316 DOI: 10.3390/medicina59081360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Introduction: Previous epidemiological evidence has established the co-occurrence of malignant melanoma (MM) and Parkinson's disease (PD). Shared molecular mechanisms have been proposed to be implicated in this relationship. The aim of the present study was to assess the prevalence of MM in patients with sporadic and genetic types of PD, as well as in asymptomatic carriers of PD-related genes. Methods: Data regarding past medical history and concomitant disease of 1416 patients with PD (including 20 participants with prodromal disease who phenoconverted to PD), 275 healthy controls (HCs) and 670 asymptomatic carriers of PD-related genes were obtained from the database of the Parkinson's Progression Markers Initiative (PPMI). Focus was placed on information about a medical record of MM. We also retrieved data regarding the genetic status of selected PPMI participants with a positive MM history. Results: In total, 46 patients with PD reported a positive MM history. Concerning the genetic forms of PD, nine of these PD patients (2.47%) carried a Leucine Rich Repeat Kinase 2 (LRRK2) gene mutation (mainly the G2019S), while eight (4.49%) harbored a Glucocerebrosidase (GBA) gene mutation (mainly the N370S). No alpha-synuclein (SNCA) gene mutation was identified in patients with an MM history. The remaining 29 PD patients (3.5%) were genetically undetermined. In total, 18 asymptomatic carriers of PD-related genes had a positive medical history for MM: among them, 10 carried an LRRK2 gene mutation (2.69%) and 10 a GBA gene mutation (3.51%) (2 were dual carriers). MM history was identified for seven HCs (2.5%). Conclusions: We replicated the previously reported association between genetically undetermined PD (GU-PD) and MM. A correlation of LRRK2 mutations with the development of MM could not be verified in either symptomatic PD patients or asymptomatic carriers, implicating distinct pathogenetic mechanisms as compared to GU-PD. Importantly, despite the limited literature evidence on Gaucher disease, this study highlights for the first time the relatively high prevalence of MM among asymptomatic and symptomatic PD GBA mutation carriers, with potential clinical implications.
Collapse
Affiliation(s)
- Christos Koros
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Athina-Maria Simitsi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Nikolaos Papagiannakis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Roubina Antonelou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Ioanna Pachi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Andreas Prentakis
- Nuclear Medicine Unit, Attikon Hospital, 12462 Athens, Greece; (A.P.); (X.G.-T.)
| | - Athena Zachou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Chrysa Chrysovitsanou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Ion Beratis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Stella Fragkiadaki
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Dionysia Kontaxopoulou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Efthymia Eftymiopoulou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Evangelia Stanitsa
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Constantin Potagas
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Sokratis G. Papageorgiou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| | - Efstratios Karavasilis
- Research Unit of Radiology, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, “Attikon” University General Hospital, 11528 Athens, Greece; (E.K.); (G.V.)
| | - Georgios Velonakis
- Research Unit of Radiology, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, “Attikon” University General Hospital, 11528 Athens, Greece; (E.K.); (G.V.)
| | | | | | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.S.); (A.B.); (N.P.); (R.A.); (I.P.); (E.A.); (A.Z.); (C.C.); (I.B.); (S.F.); (D.K.); (E.E.); (E.S.); (C.P.); (S.G.P.); (L.S.)
| |
Collapse
|
13
|
Kim SY, Choi HG, Kim YH, Kwon MJ, Kim JH, Lee HS, Kim JH. Longitudinal study of the inverse relationship between Parkinson's disease and cancer in Korea. NPJ Parkinsons Dis 2023; 9:116. [PMID: 37481603 PMCID: PMC10363116 DOI: 10.1038/s41531-023-00562-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/17/2023] [Indexed: 07/24/2023] Open
Abstract
Despite growing epidemiological evidence, the relationship between Parkinson's disease (PD) and cancer has not been conclusively demonstrated, and related studies are scarce in the Asian population. We aimed to determine the association between PD and subsequent development of various cancers from longitudinal data of a representative sample of Korean adults aged ≥40 years. We retrospectively identified 8381 patients diagnosed with PD from 2002 to 2019 using claims data among 514,866 people of random samples from the Korean National Health Insurance database. We sampled 33,524 age-, sex-, income-, and residential area-matched participants without PD from the same database. The longitudinal associations between PD and overall cancer, as well as 10 common types of cancer, were estimated using multivariable Cox proportional-hazards regression analysis. The adjusted hazard ratio (aHR) of all cancer types was 0.63 (95% confidence interval = 0.57-0.69) in patients with PD compared with matched controls. The aHRs of gastric, thyroid, colorectal, lung, hepatic, and pancreatic cancer and hematological malignancy were 0.69 (0.56-0.85), 0.60 (0.39-0.93), 0.56 (0.44-0.70), 0.71 (0.58-0.84), 0.64 (0.48-0.86), 0.37 (0.23-0.60), and 0.56 (0.36-0.87), respectively. The associations of bladder, gallbladder and biliary duct, and kidney cancer with PD were not statistically significant. Our findings show inverse associations between overall cancer and most cancer types in patients with PD. These inverse associations and their pathogeneses merit further investigation.
Collapse
Affiliation(s)
- So Young Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hyo Geun Choi
- MD Analytics, Seoul, Korea
- Suseoseoul ENT Clinic, Department of Otorhinolaryngology-Head & Neck Surgery, Seoul, Korea
| | - Yoo Hwan Kim
- Department of Neurology, Hallym University College of Medicine, Anyang, Korea
| | - Mi Jung Kwon
- Department of Pathology, Hallym University College of Medicine, Anyang, Korea
| | - Joo-Hee Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University College of Medicine, Anyang, Korea
| | - Heui Seung Lee
- Department of Neurosurgery, Hallym University College of Medicine, Anyang, Korea
| | - Ji Hee Kim
- Department of Neurosurgery, Hallym University College of Medicine, Anyang, Korea.
| |
Collapse
|
14
|
Chen Y, Yao L, Zhao S, Xu M, Ren S, Xie L, Liu L, Wang Y. The oxidative aging model integrated various risk factors in type 2 diabetes mellitus at system level. Front Endocrinol (Lausanne) 2023; 14:1196293. [PMID: 37293508 PMCID: PMC10244788 DOI: 10.3389/fendo.2023.1196293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a chronic endocrine metabolic disease caused by insulin dysregulation. Studies have shown that aging-related oxidative stress (as "oxidative aging") play a critical role in the onset and progression of T2DM, by leading to an energy metabolism imbalance. However, the precise mechanisms through which oxidative aging lead to T2DM are yet to be fully comprehended. Thus, it is urgent to integrate the underlying mechanisms between oxidative aging and T2DM, where meaningful prediction models based on relative profiles are needed. Methods First, machine learning was used to build the aging model and disease model. Next, an integrated oxidative aging model was employed to identify crucial oxidative aging risk factors. Finally, a series of bioinformatic analyses (including network, enrichment, sensitivity, and pan-cancer analyses) were used to explore potential mechanisms underlying oxidative aging and T2DM. Results The study revealed a close relationship between oxidative aging and T2DM. Our results indicate that nutritional metabolism, inflammation response, mitochondrial function, and protein homeostasis are key factors involved in the interplay between oxidative aging and T2DM, even indicating key indices across different cancer types. Therefore, various risk factors in T2DM were integrated, and the theories of oxi-inflamm-aging and cellular senescence were also confirmed. Conclusion In sum, our study successfully integrated the underlying mechanisms linking oxidative aging and T2DM through a series of computational methodologies.
