1
|
Xu R, Lin P, Zheng J, Lin Y, Mai Z, Lu Y, Chen X, Zhou Z, Cui L, Zhao X. Orchestrating cancer therapy: Recent advances in nanoplatforms harmonize immunotherapy with multifaceted treatments. Mater Today Bio 2025; 30:101386. [PMID: 39742149 PMCID: PMC11683241 DOI: 10.1016/j.mtbio.2024.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/17/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025] Open
Abstract
Advancements in cancer therapy have increasingly focused on leveraging the synergistic effects of combining immunotherapy with other treatment modalities, facilitated by the use of innovative nanoplatforms. These strategies aim to augment the efficacy of standalone treatments while addressing their inherent limitations. Nanoplatforms enable precise delivery and controlled release of therapeutic agents, which enhances treatment specificity and reduces systemic toxicity. This review highlights the critical role of nanomaterials in enhancing immunotherapy when combined with chemotherapy, radiotherapy, photodynamic therapy, photothermal therapy, and sonodynamic therapy. Additionally, it addresses current challenges, including limited in vivo studies, difficulties in standardizing and scaling production, complexities of combination therapies, lack of comparative analyses, and the need for personalized treatments. Future directions involve refining nanoplatform engineering for improved targeting and minimizing adverse effects, alongside large animal studies to establish the long-term efficacy and safety of these combined therapeutic strategies. These efforts aim to translate laboratory successes into clinically viable treatments, significantly improving therapeutic outcomes and advancing the field of oncology.
Collapse
Affiliation(s)
- Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zihao Zhou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
- School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| |
Collapse
|
2
|
Lopes J, Rodrigues CM, Godinho-Santos A, Coelho JMP, Cabaço LC, Barral DC, Faísca P, Catarino J, Nunes D, Fortunato E, Martins R, Rodrigues CMP, Gaspar MM, Reis CP. Combination of gold nanoparticles with near-infrared light as an alternative approach for melanoma management. Int J Pharm 2025; 668:124952. [PMID: 39547473 DOI: 10.1016/j.ijpharm.2024.124952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Melanoma is the most aggressive type of skin cancer and recently approved drugs are often associated with resistance and significant adverse effects. Therefore, the design of more effective and safe options remains imperative. Photothermal therapy (PTT) using gold nanoparticles (AuNPs) presents a promising and innovative approach. In this work, the efficacy of combining a previously optimized formulation of AuNPs coated with a mixture of hyaluronic and oleic acids (HAOA-AuNPs) with near-infrared (NIR) laser irradiation in melanoma cell lines was explored. Coated and uncoated AuNPs formulations were characterized in physicochemical, morphological and elemental terms. Next, the cellular uptake efficiency as well as antiproliferative activity of the combination of each formulation with laser irradiation was evaluated. Subsequently, HAOA-AuNPs were selected to assess the underlying mechanism of combined therapy by cell cycle and Annexin V/PI assays. An in vivo syngeneic murine melanoma model was also conducted. In vitro studies demonstrated that 24 h after incubation and in the absence of laser, HAOA-AuNPs did not exhibit cytotoxic effects on the melanoma cell lines tested, similar to the laser alone. On the contrary, the combination therapy resulted in a large reduction in cell viability. Furthermore, it has been shown to promote S-phase cell cycle arrest and increase in the percentage of late apoptotic cells. Finally, the in vivo proof-of-concept showed that the intratumoral administration of HAOA-AuNPs followed by three laser irradiations impaired tumor progression. Collectively, AuNP-based PTT holds significant potential to improve treatment efficacy and safety, offering a versatile and potent tool against cancer.
Collapse
Affiliation(s)
- Joana Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - Carla M Rodrigues
- REQUIMTE - LAQV, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Campus da Caparica Caparica 2829-516, Portugal
| | - Ana Godinho-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - João M P Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal
| | - Luís C Cabaço
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal
| | - Duarte C Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal
| | - Pedro Faísca
- CECAV- Centro de Ciência Animal e Veterinária- Faculdade de Medicina, Veterinária de Lisboa- Universidade Lusófona-Centro Universitário de Lisboa, Portugal
| | - José Catarino
- Faculty of Veterinary Medicine, Universidade Lusófona-Centro Universitário de Lisboa, Portugal; School of Animal Health, Protection and Welfare, Lusophone Polytechnic Institute, Lisbon, Portugal
| | - Daniela Nunes
- Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, i3N/CENIMAT, Caparica 2829-516, Portugal
| | - Elvira Fortunato
- Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, i3N/CENIMAT, Caparica 2829-516, Portugal
| | - Rodrigo Martins
- Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, i3N/CENIMAT, Caparica 2829-516, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal.
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal.
| |
Collapse
|
3
|
Massoud EN, Hebert MK, Siddharthan A, Ferreira T, Neron A, Goodrow M, Ferreira T. Delivery vehicles for light-mediated drug delivery: microspheres, microbots, and nanoparticles: a review. J Drug Target 2025:1-13. [PMID: 39714878 DOI: 10.1080/1061186x.2024.2446636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
This review delves into the evolving landscape of mediated drug delivery, focusing on the versatility of a variety of drug delivery vehicles such as microspheres, microbots, and nanoparticles (NPs). The review also expounds on the critical components and mechanisms for light-mediated drug delivery, including photosensitizers and light sources such as visible light detectable by the human eye, ultraviolet (UV) light, shorter wavelengths than visible light, and near-infra-red (NIR) light, which has longer wavelength than visible light. This longer wavelength has been implemented in drug delivery for its ability to penetrate deeper tissues and highlighted for its role in precise and controlled drug release. Furthermore, this review discusses the significance of these drug delivery vehicles towards a spectrum of diverse applications spanning gene therapy, cancer treatment, diagnostics, and microsurgery, and the materials used in the fabrication of these vehicles encompassing polymers, ceramics, and lipids. Moreover, the review analyses the challenges and limitations of such drug delivery vehicles as areas of improvement to provide researchers with valuable insights for addressing current obstacles in the progression of drug delivery. Overall, this review underscores the potential of light-mediated drug delivery to revolutionise healthcare and personalised medicine, providing precise, targeted, and effective therapeutic interventions.