Collapse
Affiliation(s)
- Yao Chen
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Lilin Yao
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Shuheng Zhao
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Mengchu Xu
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Siwei Ren
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Lu Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics & Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Lei Liu
- Intelligent Medicine Institute, Fudan University, Shanghai, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Sabari SS, Balasubramani K, Iyer M, Sureshbabu HW, Venkatesan D, Gopalakrishnan AV, Narayanaswamy A, Senthil Kumar N, Vellingiri B. Type 2 Diabetes (T2DM) and Parkinson's Disease (PD): a Mechanistic Approach. Mol Neurobiol 2023:10.1007/s12035-023-03359-y. [PMID: 37118323 PMCID: PMC10144908 DOI: 10.1007/s12035-023-03359-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
Growing evidence suggest that there is a connection between Parkinson's disease (PD) and insulin dysregulation in the brain, whilst the connection between PD and type 2 diabetes mellitus (T2DM) is still up for debate. Insulin is widely recognised to play a crucial role in neuronal survival and brain function; any changes in insulin metabolism and signalling in the central nervous system (CNS) can lead to the development of various brain disorders. There is accumulating evidence linking T2DM to PD and other neurodegenerative diseases. In fact, they have a lot in common patho-physiologically, including insulin dysregulation, oxidative stress resulting in mitochondrial dysfunction, microglial activation, and inflammation. As a result, initial research should focus on the role of insulin and its molecular mechanism in order to develop therapeutic outcomes. In this current review, we will look into the link between T2DM and PD, the function of insulin in the brain, and studies related to impact of insulin in causing T2DM and PD. Further, we have also highlighted the role of various insulin signalling pathway in both T2DM and PD. We have also suggested that T2DM-targeting pharmacological strategies as potential therapeutic approach for individuals with cognitive impairment, and we have demonstrated the effectiveness of T2DM-prescribed drugs through current PD treatment trials. In conclusion, this investigation would fill a research gap in T2DM-associated Parkinson's disease (PD) with a potential therapy option.
Collapse
Affiliation(s)
- S Sri Sabari
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Kiruthika Balasubramani
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, Tamil Nadu, India
| | - Harysh Winster Sureshbabu
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, India
| | - Arul Narayanaswamy
- Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Nachimuthu Senthil Kumar
- Department of Biotechnology, Mizoram University (A Central University), Aizawl, 796004, Mizoram, India
| | - Balachandar Vellingiri
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India.
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
16
|
Zhou LX, Zheng H, Tian Y, Luo KF, Ma SJ, Wu ZW, Tang P, Jiang J, Wang MH. SNCA inhibits epithelial-mesenchymal transition and correlates to favorable prognosis of breast cancer. Carcinogenesis 2022; 43:1071-1082. [PMID: 36179220 DOI: 10.1093/carcin/bgac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023] Open
Abstract
Alpha-synuclein (SNCA) is a pathological hallmark of Parkinson's disease, known to be involved in cancer occurrence and development; however, its specific effects in breast cancer remain unknown. Data from 150 patients with breast cancer were retrieved from tissue microarray and analyzed for SNCA protein level using immunohistochemistry. Functional enrichment analysis was performed to investigate the potential role of SNCA in breast cancer. SNCA-mediated inhibition of epithelial-mesenchymal transition (EMT) was confirmed with western blotting. The effects of SNCA on invasion and migration were evaluated using transwell and wound-healing experiments. Furthermore, the potential influence of SNCA expression level on drug sensitivity and tumor infiltration by immune cells was analyzed using the public databases. SNCA is lowly expressed in breast cancer tissues. Besides, in vitro and in vivo experiments, SNCA overexpression blocked EMT and metastasis, and the knockdown of SNCA resulted in the opposite effect. A mouse model of metastasis verified the restriction of metastatic ability in vivo. Further analysis revealed that SNCA enhances sensitivity to commonly used anti-breast tumor drugs and immune cell infiltration. SNCA blocks EMT and metastasis in breast cancer and its expression levels could be useful in predicting the chemosensitivity and evaluating the immune microenvironment in breast cancer.
Collapse
Affiliation(s)
- Lin-Xi Zhou
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400038, China
| | - Yuan Tian
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China.,Department of Emergency Surgery, Linyi People's Hospital, Linyi 276000, China
| | - Ke-Fei Luo
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Shu-Juan Ma
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Zi-Wei Wu
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Peng Tang
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jun Jiang
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Ming-Hao Wang
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| |
Collapse
|
17
|
Taslim TH, Hussein AM, Keshri R, Ishibashi JR, Chan TC, Nguyen BN, Liu S, Brewer D, Harper S, Lyons S, Garver B, Dang J, Balachandar N, Jhajharia S, Castillo DD, Mathieu J, Ruohola-Baker H. Stress-induced reversible cell-cycle arrest requires PRC2/PRC1-mediated control of mitophagy in Drosophila germline stem cells and human iPSCs. Stem Cell Reports 2022; 18:269-288. [PMID: 36493777 PMCID: PMC9860083 DOI: 10.1016/j.stemcr.2022.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Following acute genotoxic stress, both normal and tumorous stem cells can undergo cell-cycle arrest to avoid apoptosis and later re-enter the cell cycle to regenerate daughter cells. However, the mechanism of protective, reversible proliferative arrest, "quiescence," remains unresolved. Here, we show that mitophagy is a prerequisite for reversible quiescence in both irradiated Drosophila germline stem cells (GSCs) and human induced pluripotent stem cells (hiPSCs). In GSCs, mitofission (Drp1) or mitophagy (Pink1/Parkin) genes are essential to enter quiescence, whereas mitochondrial biogenesis (PGC1α) or fusion (Mfn2) genes are crucial for exiting quiescence. Furthermore, mitophagy-dependent quiescence lies downstream of mTOR- and PRC2-mediated repression and relies on the mitochondrial pool of cyclin E. Mitophagy-dependent reduction of cyclin E in GSCs and in hiPSCs during mTOR inhibition prevents the usual G1/S transition, pushing the cells toward reversible quiescence (G0). This alternative method of G1/S control may present new opportunities for therapeutic purposes.
Collapse
Affiliation(s)
- Tommy H Taslim
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Abdiasis M Hussein
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Riya Keshri
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Julien R Ishibashi
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Tung C Chan
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Bich N Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Shuozhi Liu
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Daniel Brewer
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Stuart Harper
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Scott Lyons
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Ben Garver
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Jimmy Dang
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Nanditaa Balachandar
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA; Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Samriddhi Jhajharia
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA; Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Debra Del Castillo
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Julie Mathieu
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA.
| |
Collapse
|
18
|
Advani D, Kumar P. Deciphering the molecular mechanism and crosstalk between Parkinson's disease and breast cancer through multi-omics and drug repurposing approach. Neuropeptides 2022; 96:102283. [PMID: 35994781 DOI: 10.1016/j.npep.2022.102283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
Epidemiological studies indicate a higher occurrence of breast cancer (BRCA) in patients with Parkinson's disease. However, the exact molecular mechanism is still not precise. Herein, we tested the hypothesis that this inverse comorbidity result from shared genetic and molecular processes. We conducted an integrated omics analysis to identify the common gene signatures associated with PD and BRCA. Secondly, several dysregulated biological processes in both indications were analyzed by functional enrichment methods, and significant overlapping processes were identified. To establish common regulatory mechanisms, information about transcription factors and miRNAs associated with both the disorders was extracted. Finally, disease-specific gene expression signatures were compared through LINCS L1000 analysis to identify potential repurposing drugs for PD. The potential repurposed drug candidates were then correlated with PD-specific gene signatures by Cmap analysis. In conclusion, this study highlights the shared genes, biological pathways and regulatory signatures associated with PD and BRCA with an improved understanding of crosstalk involved. Additionally, the role of therapeutics was investigated in context with their comorbid associations. These findings could help to explain the complex molecular patterns of associations between PD and BRCA.