Collapse
Affiliation(s)
- Engi Nadia Massoud
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | | | | | - Tyler Ferreira
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Abid Neron
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Mary Goodrow
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Tracie Ferreira
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| |
Collapse
|
4
|
Delgado-Corrales BJ, Chopra V, Chauhan G. Gold nanostars and nanourchins for enhanced photothermal therapy, bioimaging, and theranostics. J Mater Chem B 2025; 13:399-428. [PMID: 39575861 DOI: 10.1039/d4tb01420k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Photothermal therapy (PTT), a recently emerging method for eradicating tumors, utilizes hyperthermia induced by photo-absorbing materials to generate heat within cancer cells. Gold nanoparticles (AuNPs) have gained reliability for in vitro and in vivo applications in PTT due to their strong light absorbance, stability, and biocompatibility. Yet, their potential is limited by their spherical shape, impacting their size capabilities, electromagnetic enhancement effects, and localized surface plasmon resonance (LSPR). Anisotropic shapes have been tested and implemented in this treatment to overcome the limitations of spherical AuNPs. Nanostars (AuNSs) and nanourchins (AuNUs) offer unique properties, such as increased local electron density, improved catalytic activity, and an enhanced electromagnetic field, which have proven to be effective in PTT. Additionally, these shapes can easily reach the NIR-I and NIR-II window while exhibiting improved biological properties, including low cytotoxicity and high cellular uptake. This work covers the critical characteristics of AuNS and AuNUs, highlighting rough surface photothermal conversion enhancement, significantly impacting recent PTT and its synergy with other treatments. Additionally, the bioimaging and theranostic applications of these nanomaterials are discussed, highlighting their multifaceted utility in advanced cancer therapies.
Collapse
Affiliation(s)
- Beverly Jazmine Delgado-Corrales
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico.
| | - Vianni Chopra
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico.
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico.
| |
Collapse
|
5
|
Dong X, Yan W, Zhang D, Wang R, Xue L, Shi H, Li Y. Dual-emission carbon dots-based biosensor for polarity/targeting bimodal recognition and mild photothermal therapy of tumor. Talanta 2025; 282:127060. [PMID: 39426196 DOI: 10.1016/j.talanta.2024.127060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/19/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
It is essential to develop a multifunctional nanoplatform for biosensing, tumor diagnosis and treatment simultaneously. Herein, dual-emission fluorescent carbon dots (HA-CDs) were fabricated via a one-pot solvothermal method using spinach powder as carbon source and hyaluronic acid (HA) as targeting agent. The obtained HA-CDs exhibited outstanding optical properties, good targeted tumor and excellent photothermal conversion performance. Interestingly, HA-CDs can sensitively perceive the changes in polar environments attributed to the inherent ratiometric fluorescence characteristics, and combined with the intrinsic targeting tumor ability achieved tumor cell recognition. More importantly, the HA-CDs possess good photothermal conversion efficiency of 21.2 % to be beneficial for photothermal therapy of tumors. The survival rate of HeLa cells incubated with HA-CDs dramatically decreased to 14 % after 660 nm laser irradiation, revealing the significant tumor inhibition of HA-CDs in vitro. Notably, through individual intraperitoneal and intratumoral injection, it was found that HA-CDs demonstrated a similar tumor suppressed effect on 4T1 tumor-bearing mice exposed to laser irradiation, fully uncovering that HA-CDs can efficiently accumulate at tumor site by intraperitoneal injection. Besides, the histopathological analysis of major organs ex vivo revealed a good biosafety profile. Collectively, this strategy of designed HA-CDs provides a new multifunctional nanoplatform for potential clinical application.
Collapse
Affiliation(s)
- Xiaorui Dong
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Wenjun Yan
- Analytical Instrumentation Center, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, PR China
| | | | - Ruihan Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Liuyan Xue
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Heping Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China.
| | - Yingqi Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
6
|
Yılmaz E, Kacaroglu D, Ozden AK, Aydogan N. Gold nanoparticles decorated FOLFIRINOX loaded liposomes for synergistic therapy of pancreatic cancer. Int J Pharm 2024; 669:125067. [PMID: 39672312 DOI: 10.1016/j.ijpharm.2024.125067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Pancreatic cancer is predicted to be the second highest cause of cancer deaths by 2030, with a mortality rate of 98 % and a 5-year survival rate of only 4-8 %. FOLFIRINOX which consists of four main ingredients has shown superior efficacy in treating patients with pancreatic cancer compared to other agents and combinations. However, toxicities have prevented full-dose use of FOLFIRINOX. In this study, we present the design of a liposome nanosystem that enables the sequential release of a drug combination that is called FOLFIRINOX using lipid-based nanosystem synergistic chemo/photothermal therapy approaches. The co-eccentric liposome allowed us to locate the drug molecules in different locations giving us the flexibility to release them in a selected order. Core liposome (L2) has a melting temperature of 53.63 °C, it was decorated by gold nanoparticle (L2@AuNP) to bring photothermal responsiveness. The outer liposome structure had a lower melting temperature, which facilitated the sequential release process. The efficacy of photothermal therapy for nanosystem was calculated. The results indicate that coating L2@AuNP nanostructure with L1 liposomes improves efficacy by stabilizing gold nanoparticles. FOLFIRINOX components are encapsulated in a concentric liposome structure according to the order of administration into the body. The concentric liposome structure enables the sequential release of multiple drugs due to the varying phase transition temperatures of the liposomes. The cytotoxic effect of these formulations was evaluated on Panc-1 pancreatic cancer cells; the lowest cell viability was obtained in 4 Liposome(L) under 5 min NIR irradiation. Combination therapy has a higher therapeutic efficacy (70.45 %) when compared to chemotherapy and photothermal therapy used separately. The study's results show the potential of combination therapies to improve therapeutic outcomes, providing a promising path for future research and clinical application.