Collapse
Affiliation(s)
- Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
19
|
Electronic, spectroscopic, molecular docking and molecular dynamics studies of neutral and zwitterionic forms of 3, 4-dihydroxy-l-phenylalanine: A novel lung cancer drug. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Vitamin D Status and Parkinson's Disease. Brain Sci 2022; 12:brainsci12060790. [PMID: 35741675 PMCID: PMC9221008 DOI: 10.3390/brainsci12060790] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Parkinson’s disease (PD) is a complex and progressive neurodegenerative disease, characterized by resting tremor, rigidity, slowness of movement, and postural instability. Furthermore, PD is associated with a wide spectrum of non-motor symptoms that add to overall disability. In recent years, some investigations, from basic science to clinical applications, have focused on the role of vitamin D in PD, often with controversial findings. Vitamin D has widespread effects on several biological processes in the central nervous system, including neurotransmission in dopaminergic neural circuits. Various studies have recorded lower levels of vitamin D in PD patients than in healthy controls. Low vitamin D status has also been correlated with the risk for PD and motor severity, whereas less is known about the effects vitamin D has on cognitive function and other non-motor symptoms. This review aims to better characterize the correlation between vitamin D and PD, clarify the role of vitamin D in PD prevention and treatment, and discuss avenues for future research in this field.
Collapse
|
21
|
Particulate Matter Exacerbates the Death of Dopaminergic Neurons in Parkinson's Disease through an Inflammatory Response. Int J Mol Sci 2022; 23:ijms23126487. [PMID: 35742931 PMCID: PMC9223534 DOI: 10.3390/ijms23126487] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Particulate matter (PM), a component of air pollution, has been epidemiologically associated with a variety of diseases. Recent reports reveal that PM has detrimental effects on the brain. In this study, we aimed to investigate the biological effects of ambient particles on the neurodegenerative disease Parkinson’s disease (PD). We exposed mice to coarse particles (PM10: 2.5–10 μm) for short (5 days) and long (8 weeks) durations via intratracheal instillation. Long-term PM10 exposure exacerbated motor impairment and dopaminergic neuron death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse models. Short-term PM10 exposure resulted in both pulmonary and systemic inflammatory responses in mice. We further investigated the mechanism underlying PM10-induced neurotoxicity in cocultures of lung LA-4 epithelial cells and RAW264.7 macrophages. PM10 treatment elicited a dramatic increase in proinflammatory mediators in LA-4/RAW264.7 coculture. Treating BV2 microglial cells with PM10-treated conditioned medium induced microglial activation. Furthermore, 1-methyl-4-phenylpyridinium (MPP+) treatment caused notable cell death in N2A neurons cocultured with activated BV2 cells in PM10-conditioned medium. Altogether, our results demonstrated that PM10 plays a role in the neurodegeneration associated with PD. Thus, the impact of PM10 on neurodegeneration could be related to detrimental air pollution-induced systemic effects on the brain.
Collapse
|
22
|
Emdina A, Hermann P, Varges D, Nuhn S, Goebel S, Bunck T, Maass F, Schmitz M, Llorens F, Kruse N, Lingor P, Mollenhauer B, Zerr I. Baseline Cerebrospinal Fluid α-Synuclein in Parkinson's Disease Is Associated with Disease Progression and Cognitive Decline. Diagnostics (Basel) 2022; 12:diagnostics12051259. [PMID: 35626415 PMCID: PMC9140902 DOI: 10.3390/diagnostics12051259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Biomarkers are increasingly recognized as tools in the diagnosis and prognosis of neurodegenerative diseases. No fluid biomarker for Parkinson’s disease (PD) has been established to date, but α-synuclein, a major component of Lewy bodies in PD and dementia with Lewy bodies (DLB), has become a promising candidate. Here, we investigated CSF α-synuclein in patients with PD (n = 28), PDD (n = 8), and DLB (n = 5), applying an electrochemiluminescence immunoassay. Median values were non-significantly (p = 0.430) higher in patients with PDD and DLB (287 pg/mL) than in PD (236 pg/mL). A group of n = 36 primarily non-demented patients with PD and PDD was clinically followed for up to two years. A higher baseline α-synuclein was associated with increases in Hoehn and Yahr classifications (p = 0.019) and Beck Depression Inventory scores (p < 0.001) as well as worse performance in Trail Making Test A (p = 0.017), Trail Making Test B (p = 0.043), and the Boston Naming Test (p = 0.002) at follow-up. Surprisingly, higher levels were associated with a better performance in semantic verbal fluency tests (p = 0.046). In summary, CSF α-synuclein may be a potential prognostic marker for disease progression, affective symptoms, and executive cognitive function in PD. Larger-scaled studies have to validate these findings and the discordant results for single cognitive tests in this exploratory investigation.
Collapse
Affiliation(s)
- Anna Emdina
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Peter Hermann
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- Correspondence: ; Tel.: +49-551-398-955
| | - Daniela Varges
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Sabine Nuhn
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Stefan Goebel
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Timothy Bunck
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Fabian Maass
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Franc Llorens
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Niels Kruse
- Department of Neuropathology, University Medical Centre Göttingen, 37075 Göttingen, Germany;
| | - Paul Lingor
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, 80333 Munich, Germany;
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- Paracelsus-Elena-Klinik, 34128 Kassel, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
23
|
Zhang X, Wu Z, Ma K. SNCA correlates with immune infiltration and serves as a prognostic biomarker in lung adenocarcinoma. BMC Cancer 2022; 22:406. [PMID: 35421944 PMCID: PMC9009002 DOI: 10.1186/s12885-022-09289-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/11/2022] [Indexed: 01/04/2023] Open
Abstract
Background The SNCA gene is a critical gene in Parkinson’s disease (PD) pathology. Accumulating evidence indicates that SNCA is involved in tumorigenesis; however, the role of SNCA in lung adenocarcinoma (LUAD) remains unclear. This study aimed to explore the potential value of SNCA as a prognostic and diagnostic molecular marker in LUAD. Methods In this study, we explored the expression pattern, prognostic value, and promoter methylation status of SNCA in LUAD based on Oncomine, UALCAN, and Kaplan–Meier Plotter. Then, using TIMER, we investigated the correlation between SNCA expression and immune infiltration. And cBioPortal were used to analysis the correlation between SNCA expression and immune checkpoint. The transcriptome data of A549 cells overexpressing SNCA were used to further study the potential immune role of SNCA in LUAD. The effect of SNCA on proliferation of A549 cells were evaluated by CCK-8, EdU and colony formation. Finally, LUAD cell lines treated with 5-aza-dC were used to explore the correlation between increased promoter methylation and downregulated mRNA expression of SNCA. Results In general, the expression level of SNCA in LUAD tissue was lower than that in normal tissue, and high expression of SNCA was related to better prognosis. There were significant positive correlations between SNCA expression and immune infiltrations, including CD8+ T cells, macrophages, neutrophils, dendritic cells, B cells, and CD4+ T cells, and immune checkpoints, suggesting that immune infiltration was one of the reasons for the influence of SNCA on prognosis in LUAD. The transcriptome data of A549 cells overexpressing SNCA were further used to screen the relevant immune-related genes regulated by SNCA. Enrichment analysis confirmed that SNCA participates in the PI3K-AKT signaling pathway and other key tumor signaling pathways and regulates the expression of MAPK3, SRC, PLCG1, and SHC1. Cellular proliferation assay showed that SNCA could inhabit the growth of A549 cells via inhibiting activity of PI3K/AKT/ mTOR pathway. Finally, analysis of the methylation level of SNCA promoter showed that the promoter methylation negatively correlated with mRNA level. The expression of SNCA in LUAD cell lines was significantly upregulated by treatment with 5-aza-dC. Conclusion High methylation of SNCA promoter in LUAD is one of the reasons for the downregulation of SNCA mRNA level. Given that SNCA could inhibit the proliferation of A549 cells and correlates with immune infiltrates, it may serve as a prognostic biomarker in LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09289-7.