Collapse
Affiliation(s)
- Emine Yılmaz
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Demet Kacaroglu
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| | - Ayse Kevser Ozden
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| | - Nihal Aydogan
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey; Department of Chemical Engineering, Faculty of Engineering, Hacettepe University, Ankara, 06800, Turkey.
| |
Collapse
|
7
|
Lafi Z, Matalqah S, Abu-Saleem E, Asha N, Mhaidat H, Asha S, Al-Nashash L, Janabi HS. Metal-organic frameworks as nanoplatforms for combination therapy in cancer treatment. Med Oncol 2024; 42:26. [PMID: 39653960 DOI: 10.1007/s12032-024-02567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024]
Abstract
The integration of nanotechnology into cancer treatment has revolutionized chemotherapy, boosted its effectiveness while reduced side effects. Among the various nanotherapeutic approaches, metal-organic frameworks (MOFs) stand out as promising carriers for targeted chemotherapy, with the added benefit of enabling combination therapies. MOFs, composed of metal ions or clusters linked by coordination bonds, tackle critical issues in traditional cancer treatments, such as poor stability, limited efficacy, and severe side effects. Their key advantages include customizable size and shape, diverse compositions, controlled porosity, large surface areas, ease of modification, and biocompatibility. This review highlights recent advancements in the use of MOFs for cancer therapy, showcasing their role in both monotherapies and combination strategies. Additionally, it explores the future potential and challenges of MOF-based platforms in tumor treatment.
Collapse
Affiliation(s)
- Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan.
| | - Sina Matalqah
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan
| | - Ebaa Abu-Saleem
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan
| | - Nisreen Asha
- The University of Oklahoma Health Sciences, Oklahoma, USA
| | - Hala Mhaidat
- King Abdullah University Hospital, Irbid, Jordan
| | | | - Lara Al-Nashash
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan
| | - Hussein S Janabi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan
| |
Collapse
|
8
|
Zavidovskiy IA, Martynov IV, Tselikov DI, Syuy AV, Popov AA, Novikov SM, Kabashin AV, Arsenin AV, Tselikov GI, Volkov VS, Bolshakov AD. Leveraging Femtosecond Laser Ablation for Tunable Near-Infrared Optical Properties in MoS 2-Gold Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1961. [PMID: 39683349 DOI: 10.3390/nano14231961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Transition metal dichalcogenides (TMDCs), particularly molybdenum disulfide (MoS2), have gained significant attention in the field of optoelectronics and photonics due to their unique electronic and optical properties. The integration of TMDCs with plasmonic materials allows to tailor the optical response and offers significant advantages for photonic applications. This study presents a novel approach to synthesize MoS2-Au nanocomposites utilizing femtosecond laser ablation in liquid to achieve tunable optical properties in the near-infrared (NIR) region. By adjusting ablation and fragmentation protocols, we successfully synthesize various core-shell and core-shell-satellite nanoparticle composites, such as MoS2/MoSxOy, MoSxOy/Au, and MoS2/MoSxOy/Au. UV-visible absorption spectroscopy unveils considerable changes in the optical response of the particles depending on the fabrication regime due to structural modifications. Hybrid nanoparticles exhibit enhanced photothermal properties when subjected to NIR-I laser irradiation, demonstrating potential benefits for selective photothermal therapy. Our findings underscore that the engineered nanocomposites not only facilitate green synthesis but also pave the way for tailored therapeutic applications, highlighting their role as promising candidates in the field of nanophotonics and cancer treatment.
Collapse
Affiliation(s)
- Ilya A Zavidovskiy
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
| | - Ilya V Martynov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
| | - Daniil I Tselikov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- Laboratory 'Bionanophotonics', Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia
| | - Alexander V Syuy
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Anton A Popov
- Laboratory 'Bionanophotonics', Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia
| | - Sergey M Novikov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
| | | | - Aleksey V Arsenin
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan 0025, Armenia
| | - Gleb I Tselikov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Valentyn S Volkov
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Alexey D Bolshakov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan 0025, Armenia
- Center for Nanotechnologies, Alferov University, Khlopina 8/3, Saint Petersburg 194021, Russia
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, St. Petersburg 199034, Russia
| |
Collapse
|
9
|
Zengin Y, Kelle D, Iyisan B. Design of Biopolymer-Coated Gold Nanorods as Biorelevant Photothermal Agents. Macromol Rapid Commun 2024; 45:e2400497. [PMID: 39101703 PMCID: PMC11661658 DOI: 10.1002/marc.202400497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Gold nanorods (AuNRs) are emerging metallic nanoparticles utilized to generate heat for photothermal therapy (PTT) in cancer. The tunable plasmonic properties of AuNRs make them a remarkable candidate for hyperthermia. However, the cytotoxicity of AuNRs limits its biological applicability due to the existence of cetyltrimethylammonium bromide (CTAB) on the surface as a common surfactant. In this study, AuNRs are synthesized by seed-mediated growth and then the optical properties are optimized by altering AgNO3 concentration. Afterward, CTAB is replaced with biopolymers which are BSA:Dextran and BSA:Guar Gum conjugates resulting in enhanced cellular viability, enabling to use of them as biologically relevant photothermal agents. The biocompatibility of AuNRs is improved to utilize them at high concentrations for laser studies, in which similar heat generation success of CTAB- and biopolymer-coated AuNRs are shown for potential PTT applications. CTAB and biopolymer-coated AuNRs in concentrations of 0.5 and 1 mg mL-1 are irradiated under NIR light at 808 nm laser at 0.5, 0.75, and 1 W cm-2 for 300 s. The biopolymer-coated gold nanorods with different coatings preserve photothermal properties while reducing the cytotoxicity effects of CTAB and thus they are promising photothermal agents for potential PTT.