Collapse
|
24
|
Lesire L, Leroux F, Deprez-Poulain R, Deprez B. Insulin-Degrading Enzyme, an Under-Estimated Potential Target to Treat Cancer? Cells 2022; 11:1228. [PMID: 35406791 PMCID: PMC8998118 DOI: 10.3390/cells11071228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Insulin-degrading enzyme (IDE) is a multifunctional protease due to the variety of its substrates, its various cellular locations, its conservation between species and its many non-proteolytic functions. Numerous studies have successfully demonstrated its implication in two main therapeutic areas: metabolic and neuronal diseases. In recent years, several reports have underlined the overexpression of this enzyme in different cancers. Still, the exact role of IDE in the physiopathology of cancer remains to be elucidated. Known as the main enzyme responsible for the degradation of insulin, an essential growth factor for healthy cells and cancer cells, IDE has also been shown to behave like a chaperone and interact with the proteasome. The pharmacological modulation of IDE (siRNA, chemical compounds, etc.) has demonstrated interesting results in cancer models. All these results point towards IDE as a potential target in cancer. In this review, we will discuss evidence of links between IDE and cancer development or resistance, IDE's functions, catalytic or non-catalytic, in the context of cell proliferation, cancer development and the impact of the pharmacomodulation of IDE via cancer therapeutics.
Collapse
Affiliation(s)
| | | | - Rebecca Deprez-Poulain
- INSERM U1177 Drugs and Molecules for Living Systems, Institut Pasteur de Lille, European Genomic Institute for Diabetes, University of Lille, F-59000 Lille, France; (L.L.); (F.L.); (B.D.)
| | | |
Collapse
|
25
|
Lu L, Dai M, Mullins CS, Schafmayer C, Linnebacher M. Global Association of Cause-specific Mortality between the Major Gastrointestinal Cancers and Parkinson's Disease for the First Two Decades of the New Millennium. Aging Dis 2022; 13:534-539. [PMID: 35371614 PMCID: PMC8947825 DOI: 10.14336/ad.2021.1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/15/2021] [Indexed: 11/01/2022] Open
Abstract
Parkinson's disease (PD) and gastrointestinal (GI) cancers are both "age-related diseases" sharing several environmental risk factors, but possess opposite underlying biological mechanisms. Aim of this study was to evaluate the correlations between GI cancers and PD using national cause-specific mortality data of 183 countries extracted from the Global Health Observatory database. The association between PD- and GI cancers- (i.e. esophagus cancer, EC; stomach cancer, SC; colorectal cancer, CRC; liver cancer, LC and pancreatic cancer, PC) specific mortality on the country level was evaluated using Spearman correlation and logistic regression analysis. A global increase in mortality from 2000 to 2019 was observed in PD, CRC and PC, whereas in EC, SC and LC it decreased. We see the consistent diminishment of correlation intensities between PD and GI cancer mortalities from 2000 to 2019 as a positive development. In 2019, PD inversely correlated with CRC (rs = -0.39) and PC (rs = -0.40, all P < 0.001) but not with EC and SC. Of note, an exceptionally positive correlation of PD with LC (rs = 0.26, P < 0.001) and its two hepatitis B and C virus-associated subtypes was revealed. Logistic regression analysis further determined that PD associated negatively with CRC (OR = 0.25) and PC (OR = 0.21, both P < 0.001), but positively with LC (OR = 2.27, P = 0.007). Consequently, future research aiming to unravel the functional biological link between neurodegeneration, hepatitis and tumor development holds great potential for developing novel therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Michael Linnebacher
- Clinic of General, Thoracic, Vascular and Transplantation Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
26
|
Bianchini M, Giambelluca M, Scavuzzo MC, Di Franco G, Guadagni S, Palmeri M, Furbetta N, Gianardi D, Costa A, Gentiluomo M, Gaeta R, Pollina LE, Falcone A, Vivaldi C, Di Candio G, Biagioni F, Busceti CL, Soldani P, Puglisi-Allegra S, Morelli L, Fornai F. In Pancreatic Adenocarcinoma Alpha-Synuclein Increases and Marks Peri-Neural Infiltration. Int J Mol Sci 2022; 23:3775. [PMID: 35409135 PMCID: PMC8999122 DOI: 10.3390/ijms23073775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
α-Synuclein (α-syn) is a protein involved in neuronal degeneration. However, the family of synucleins has recently been demonstrated to be involved in the mechanisms of oncogenesis by selectively accelerating cellular processes leading to cancer. Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers, with a specifically high neurotropism. The molecular bases of this biological behavior are currently poorly understood. Here, α-synuclein was analyzed concerning the protein expression in PDAC and the potential association with PDAC neurotropism. Tumor (PDAC) and extra-tumor (extra-PDAC) samples from 20 patients affected by PDAC following pancreatic resections were collected at the General Surgery Unit, University of Pisa. All patients were affected by moderately or poorly differentiated PDAC. The amount of α-syn was compared between tumor and extra-tumor specimen (sampled from non-affected neighboring pancreatic areas) by using in situ immuno-staining with peroxidase anti-α-syn immunohistochemistry, α-syn detection by using Western blotting, and electron microscopy by using α-syn-conjugated immuno-gold particles. All the methods consistently indicate that each PDAC sample possesses a higher amount of α-syn compared with extra-PDAC tissue. Moreover, the expression of α-syn was much higher in those PDAC samples from tumors with perineural infiltration compared with tumors without perineural infiltration.
Collapse
Affiliation(s)
- Matteo Bianchini
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.B.); (G.D.F.); (S.G.); (M.P.); (N.F.); (D.G.); (G.D.C.)
| | - Maria Giambelluca
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.G.); (M.C.S.); (P.S.)
| | - Maria Concetta Scavuzzo
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.G.); (M.C.S.); (P.S.)
| | - Gregorio Di Franco
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.B.); (G.D.F.); (S.G.); (M.P.); (N.F.); (D.G.); (G.D.C.)
| | - Simone Guadagni
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.B.); (G.D.F.); (S.G.); (M.P.); (N.F.); (D.G.); (G.D.C.)
| | - Matteo Palmeri
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.B.); (G.D.F.); (S.G.); (M.P.); (N.F.); (D.G.); (G.D.C.)
| | - Niccolò Furbetta
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.B.); (G.D.F.); (S.G.); (M.P.); (N.F.); (D.G.); (G.D.C.)
| | - Desirée Gianardi
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.B.); (G.D.F.); (S.G.); (M.P.); (N.F.); (D.G.); (G.D.C.)
| | - Aurelio Costa
- General Surgery Unit, ASL Toscana Nord Ovest Pontedera Hospital, 56025 Pontedera, Italy;
| | | | - Raffaele Gaeta
- Division of Surgical Pathology, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56124 Pisa, Italy; (R.G.); (L.E.P.)
| | - Luca Emanuele Pollina
- Division of Surgical Pathology, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56124 Pisa, Italy; (R.G.); (L.E.P.)
| | - Alfredo Falcone
- Division of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (A.F.); (C.V.)
| | - Caterina Vivaldi
- Division of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (A.F.); (C.V.)
| | - Giulio Di Candio
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.B.); (G.D.F.); (S.G.); (M.P.); (N.F.); (D.G.); (G.D.C.)
| | - Francesca Biagioni
- IRCCS Neuromed-Istituto Neurologico Mediterraneo, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (S.P.-A.)
| | - Carla Letizia Busceti
- IRCCS Neuromed-Istituto Neurologico Mediterraneo, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (S.P.-A.)
| | - Paola Soldani
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.G.); (M.C.S.); (P.S.)
| | - Stefano Puglisi-Allegra
- IRCCS Neuromed-Istituto Neurologico Mediterraneo, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (S.P.-A.)