Collapse
Affiliation(s)
- Yağmur Zengin
- Biofunctional Nanomaterials Design (BIND) LaboratoryInstitute of Biomedical EngineeringBogazici UniversityIstanbul34684Turkey
| | - Damla Kelle
- Biofunctional Nanomaterials Design (BIND) LaboratoryInstitute of Biomedical EngineeringBogazici UniversityIstanbul34684Turkey
| | - Banu Iyisan
- Biofunctional Nanomaterials Design (BIND) LaboratoryInstitute of Biomedical EngineeringBogazici UniversityIstanbul34684Turkey
| |
Collapse
|
10
|
Sharma M, Alessandro P, Cheriyamundath S, Lopus M. Therapeutic and diagnostic applications of carbon nanotubes in cancer: recent advances and challenges. J Drug Target 2024; 32:287-299. [PMID: 38252035 DOI: 10.1080/1061186x.2024.2309575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Carbon nanotubes (CNTs) are allotropes of carbon, composed of carbon atoms forming a tube-like structure. Their high surface area, chemical stability, and rich electronic polyaromatic structure facilitate their drug-carrying capacity. Therefore, CNTs have been intensively explored for several biomedical applications, including as a potential treatment option for cancer. By incorporating smart fabrication strategies, CNTs can be designed to specifically target cancer cells. This targeted drug delivery approach not only maximizes the therapeutic utility of CNTs but also minimizes any potential side effects of free drug molecules. CNTs can also be utilised for photothermal therapy (PTT) which uses photosensitizers to generate reactive oxygen species (ROS) to kill cancer cells, and in immunotherapeutic applications. Regarding the latter, for example, CNT-based formulations can preferentially target intra-tumoural regulatory T-cells. CNTs also act as efficient antigen presenters. With their capabilities for photoacoustic, fluorescent and Raman imaging, CNTs are excellent diagnostic tools as well. Further, metallic nanoparticles, such as gold or silver nanoparticles, are combined with CNTs to create nanobiosensors to measure biological reactions. This review focuses on current knowledge about the theranostic potential of CNT, challenges associated with their large-scale production, their possible side effects and important parameters to consider when exploring their clinical usage.
Collapse
Affiliation(s)
- Muskan Sharma
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, India
| | - Parodi Alessandro
- Department of Translational Medicine, Sirius University of Science and Technology, Sirius, Russia
| | - Sanith Cheriyamundath
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, India
| |
Collapse
|
11
|
DeBrosse H, Jadick G, Meng LJ, La Rivière P. Contrast-to-noise ratio comparison between X-ray fluorescence emission tomography and computed tomography. J Med Imaging (Bellingham) 2024; 11:S12808. [PMID: 39417084 PMCID: PMC11478016 DOI: 10.1117/1.jmi.11.s1.s12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose We provide a comparison of X-ray fluorescence emission tomography (XFET) and computed tomography (CT) for detecting low concentrations of gold nanoparticles (GNPs) in soft tissue and characterize the conditions under which XFET outperforms energy-integrating CT (EICT) and photon-counting CT (PCCT). Approach We compared dose-matched Monte Carlo XFET simulations and analytical fan-beam EICT and PCCT simulations. Each modality was used to image a numerical mouse phantom and contrast-depth phantom containing GNPs ranging from 0.05% to 4% by weight in soft tissue. Contrast-to-noise ratios (CNRs) of gold regions were compared among the three modalities, and XFET's detection limit was quantified based on the Rose criterion. A partial field-of-view (FOV) image was acquired for the phantom region containing 0.05% GNPs. Results For the mouse phantom, XFET produced superior CNR values ( CNRs = 24.5 , 21.6, and 3.4) compared with CT images obtained with both energy-integrating ( CNR = 4.4 , 4.6, and 1.5) and photon-counting ( CNR = 6.5 , 7.7, and 2.0) detection systems. More generally, XFET outperformed CT for superficial imaging depths ( < 28.75 mm ) for gold concentrations at and above 0.5%. XFET's surface detection limit was quantified as 0.44% for an average phantom dose of 16 mGy compatible with in vivo imaging. XFET's ability to image partial FOVs was demonstrated, and 0.05% gold was easily detected with an estimated dose of ∼ 81.6 cGy to a localized region of interest. Conclusions We demonstrate a proof of XFET's benefit for imaging low concentrations of gold at superficial depths and the feasibility of XFET for in vivo metal mapping in preclinical imaging tasks.