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.B.); (G.D.F.); (S.G.); (M.P.); (N.F.); (D.G.); (G.D.C.)
- EndoCAS (Center for Computer Assisted Surgery), University of Pisa, 56124 Pisa, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.G.); (M.C.S.); (P.S.)
- IRCCS Neuromed-Istituto Neurologico Mediterraneo, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (S.P.-A.)
| |
Collapse
|
27
|
Wu Z, Xia C, Zhang C, Yang D, Ma K. Prognostic significance of SNCA and its methylation in bladder cancer. BMC Cancer 2022; 22:330. [PMID: 35346107 PMCID: PMC8961938 DOI: 10.1186/s12885-022-09411-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/11/2022] [Indexed: 12/28/2022] Open
Abstract
Background The epidemiological investigation of different cancer types in the global population has reported a decreased risk of bladder cancer (BLCA) in Parkinson’s diseases (PD). SNCA a critical gene in PD pathology have been reported involved in tumorigenesis recently. However, the role of SNCA in BLCA remains unclear. This study aimed to explore the potential value of SNCA as a prognostic diagnostic molecular biomarker in BLCA. Methods In this study, we explored the expression pattern, prognostic value and promoter methylation level of SNCA in BLCA by GEPIA2, UALCAN, TCGA, GENT2, GEO and c-BioPortal database. Then, we used LinkedOmics database to obtain the co-expression genes of SNCA for further study by WGCNA. We further investigated the correlations between SNCA expression and six main types of immune cell infiltrations and immune signatures by TIMER. Finally, BLCA cell lines treated with 5-Aza-CdR were used to explore the correlation between increased methylation and downregulated mRNA expression. Results SNCA was downregulated in tumor tissues in TCGA-BLCA, GENT2 and GEO, which was validated in our cohort by qRT-PCR and immunohistochemistry. SNCA was confirmed as an independent predictor of poor overall survival (OS). LinkedOmics analysis suggested that SNCA regulates cell adhesion molecules, cytokine–cytokine receptor interaction, and complement and coagulation cascades. Twenty-two co-expression gene modules were constructed by WGCNA, and most of them were significantly associated with OS and disease-free survival (DFS). Six key genes (CNTN1, DACT3, MYLK1, PDE2A, RBM24, and ST6GALNAC3) screened also significantly correlated with prognosis. There were significant correlations between SNCA expression and immune infiltrations, especially T cell, suggesting that immune infiltration was one of the reasons for the influence of SNCA on prognosis in BLCA. Analysis by ULACAN and c-BioPortal showed that the promoter methylation of SNCA negatively correlated with its mRNA level. Furthermore, BLCA cell treatment with 5-Aza-CdR revealed that SNCA expression levels were upregulated with decreased methylation. Conclusion Our research showed that SNCA was downregulated in BLCA and negatively correlation with DNA methylation. High SNCA expression was confirmed as an independent risk for prognosis. SNCA probably plays an important role in the infiltration of immune cells, especially with T cells. Thus, SNCA may be a promising prognostic biomarker in BLCA patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09411-9.
Collapse
|
28
|
Ryskalin L, Biagioni F, Morucci G, Busceti CL, Frati A, Puglisi-Allegra S, Ferrucci M, Fornai F. Spreading of Alpha Synuclein from Glioblastoma Cells towards Astrocytes Correlates with Stem-like Properties. Cancers (Basel) 2022; 14:cancers14061417. [PMID: 35326570 PMCID: PMC8946011 DOI: 10.3390/cancers14061417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The present study questions whether cells from glioblastoma multiforme (GBM), which overexpress α-synuclein (α-syn), may alter neighboring non-tumoral astrocyte cell lines. The occurrence of α-syn in GBM correlates with the expression of the stem cell marker nestin. When astrocytes are co-cultured with GBM cells in a trans-well apparatus the occurrence of α-syn and nestin rises remarkably. The increase in α-syn in co-cultured astrocytes is more pronounced at the plasma membrane, which mimics the placement of α-syn in GBM cells. When the mTOR inhibitor rapamycin is administered, GBM-induced expression of α-syn and nestin within co-cultured astrocytes is occluded, and morphological alterations are reverted. In the presence of rapamycin the sub-cellular placement of α-syn is modified being allocated within whorls and vacuoles instead of the plasma membrane. The effects induced by rapamycin occur both in baseline GBM cells and within astrocytes primed by co-cultured GBM cells. Abstract Evidence has been recently provided showing that, in baseline conditions, GBM cells feature high levels of α-syn which are way in excess compared with α-syn levels measured within control astrocytes. These findings are consistent along various techniques. In fact, they are replicated by using antibody-based protein detection, such as immuno-fluorescence, immuno-peroxidase, immunoblotting and ultrastructural stoichiometry as well as by measuring α-syn transcript levels at RT-PCR. The present manuscript further questions whether such a high amount of α-syn may be induced within astrocytes, which are co-cultured with GBM cells in a trans-well system. In astrocytes co-cultured with GBM cells, α-syn overexpression is documented. Such an increase is concomitant with increased expression of the stem cell marker nestin, along with GBM-like shifting in cell morphology. This concerns general cell morphology, subcellular compartments and profuse convolutions at the plasma membrane. Transmission electron microscopy (TEM) allows us to assess the authentic amount and sub-cellular compartmentalization of α-syn and nestin within baseline GBM cells and the amount, which is induced within co-cultured astrocytes, as well as the shifting of ultrastructure, which is reminiscent of GBM cells. These phenomena are mitigated by rapamycin administration, which reverts nestin- and α-syn-related overexpression and phenotypic shifting within co-cultured astrocytes towards baseline conditions of naïve astrocytes. The present study indicates that: (i) α-syn increases in astrocyte co-cultured with GBM cells; (ii) α-syn increases in astrocytes along with the stem cell marker nestin; (iii) α-syn increases along with a GBM-like shift of cell morphology; (iv) all these changes are replicated in different GBM cell lines and are reverted by the mTOR inhibitor rapamycin. The present findings indicate that α-syn does occur in high amount within GBM cells and may transmit to neighboring astrocytes as much as a stem cell phenotype. This suggests a mode of tumor progression for GBM cells, which may transform, rather than merely substitute, surrounding tissue; such a phenomenon is sensitive to mTOR inhibition.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (G.M.); (M.F.)
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
| | - Gabriele Morucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (G.M.); (M.F.)
| | - Carla L. Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
- Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00135 Roma, Italy
| | - Stefano Puglisi-Allegra
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (G.M.); (M.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (G.M.); (M.F.)