Collapse
Affiliation(s)
- Hadley DeBrosse
- University of Chicago, Department of Radiology, Chicago, Illinois, United States
| | - Giavanna Jadick
- University of Chicago, Department of Radiology, Chicago, Illinois, United States
| | - Ling Jian Meng
- University of Illinois Urbana-Champaign, Department of Nuclear, Plasma, and Radiological Engineering, Urbana, Illinois, United States
| | - Patrick La Rivière
- University of Chicago, Department of Radiology, Chicago, Illinois, United States
| |
Collapse
|
12
|
Huang J, Wang X, Li Z. Dissolving microneedles: standing out in melanoma treatment. J Mater Chem B 2024; 12:11573-11595. [PMID: 39431729 DOI: 10.1039/d4tb01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Melanoma is one of the most significant and dangerous superficial skin tumors with a high fatality rate, thanks to its high invasion rate, drug resistance and frequent metastasis properties. Unfortunately, researchers for decades have demonstrated that the outcome of using conventional therapies like chemotherapy and immunotherapy with normal drug delivery routes, such as an oral route to treat melanoma was not satisfactory. The severe adverse effects, slow drug delivery efficiency and low drug accumulation at targeted malignancy sites all lead to poor anti-cancer efficacy and terrible treatment experience. As a novel transdermal drug delivery system, microneedles (MNs) have emerged as an effective solution to help improve the low cure rate of melanoma. The excellent characteristics of MNs make it easy to penetrate the stratum corneum (SC) and then locally deliver the drug towards the lesion without drug leakage to mitigate the occurrence of side effects and increase the drug accumulation. Therefore, loading chemotherapeutic drugs or immunotherapy drugs in MNs can address the problems mentioned above, and MNs play a crucial role in improving the curative effect of conventional treatment methods. Notably, novel tumor therapies like photothermal therapy (PTT), photodynamic therapy (PDT) and chemodynamic therapy (CDT) have shown good application prospects in the treatment of melanoma, and MNs provide a valid platform for the combination of conventional therapies and novel therapies by encompassing different therapeutic materials in the matrix of MNs. The synergistic effect of multiple therapies can enhance the therapeutic efficacy compared to single therapies, showing great potential in melanoma treatment. Dissolving MNs have been the most commonly used microneedles in the treatment of melanoma in recent years, mainly because of their simple fabrication procedure and enough drug loading. So, considering the increasing use of dissolving MNs, this review collects research studies published in the last four years (2020-2024) that have rarely been included in other reviews to update the progress of applications of dissolving MNs in anti-melanoma treatment, especially in synergistic therapies. This review also presents current design and fabrication methods of dissolving MNs; the limitations of microneedle technology in the treatment of melanoma are comprehensively discussed. This review can provide valuable guidance for their future development.
Collapse
Affiliation(s)
- Jingting Huang
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| | - Xihao Wang
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| |
Collapse
|
13
|
Zhao X, Zheng Y, Liu Y, Li Y, Lin Z, Li H, Zhang J, Zhao M, Zhang K, Li Y, Shen H, Zhao N, Xu FJ. Potent Amphiphilic Poly(Amino Acid) Nanoadjuvant Delivers Biomineralized Ovalbumin for Photothermal-Augmented Immunotherapy. ACS NANO 2024; 18:32088-32102. [PMID: 39513522 DOI: 10.1021/acsnano.4c10688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Cancer nanovaccines have emerged as an indispensable weapon for tumor treatment. However, insufficient immunogenicity and immunosuppression hamper the therapeutic effects of nanovaccines. Here, biodegradable nanovaccines (OMPP) composed of ovalbumin (OVA)-manganese oxide nanoparticles, amphiphilic poly(γ-glutamic acid) (γ-PGA), and ε-polylysine (PL) are constructed to realize enhanced cancer immunotherapy. Interestingly, amphiphilic γ-PGA and PL could serve as both carriers and immunoadjuvants to promote the cytosolic delivery of antigens and enhance the maturation of dendritic cells. Additionally, taking advantage of the photothermal property of OMPP, immunogenic cell death and in situ release of tumor-associated antigens can be triggered under near-infrared light irradiation for personalized tumor treatment. Moreover, OMPP nanovaccines can efficiently alleviate tumor hypoxia and downregulate programmed death-ligand 1 expression to reprogram the immunosuppressive tumor microenvironment. OMPP-mediated therapy has been shown to provoke robust immune responses to suppress B16-OVA melanoma and prevent postsurgical tumor recurrence. This work presents a facile strategy for the fabrication of nanovaccines by integrating carrier and adjuvant while exploring the inherent properties to promote antigen release and modulate immunosuppression, which demonstrates great potential for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaoyi Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yixin Zheng
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yian Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuxuan Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziyi Lin
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huimin Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiarui Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meijun Zhao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Heyun Shen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
14
|
Pinho S, Coelho JMP, Gaspar MM, Reis CP. Advances in localized prostate cancer: A special focus on photothermal therapy. Eur J Pharmacol 2024; 983:176982. [PMID: 39260812 DOI: 10.1016/j.ejphar.2024.176982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Prostate cancer (PCa) is a high prevalence disease, per 10000 habitants, that tends to increase with age. This pathology is difficult to detect at an early stage due to the absence of symptoms, hence the importance of monitoring signs for early detection. This disease can be detected by various methods, including plasmatic levels of prostate-specific antigen (PSA) and rectal touch, with biopsy being necessary to confirm the diagnosis. Patients affected by prostate cancer can have localized or advanced disease. There are conventional approaches that have been used as a reference in localized cancer, such as active surveillance, surgery, or radiotherapy. However, the adverse effects might vary and, sometimes, they can be permanent. An overview about the innovative therapeutic approaches to improve outcomes in terms of both tumor remission and side effects for localized PCa is presented. In case of emerging light-based treatment strategies, they aimed at ablating tumor tissue by inducing an external light are non-invasive, localized and, considerably, they are able to reduce lesions in peripheral tissues. One is photodynamic therapy (PDT) and it involves the photooxidation of molecules culminating in the formation of reactive oxygen species (ROS), inducing cell death. On the other hand, photothermal therapy (PTT) is based on inducing hyperthermia in cancer cells by irradiating them with beams of light at a specific wavelength. To improve the heat generated, gold nanoparticles (AuNPs) have those desirable characteristics that have drawn attention to PTT. Various studies point to AuNPs as efficient nanomaterials in PTT for the treatment of tumors, including prostate cancer. This review includes the most representative advances in this research field, dated from 1998 to 2023. It is noticed that several advances have been made and the way to find the effective treatment without impacting adverse side effects is shorter.