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
- Correspondence: ; Tel.: +39-050-2218601
| |
Collapse
|
29
|
Melatonin Attenuates Ropivacaine-Induced Apoptosis by Inhibiting Excessive Mitophagy Through the Parkin/PINK1 Pathway in PC12 and HT22 Cells. Inflammation 2022; 45:725-738. [PMID: 34994877 DOI: 10.1007/s10753-021-01579-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/07/2021] [Indexed: 11/05/2022]
Abstract
Melatonin, as an endogenous circadian indoleamine secreted by the pineal gland, executes extensive biological functions, including antioxidant, anti-inflammatory, anti-tumor, and neuroprotective effects. Although melatonin has been reported to serve as a potential therapeutic against many nerve injury diseases, its effect on ropivacaine-induced neurotoxicity remains obscure. Our research aimed to explore the impact and mechanism of melatonin on ropivacaine-induced neurotoxicity. Our results showed that melatonin pretreatment protected the cell viability, morphology, and apoptosis of PC12 and HT22 cells, and it also improved ropivacaine-induced mitochondrial dysfunction and the activation of mitophagy. In addition, we found that autophagy activation with rapamycin significantly weakened the protective effect of melatonin against ropivacaine-induced apoptosis, whereas autophagy inhibition with 3-MA enhanced the effect of melatonin. We also detected the activation of Parkin and PINK1, a canonical mechanism for mitophagy regulation, and results shown that melatonin downregulated the expression of Parkin and PINK1, and upregulated Tomm20 and COXIV proteins, so that those results indicated that melatonin protected ropivacaine-induced apoptosis through suppressing excessive mitophagy by inhibiting the Parkin/PINK1 pathway. Melatonin may be a useful potential therapeutic agent against ropivacaine-induced neurotoxicity.
Collapse
|
30
|
Scorza FA, de Almeida ACG, Finsterer J, Hajjar LA. The implication of cardio-oncology on Parkinson's disease: answers begin to emerge. Clinics (Sao Paulo) 2022; 77:100085. [PMID: 35932506 PMCID: PMC9357833 DOI: 10.1016/j.clinsp.2022.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Fulvio A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima", Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil.
| | - Antonio-Carlos G de Almeida
- Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima", Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil; Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, MG, Brazil
| | - Josef Finsterer
- Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima", Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil; Klinikum Landstrasse, Messerli Institute, Vienna, Austria
| | - Ludhmila A Hajjar
- Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima", Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil; Instituto do Coração, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil; Instituto do Câncer, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
31
|
Dance and Music for Improving Health among Patients with Breast Cancer and Parkinson’s Disease: A Narrative Review. ENDOCRINES 2021. [DOI: 10.3390/endocrines2040042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although a longer life may bring new opportunities for older people and society, advancing age is a leading risk factor for developing several chronic diseases, consequently limiting the health span. During the ageing process, changes in the activity of several endocrine glands may occur, leading to different clinical conditions. Being physically active becomes fundamental for healthy ageing. Despite regular physical activity being shown to have many health benefits, patients with cancer and neurodegenerative diseases remain physically inactive. Over the past two decades, there has been a major increase in arts engagement (e.g., dance and music) on health and well-being in both clinical and non-clinical contexts. Dance and music have been shown to induce positive effects on hormonal glands, patients’ sociality, and self-confidence. Therefore, this review aims to highlight evidence regarding the effects of music and dance on hormonal responses and as preventive and compliance tools for heathy ageing in breast cancer and Parkinson’s disease patients.
Collapse
|
32
|
Martínez-Castrillo JC, Martínez-Martín P, Burgos Á, Arroyo G, García N, Luquín MR, Arbelo JM. Prevalence of Advanced Parkinson's Disease in Patients Treated in the Hospitals of the Spanish National Healthcare System: The PARADISE Study. Brain Sci 2021; 11:brainsci11121557. [PMID: 34942858 PMCID: PMC8699428 DOI: 10.3390/brainsci11121557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Advanced Parkinson’s disease (APD) has been recently defined as a stage in which certain symptoms and complications are present, with a detrimental influence on the overall patient’s health conditions and with a poor response to conventional treatments. However, historically, the term APD has been controversial, thus consequently, APD prevalence has not been previously studied. Objectives: The main objective was to determine the prevalence of APD in patients diagnosed with idiopathic PD in hospitals of the Spanish National Healthcare System. Secondary objectives were the prevalence and incidence of PD and the clinical and sociodemographic characteristics and quality of life of patients with APD or non-APD. Methods: This was a non-interventional, cross-sectional, multicenter, national study in the hospital setting. Results: The study population included 929 patients with PD (mean age 71.8 ± 10.1 years; 53.8% male) and a mean time since diagnosis of 6.6 ± 5.4 years. At the time of diagnosis, 613 patients (66.06%) reported having had premotor symptoms. The Hoehn and Yahr stage was 1 in 15.7% of the patients, 2 in 42.8%, 3 in 30.1%, 4 in 9.9%, and 5 in 1.4%; 46.9% of the patients had comorbidities (mean age-adjusted Charlson comorbidity index 3.5 ± 1.7; median 10-year survival 77%) and the mean 8-item Parkinson’s Disease Quality of Life Questionnaire was 27.8 ± 20.5. We found an APD prevalence of 38.21% (95%CI: 35.08–41.42%), a PD prevalence of 118.4 (95%CI: 117.3–119.6), and a PD incidence of 9.4 (95%CI: 5.42–13.4) all per 100,000 population. Among the APD population, a 15.2% were receiving some form of therapy for advanced stages of the disease (deep brain stimulation, levodopa/carbidopa intestinal gel, or apomorphine subcutaneous infusion). Conclusions: The percentage of patients with APD in the hospitals of the Spanish National Healthcare System was 38.2%.
Collapse
Affiliation(s)
- Juan Carlos Martínez-Castrillo
- Departamento de Neurología, Hospital Universitario Ramón y Cajal, Ctra. de Colmenar Viejo, km. 9100, 28034 Madrid, Spain
- Correspondence: ; Tel.: +34-91-336-8397
| | - Pablo Martínez-Martín
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Calle Valderrebollo, 5, 28031 Madrid, Spain;
| | - Ángel Burgos
- Pivotal, S.L.U. Calle Gobelas, 19, 28023 Madrid, Spain;
| | - Gloria Arroyo
- AbbVie Spain S.L.U. Avenida De Burgos 91, 28050 Madrid, Spain; (G.A.); (N.G.)
| | - Natalia García
- AbbVie Spain S.L.U. Avenida De Burgos 91, 28050 Madrid, Spain; (G.A.); (N.G.)
| | - María Rosario Luquín
- Servicio de Neurología, IdiSNA, Clínica Universidad de Navarra (CUN), Av. de Pío XII, 36, 31008 Pamplona, Spain;
| | - José Matías Arbelo
- Servicio de Neurología, Hospital Universitario San Roque Las Palmas, Calle Dolores de la Rocha 5, 35001 Las Palmas de Gran Canaria, Spain;
| |
Collapse
|
33
|
Ekker M. Dopamine in Health and Disease. Biomedicines 2021; 9:biomedicines9111644. [PMID: 34829873 PMCID: PMC8615827 DOI: 10.3390/biomedicines9111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
The neurotransmitter dopamine (DA) is generally associated with Parkinson's disease (PD) [...].
Collapse
Affiliation(s)
- Marc Ekker
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
34
|
Analysis of Transition of Patients with Parkinson's Disease into Institutional Care: A Retrospective Pilot Study. Brain Sci 2021; 11:brainsci11111470. [PMID: 34827469 PMCID: PMC8615464 DOI: 10.3390/brainsci11111470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 01/16/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease which gives a person a high risk of becoming care-dependent. During disease progression, the amount of care concerning activities of daily living can increase, possibly resulting in transition of the people with Parkinson's disease (PwP) to a care facility. However, there is a lack of knowledge concerning the factors leading to institutionalization of PwP and the consequences for them and their informal caregivers. The aim of this cross-sectional retrospective study was to investigate reasons leading to the transition into an institutional care facility, the process of decision-making and its effects on PwP symptoms and caregiver burden. Participating PwP had to be institutionalized for at most one year after transition at study inclusion. Participants completed a range of semiquantitative questionnaires as well as the caregiving tasks questionnaire. Fourteen patient-caregiver pairs were included. PwP suffered from late-stage PD symptoms with high dependence on help, experiencing several hospitalizations before transition. Analyses revealed a significant decrease in caregiver burden and depressive symptoms of the caregivers after PwP institutionalization. Factors influencing the transition were, e.g., fear of PwP health issues and concerns about caregivers' health. This study presents new insights into the process of institutionalization and its influence on caregiver burden, including aspects for discussions of physicians with PwP and their caregivers for counselling the decision to move to institutional care.
Collapse
|
35
|
Zhang X, Guarin D, Mohammadzadehhonarvar N, Chen X, Gao X. Parkinson's disease and cancer: a systematic review and meta-analysis of over 17 million participants. BMJ Open 2021; 11:e046329. [PMID: 34215604 PMCID: PMC8256737 DOI: 10.1136/bmjopen-2020-046329] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To systematically review and qualitatively evaluate epidemiological evidence on associations between Parkinson's disease (PD) and cancer via meta-analysis. DATA SOURCES MEDLINE via PubMed, Web of Science and EMBASE, until March 2021. STUDY SELECTION Included were publications that (1) were original epidemiological studies on PD and cancer; (2) reported risk estimates; (3) were in English. Exclusion criteria included: (1) review/comments; (2) biological studies; (3) case report/autopsy studies; (4) irrelevant exposure/outcome; (5) treated cases; (6) no measure of risk estimates; (7) no confidence intervals/exact p values and (8) duplicates. DATA EXTRACTION AND SYNTHESIS PRISMA and MOOSE guidelines were followed in data extraction. Two-step screening was performed by two authors blinded to each other. A random-effects model was used to calculate pooled relative risk (RR). MAIN OUTCOMES AND MEASURES We included publications that assessed the risk of PD in individuals with vs without cancer and the risk of cancer in individuals with vs without PD. RESULTS A total of 63 studies and 17 994 584 participants were included. Meta-analysis generated a pooled RR of 0.82 (n=33; 95% CI 0.76 to 0.88; p<0.001) for association between PD and total cancer, 0.76 (n=21; 95% CI 0.67 to 0.85; p<0.001) for PD and smoking-related cancer and 0.92 (n=19; 95% CI 0.84 to 0.99; p=0.03) for non-smoking-related cancer. PD was associated with an increased risk of melanoma (n=29; pooled RR=1.75; 95% CI 1.43 to 2.14; p<0.001) but not for other skin cancers (n=17; pooled RR=0.90; 95% CI 0.60 to 1.34; p=0.60). CONCLUSIONS PD and total cancer were inversely associated. This inverse association persisted for both smoking-related and non-smoking-related cancers. PD was positively associated with melanoma. These results provide evidence for further investigations for possible mechanistic associations between PD and cancer. PROSPERO REGISTRATION NUMBER CRD42020162103.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Nutritional Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - David Guarin
- Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Xiqun Chen
- Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xiang Gao
- Nutritional Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
36
|
Ramaiah MJ, Kumar KR. mTOR-Rictor-EGFR axis in oncogenesis and diagnosis of glioblastoma multiforme. Mol Biol Rep 2021; 48:4813-4835. [PMID: 34132942 DOI: 10.1007/s11033-021-06462-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the aggressive brain cancers with patients having less survival period upto 12-15 months. Mammalian target of rapamycin (mTOR) is a serine/threonine kinase, belongs to the phosphatidylinositol 3-kinases (PI3K) pathway and is involved in various cellular processes of cancer cells. Cancer metabolism is regulated by mTOR and its components. mTOR forms two complexes as mTORC1 and mTORC2. Studies have identified the key component of the mTORC2 complex, Rapamycin-insensitive companion of mammalian target of rapamycin (Rictor) plays a prominent role in the regulation of cancer cell proliferation and metabolism. Apart, growth factor receptor signaling such as epidermal growth factor signaling mediated by epidermal growth factor receptor (EGFR) regulates cancer-related processes. In EGFR signaling various other signaling cascades such as phosphatidyl-inositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR pathway) and Ras/Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) -dependent signaling cross-talk each other. From various studies about GBM, it is very well established that Rictor and EGFR mediated signaling pathways majorly playing a pivotal role in chemoresistance and tumor aggressiveness. Recent studies have shown that non-coding RNAs such as microRNAs (miRs) and long non-coding RNAs (lncRNAs) regulate the EGFR and Rictor and sensitize the cells towards chemotherapeutic agents. Thus, understanding of microRNA mediated regulation of EGFR and Rictor will help in cancer prevention and management as well as a future therapy.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
- School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| | - K Rohil Kumar
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| |
Collapse
|
37
|
Dong L, Zheng YM, Luo XG, He ZY. High Inflammatory Tendency Induced by Malignant Stimulation Through Imbalance of CD28 and CTLA-4/PD-1 Contributes to Dopamine Neuron Injury. J Inflamm Res 2021; 14:2471-2482. [PMID: 34140795 PMCID: PMC8203269 DOI: 10.2147/jir.s316439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023] Open
Abstract
Background Parkinson’s disease is a common neurodegenerative disease in the elderly. The incidence of various cancers in Parkinson’s disease patients is significantly lower than in healthy people. Parkinson’s disease patients are individuals with a high tendency for inflammation, whose peripheral immune system is represented in an activated state. We hypothesized that the hyperinflammatory predisposition of Parkinson’s disease patients is pathogenic. Methods DBA/1 mice were used to simulate “highly inflammatory individuals”, and the carcinogen DEN was used to induce malignancy. Hematoxylin & eosin (H&E) staining was used to observe the formation of lung tumors. Apoptosis of neurons was observed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Immunohistochemistry and flow cytometry were used to observe CD4, CD28, major histocompatibility complex II (MHCII), cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), and programmed death 1 (PD-1). The ionized calcium binding adaptor molecule-1 (IBA-1) + inducible nitric oxide synthase (iNOS) was used to label M1 microglia, and IBA-1 + arginase 1 (Arg1) was used to label M2 microglia by immunofluorescence. The expression of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and anti-inflammatory cytokines IL-10 and IL-4 was detected by ELISA. Results DBA/1 mice with high inflammatory tendency showed a continuous increase of peripheral inflammation, promoting intracranial inflammation, decreasing the tumor incidence and increasing the neurodegeneration under induction of malignant change. CD28 and CTLA-4/PD-1 reduced the T-cell-dominated inflammatory response, reduced the intracerebral inflammatory response, protected from neurodegeneration, and increased the incidence of tumor. Combination of CTLA-4 and PD-1 blocker can overactivate T cells, worsen peripheral and intracranial inflammation, reduce the incidence of tumor, cause damage to dopamine neurons, and promote the occurrence of neurodegeneration. Conclusion High inflammatory tendency induced by malignant stimulation through the imbalance of CD28 and CTLA-4/PD-1 leads to dopamine neuron injury.