Collapse
Affiliation(s)
- Sara Pinho
- Research Institute for Medicines, IMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - João M P Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, IMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, IMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
15
|
Jeong YG, Park JH, Khang D. Sonodynamic and Acoustically Responsive Nanodrug Delivery System: Cancer Application. Int J Nanomedicine 2024; 19:11767-11788. [PMID: 39553460 PMCID: PMC11566213 DOI: 10.2147/ijn.s496028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
The advent of acoustically responsive nanodrugs that are specifically optimized for sonodynamic therapy (SDT) is a novel approach for clinical applications. Examining the therapeutic applications of sono-responsive drug delivery systems, understanding their dynamic response to acoustic stimuli, and their crucial role in enhancing targeted drug delivery are intriguing issues for current cancer treatment. Specifically, the suggested review covers SDT, a modality that enhances the cytotoxic activity of specific compounds (sonosensitizers) using ultrasound (US). Notably, SDT offers significant advantages in cancer treatment by utilizing US energy to precisely target and activate sonosensitizers toward deep-seated malignant sites. The potential mechanisms underlying SDT involve the generation of radicals from sonosensitizers, physical disruption of cell membranes, and enhanced drug transport into cells via US-assisted sonoporation. In particular, SDT is emerging as a promising modality for noninvasive, site-directed elimination of solid tumors. Given the complexity and diversity of tumors, many studies have explored the integration of SDT with other treatments to enhance the overall efficacy. This trend has paved the way for SDT-based multimodal synergistic cancer therapies, including sonophototherapy, sonoimmunotherapy, and sonochemotherapy. Representative studies of these multimodal approaches are comprehensively presented, with a detailed discussion of their underlying mechanisms. Additionally, the application of audible sound waves in biological systems is explored, highlighting their potential to influence cellular processes and enhance therapeutic outcomes. Audible sound waves can modulate enzyme activities and affect cell behavior, providing novel avenues for the use of sound-based techniques in medical applications. This review highlights the current challenges and prospects in the development of SDT-based nanomedicines in this rapidly evolving research field. The anticipated growth of this SDT-based therapeutic approach promises to significantly improve the precision of cancer treatment.
Collapse
Affiliation(s)
- Yong-Gyu Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Joo-Hwan Park
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea
| | - Dongwoo Khang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
16
|
Kanelli M, Bardhan NM, Sarmadi M, Eshaghi B, Alsaiari SK, Rothwell WT, Pardeshi A, Varshney D, De Fiesta DC, Mak H, Spanoudaki V, Henning N, Kumar A, Han J, Belcher AM, Langer R, Jaklenec A. A Machine Learning-Optimized System for Pulsatile, Photo- and Chemotherapeutic Treatment Using Near-Infrared Responsive MoS 2-Based Microparticles in a Breast Cancer Model. ACS NANO 2024; 18:30433-30447. [PMID: 39462900 DOI: 10.1021/acsnano.4c07843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Multimodal cancer therapies are often required for progressive cancers due to the high persistence and mortality of the disease and the negative systemic side effects of traditional therapeutic methods. Thus, the development of less invasive modalities for recurring treatment cycles is of clinical significance. Herein, a light-activatable microparticle system was developed for localized, pulsatile delivery of anticancer drugs with simultaneous thermal ablation by applying controlled ON-OFF thermal cycles using near-infrared laser irradiation. The system is composed of poly(caprolactone) microparticles of 200 μm size containing molybdenum disulfide (MoS2) nanosheets as the photothermal agent and hydrophilic doxorubicin or hydrophobic violacein, as model drugs. Upon irradiation, the nanosheets heat up to ≥50 °C leading to polymer softening and release of the drug. MoS2 nanosheets exhibit high photothermal conversion efficiency and require low-power laser irradiation. A machine learning algorithm was applied to acquire the optimal laser operation conditions. In a mouse subcutaneous model of 4T1 triple-negative breast cancer, 25 microparticles were intratumorally administered, and after 3-cycle laser treatment, the system conferred synergistic phototherapeutic and chemotherapeutic effects. Our on-demand, pulsatile synergistic treatment resulted in increased median survival up to 39 days post start of treatment compared to untreated mice, with complete eradication of the tumors at the primary site. Such a system is therapeutically relevant for patients in need of recurring cycles of treatment on small tumors, since it provides precise localization and low invasiveness and is not cross-resistant with other treatments.
Collapse
Affiliation(s)
- Maria Kanelli
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Neelkanth M Bardhan
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Morteza Sarmadi
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Behnaz Eshaghi
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Shahad K Alsaiari
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - William T Rothwell
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Apurva Pardeshi
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Dhruv Varshney
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Dominique C De Fiesta
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Howard Mak
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Virginia Spanoudaki
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Nicole Henning
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Ashutosh Kumar
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Jooli Han
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Angela M Belcher
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert Langer
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Ana Jaklenec
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
17
|
Zhu H, Sun H, Dai J, Hao J, Zhou B. Chitosan-based hydrogels in cancer therapy: Drug and gene delivery, stimuli-responsive carriers, phototherapy and immunotherapy. Int J Biol Macromol 2024; 282:137047. [PMID: 39489261 DOI: 10.1016/j.ijbiomac.2024.137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Nanotechnology has transformed the oncology sector by particularly targeting cancer cells and enhancing the efficacy of conventional therapies, not only improving efficacy of conventional therapeutics, but also reducing systemic toxicity. Environmentally friendly materials are the top choice for treating cancer. Chitosan, sourced from chitin, is widely used with its derivatives for the extensive synthesis or modification of nanostructures. Chitosan has been deployed to develop hydrogels, as 3D polymeric networks capable of water absorption with wide biomedical application. The chitosan hydrogels are biocompatible and biodegradable structures that can deliver drugs, genes or a combination of them in cancer therapy. Increased tumor ablation, reducing off-targeting feature and protection of genes against degradation are benefits of using chitosan hydrogels in cancer therapy. The efficacy of cancer immunotherapy can be improved by chitosan hydrogels to prevent emergence of immune evasion. In addition, chitosan hydrogels facilitate photothermal and photodynamic therapy for tumor suppression. Chitosan hydrogels can synergistically integrate chemotherapy, immunotherapy, and phototherapy in cancer treatment. Additionally, chitosan hydrogels that respond to stimuli, specifically thermo-sensitive hydrogels, have been developed for inhibiting tumors.
Collapse
Affiliation(s)
- Hailin Zhu
- Department of Pathology, Ganzhou Cancer Hospital, Ganzhou City, Jiangxi Province, China
| | - Hao Sun
- Faculty of Science, Autonomous University of Madrid, Spainish National Research Council-Consejo Superior de Investigaciones Científicas, (UAM-CSIC), 28049 Madrid, Spain
| | - Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, MO, USA
| | - Junfeng Hao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China; Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, China.
| | - Boxuan Zhou
- Department of General Surgery, Breast Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
18
|
Javid H, Oryani MA, Rezagholinejad N, Hashemzadeh A, Karimi-Shahri M. Unlocking the potential of RGD-conjugated gold nanoparticles: a new frontier in targeted cancer therapy, imaging, and metastasis inhibition. J Mater Chem B 2024; 12:10786-10817. [PMID: 39351647 DOI: 10.1039/d4tb00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
In the rapidly evolving field of cancer therapeutics, the potential of gold nanoparticles (AuNPs) conjugated with RGD peptides has emerged as a promising avenue for targeted therapy and imaging. Despite numerous studies demonstrating the effectiveness of RGD-conjugated AuNPs in specifically targeting tumor cells and enhancing radiation therapy (RT), a comprehensive review of these advancements is currently lacking. This review aims to fill this critical gap in the literature. Our analysis reveals that RGD-conjugated AuNPs have shown significant promise in improving the diagnosis and treatment of various types of cancer, including breast cancer. However, the full potential of this technology is yet to be realized. The development of multifunctional nanoplatforms incorporating AuNPs has opened new horizons for targeted therapy, dual-mode imaging, and inhibition of tumor growth and metastasis. This review is of paramount importance as it provides a comprehensive overview of the current state of research in this area, and highlights the areas where further research is needed. It is hoped that this review will inspire further investigations into this promising nanotechnology, ultimately leading to improved cancer diagnosis and therapy. Therefore, the findings presented in this review underscore the potential of AuNPs conjugated with RGD peptides as a revolutionary approach in cancer therapeutics. It is our fervent hope that this review will serve as a catalyst for further research in this exciting field.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
19
|
Toubia I, Bernhard Y, Cabanes VD, Abdallah S, Mhanna R, Gulon T, Parant S, Malval JP, Regnouf-de-Vains JB, Monari A, Pastore M, Pasc A. Enhancing Photothermal Energy Transduction through Inter- and Intramolecular Interactions of Multiple Two-Photon Dyes Appended onto Calix[4]arene. J Phys Chem B 2024; 128:10086-10102. [PMID: 39361506 DOI: 10.1021/acs.jpcb.4c04820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Organic dyes-based photothermal agents (OPTAs) have received increasing attention as alternative to inorganic materials due to their higher biocompatibility and extensive diversification. Maximizing nonradiative deexcitation channels is crucial to improve the photothermal conversion efficiency (PCE) of OPTAs. This is typically achieved through individual molecular design or collective enhancement using supramolecular strategies. Furthermore, photothermal therapy (PTT) generally relies on linear one-photon absorption of the light source by the OPTA, with less consideration given to nonlinear two-photon absorption (2PA) strategies, despite their potential benefits. Here, a synergistic strategy, which combines intramolecular and intermolecular quenching, is employed to maximize the photothermal efficiency of diphenylamino-substituted distyryl dicyanobenzene (DSB), an outstanding two-photon-absorbing chromophore. One to three DSB units have been introduced on the conic p-tert-butyl-calix[4]arene (CX), serving as a preorganizing platform to allow aggregate formation and promote intramolecular quenching within the multichromophoric systems. Importantly, the multichromophoric molecules had very high two-photon absorption capabilities with cross sections (δ2PA) reaching maximal values of 3290 GM at 810 nm. Experimental data accompanied by large-scale molecular dynamics simulations and time-dependent density functional theory calculations shed light onto the interaction mechanism in those multiple DSB-appended CX compounds to rationalize their optical properties. Then, the formulation with Pluronic F127 amphiphile yields water-dispersible nanoprecipitates (Nps), in which the PCE is further maximized and the photobleaching is reduced due to the combination of intra- and intermolecular quenching. The high two-photon absorption in the near-infrared (NIR) window associated with the high PCE of these nanosized OPTAs could serve as a basis to future in vivo 2P-PTT applications.