Collapse
Affiliation(s)
- Li Dong
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yu-Min Zheng
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiao-Guang Luo
- Department of Neurology, The First Affiliated Hospital of South University of Science and Technology, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, People's Republic of China
| | - Zhi-Yi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
38
|
Dean DN, Lee JC. Linking Parkinson's Disease and Melanoma: Interplay Between α-Synuclein and Pmel17 Amyloid Formation. Mov Disord 2021; 36:1489-1498. [PMID: 34021920 DOI: 10.1002/mds.28655] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with the death of dopaminergic neurons within the substantia nigra of the brain. Melanoma is a cancer of melanocytes, pigmented cells that give rise to skin tone, hair, and eye color. Although these two diseases fundamentally differ, with PD leading to cell degeneration and melanoma leading to cell proliferation, epidemiological evidence has revealed a reciprocal relationship where patients with PD are more susceptible to melanoma and patients with melanoma are more susceptible to PD. The hallmark pathology observed in PD brains is intracellular inclusions, of which the primary component is proteinaceous α-synuclein (α-syn) amyloid fibrils. α-Syn also has been detected in cultured melanoma cells and tissues derived from patients with melanoma, where an inverse correlation exists between α-syn expression and pigmentation. Although this has led to the prevailing hypothesis that α-syn inhibits enzymes involved in melanin biosynthesis, we recently reported an alternative hypothesis in which α-syn interacts with and modulates the aggregation of Pmel17, a functional amyloid that serves as a scaffold for melanin biosynthesis. In this perspective, we review the literature describing the epidemiological and molecular connections between PD and melanoma, presenting both the prevailing hypothesis and our amyloid-centric hypothesis. We offer our views of the essential questions that remain unanswered to motivate future investigations. Understanding the behavior of α-syn in melanoma could not only provide novel approaches for treating melanoma but also could reveal insights into the role of α-syn in PD. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dexter N Dean
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
39
|
Chubarev VN, Beeraka NM, Sinelnikov MY, Bulygin KV, Nikolenko VN, Mihaylenko E, Tarasov VV, Mikhaleva LM, Poltronieri P, Viswanadha VP, Somasundaram SG, Kirkland CE, Chen K, Liu J, Fan R, Kamal MA, Mironov AA, Madhunapantula SV, Pretorius E, Dindyaev SV, Muresanu C, Sukocheva OA. Health Science Community Will Miss This Bright and Uniting Star: In Memory of Professor Gjumrakch Aliev, M.D, Ph.D. Cancers (Basel) 2021; 13:cancers13081965. [PMID: 33921833 PMCID: PMC8072812 DOI: 10.3390/cancers13081965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/15/2021] [Indexed: 02/05/2023] Open
Abstract
It is with deep sadness that we offer our memorial on the unexpected demise of our dear colleague, Professor Gjumrakch Aliev [...].
Collapse
Affiliation(s)
- Vladimir N. Chubarev
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
| | - Narasimha M. Beeraka
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Bannimantapa, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka 570 015, India;
| | - Mikhail Y. Sinelnikov
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
| | - Kirill V. Bulygin
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
- Faculty of Medicine, M.V. Lomonosov Moscow State University, 117192 Moscow, Russia
| | - Vladimir N. Nikolenko
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
- Faculty of Medicine, M.V. Lomonosov Moscow State University, 117192 Moscow, Russia
| | - Elizaveta Mihaylenko
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
| | - Vadim V. Tarasov
- Faculty of Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia; (V.N.C.); (N.M.B.); (M.Y.S.); (K.V.B.); (V.N.N.); (E.M.); (V.V.T.)
| | | | - Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, via Monteroni km 7, 73100 Lecce, Italy;
| | | | - Siva G. Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Cecil E. Kirkland
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Kuo Chen
- Cancer Center, Department of Radiation Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China; (K.C.); (J.L.); (R.F.)
| | - Junqi Liu
- Cancer Center, Department of Radiation Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China; (K.C.); (J.L.); (R.F.)
| | - Ruitai Fan
- Cancer Center, Department of Radiation Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China; (K.C.); (J.L.); (R.F.)
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, The Frontier Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China;
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Alexander A. Mironov
- Laboratory of Electron Microscopy, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy;
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Bannimantapa, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka 570 015, India;
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa;
| | - Sergey V. Dindyaev
- Department of Histology, Embryology & Cytology, Pediatric Faculty, Federal State Budgetary Educational Institution of Higher Education “Ivanovo State Medical Academy” of the Ministry of Healthcare of the Russian Federation (FSBEI HE IvSMA MOH Russia), 8 Sheremetyevsky Ave., 153012 Ivanovo, Russia;
| | - Cristian Muresanu
- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapies, Str. Trifoiului nr. 12 G, 400478 Cluj-Napoca, Romania;
| | - Olga A. Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University of South Australia, Adelaide 5001, Australia
- Correspondence:
| |
Collapse
|
40
|
Bastian P, Dulski J, Roszmann A, Jacewicz D, Kuban-Jankowska A, Slawek J, Wozniak M, Gorska-Ponikowska M. Regulation of Mitochondrial Dynamics in Parkinson's Disease-Is 2-Methoxyestradiol a Missing Piece? Antioxidants (Basel) 2021; 10:248. [PMID: 33562035 PMCID: PMC7915370 DOI: 10.3390/antiox10020248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondria, as "power house of the cell", are crucial players in cell pathophysiology. Beyond adenosine triphosphate (ATP) production, they take part in a generation of reactive oxygen species (ROS), regulation of cell signaling and cell death. Dysregulation of mitochondrial dynamics may lead to cancers and neurodegeneration; however, the fusion/fission cycle allows mitochondria to adapt to metabolic needs of the cell. There are multiple data suggesting that disturbed mitochondrial homeostasis can lead to Parkinson's disease (PD) development. 2-methoxyestradiol (2-ME), metabolite of 17β-estradiol (E2) and potential anticancer agent, was demonstrated to inhibit cell growth of hippocampal HT22 cells by means of nitric oxide synthase (NOS) production and oxidative stress at both pharmacologically and also physiologically relevant concentrations. Moreover, 2-ME was suggested to inhibit mitochondrial biogenesis and to be a dynamic regulator. This review is a comprehensive discussion, from both scientific and clinical point of view, about the influence of 2-ME on mitochondria and its plausible role as a modulator of neuron survival.
Collapse
Affiliation(s)
- Paulina Bastian
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
| | - Jaroslaw Dulski
- Department of Neurological-Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.D.); (A.R.); (J.S.)
- Neurology & Stroke Dpt. St. Adalbert Hospital, “Copernicus” Ltd., 80-462 Gdansk, Poland
| | - Anna Roszmann
- Department of Neurological-Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.D.); (A.R.); (J.S.)
- Neurology & Stroke Dpt. St. Adalbert Hospital, “Copernicus” Ltd., 80-462 Gdansk, Poland
| | - Dagmara Jacewicz
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
| | - Jaroslaw Slawek
- Department of Neurological-Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.D.); (A.R.); (J.S.)
- Neurology & Stroke Dpt. St. Adalbert Hospital, “Copernicus” Ltd., 80-462 Gdansk, Poland
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (P.B.); (A.K.-J.); (M.W.)
- Euro-Mediterranean Institute of Science and Technology, 90139 Palermo, Italy
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70174 Stuttgart, Germany
| |
Collapse
|