Collapse
Affiliation(s)
- Isabelle Toubia
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54506 Vandoeuvre-lès-Nancy, France
| | - Yann Bernhard
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54506 Vandoeuvre-lès-Nancy, France
| | - Valentin Diez Cabanes
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54506 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54506 Vandoeuvre-lès-Nancy, France
| | | | - Rana Mhanna
- Université de Haute-Alsace, CNRS, UMR 7361, F68057 Mulhouse, France
| | - Tioga Gulon
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54506 Vandoeuvre-lès-Nancy, France
| | - Stéphane Parant
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54506 Vandoeuvre-lès-Nancy, France
| | | | | | - Antonio Monari
- Université Paris Cité and CNRS, ITODYS, F-75006 Paris, France
| | - Mariachiara Pastore
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54506 Vandoeuvre-lès-Nancy, France
| | - Andreea Pasc
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
20
|
Osaki T, Ueda M, Hirohara S, Obata M. Micelle-encapsulated IR783 for enhanced photothermal therapy in mouse breast cancer. Photodiagnosis Photodyn Ther 2024; 49:104340. [PMID: 39322051 DOI: 10.1016/j.pdpdt.2024.104340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Photothermal therapy, an emerging cancer treatment, selectively eliminates lesions using photothermal compounds that convert light into heat. IR783, a near-infrared fluorescent heptamethine cyanine dye, has been used to achieve selective hyperthermic effects in target tissues via near-infrared irradiation. To implement IR783 as a photothermal agent, IR783 biodistribution must be calibrated to achieve a constant and uniform concentration in target cells. Accordingly, we developed micelle-encapsulated IR783 (IR783 micelles) and evaluated their effectiveness as photothermal drugs. METHODS In vitro, the photothermic effects of free IR783 and IR783 micelle solutions induced by near-infrared light irradiation were analyzed. Additionally, we investigated the mechanism of cell death mediated by photothermal therapy using free IR783 and IR783 micelles in mouse breast cancer (EMT6) cells. In vivo, the efficacy of photothermal therapy with both free IR783 and IR783 micelles was examined in EMT6-bearing mice. RESULTS In vitro, the temperature of free and micelle-encapsulated IR783 solutions increased after near-infrared irradiation. Near-infrared irradiation with free IR783 and IR783 micelles induced cytotoxicity in cancer cells by generating heat. In vivo, IR783 micelles elicited more preferential tumor tissue uptake and enhanced the antitumor effects of photothermal therapy at a lower light dose relative to free IR783. CONCLUSIONS Overall, these results suggest that IR783 micelles could accumulate in mouse breast cancer tissues and exhibit enhanced antitumor effects when used as a photothermal therapy, with superior effects obtained at 2.1 W/cm2 (252 J/cm2) compared with that of free IR783.
Collapse
Affiliation(s)
- Tomohiro Osaki
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | - Mana Ueda
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Shiho Hirohara
- Department of Chemical and Biological Engineering, National Institute of Technology (KOSEN), Ube College, 2-14-1 Tokiwadai, Ube 755-8555, Japan
| | - Makoto Obata
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| |
Collapse
|
21
|
Calistri S, Ottaviano G, Ubaldini A. Radiopharmaceuticals for Pancreatic Cancer: A Review of Current Approaches and Future Directions. Pharmaceuticals (Basel) 2024; 17:1314. [PMID: 39458955 PMCID: PMC11510189 DOI: 10.3390/ph17101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The poor prognosis of pancreatic cancer requires novel treatment options. This review examines the evolution of radiopharmaceuticals in the treatment of pancreatic cancer. Established strategies such as peptide receptor radionuclide therapy (PRRT) offer targeted and effective treatment, compared to conventional treatments. However, there are currently no radiopharmaceuticals approved for the treatment of pancreatic cancer in Europe, which requires further research and novel approaches. New radiopharmaceuticals including radiolabeled antibodies, peptides, and nanotechnological approaches are promising in addressing the challenges of pancreatic cancer therapy. These new agents may offer more specific targeting and potentially improve efficacy compared to traditional therapies. Further research is needed to optimize efficacy, address limitations, and explore the overall potential of these new strategies in the treatment of this aggressive and harmful pathology.
Collapse
Affiliation(s)
- Sara Calistri
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Bologna, Via Martiri di Monte Sole 4, 40129 Bologna, Italy; (G.O.); (A.U.)
| | - Giuseppe Ottaviano
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Bologna, Via Martiri di Monte Sole 4, 40129 Bologna, Italy; (G.O.); (A.U.)
| | - Alberto Ubaldini
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Bologna, Via Martiri di Monte Sole 4, 40129 Bologna, Italy; (G.O.); (A.U.)
| |
Collapse
|
22
|
Bianchi L, Baroni S, Paroni G, Violatto MB, Moscatiello GY, Panini N, Russo L, Fiordaliso F, Colombo L, Diomede L, Saccomandi P, Bigini P. Thermal effects and biological response of breast and pancreatic cancer cells undergoing gold nanorod-assisted photothermal therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:112993. [PMID: 39128426 DOI: 10.1016/j.jphotobiol.2024.112993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
To increase the therapeutic efficacy of nanoparticle (NP)-assisted photothermal therapy (PTT) and allow for a transition toward the clinical setting, it is pivotal to characterize the thermal effect induced in cancer cells and correlate it with the cell biological response, namely cell viability and cell death pathways. This study quantitatively evaluated the effects of gold nanorod (GNR)-assisted near-infrared (NIR) PTT on two different cancer cell lines, the 4T1 triple-negative breast cancer cells and the Pan02 pancreatic cancer cells. The interaction between nanomaterials and biological matrices was investigated in terms of GNR internalization and effect on cell viability at different GNR concentrations. GNR-mediated PTT was executed on both cell lines, at the same treatment settings to allow a straightforward comparison, and real-time monitored through thermographic imaging. A thermal analysis based on various parameters (i.e., maximum absolute temperature, maximum temperature change, temperature variation profile, area under the time-temperature change curve, effective thermal enhancement (ETE), and time constants) was performed to evaluate the treatment thermal outcome. While GNR treatment and NIR laser irradiation alone did not cause cell toxicity in the selected settings, their combination induced a significant reduction of cell viability in both cell lines. At the optimal experimental condition (i.e., 6 μg/mL of GNRs and 4.5 W/cm2 laser power density), GNR-assisted PTT reduced the cell viability of 4T1 and Pan02 cells by 94% and 87% and it was associated with maximum temperature changes of 25 °C and 29 °C (i.e., ∼1.8-fold increase compared to the laser-only condition), maximum absolute temperatures of 55 °C and 54 °C, and ETE values of 78% and 81%, for 4T1 and Pan02 cells, correspondingly. Also, the increase in the GNR concentration led to a decrease in the time constants, denoting faster heating kinetics upon irradiation. Furthermore, the thermal analysis parameters were correlated with the extent of cell death. Twelve hours after NIR exposure, GNR-assisted PTT was found to mainly trigger secondary apoptosis in both cell lines. The proposed study provides relevant insights into the relationship between temperature history and biological responses in the context of PTT. The findings contribute to the development of a universal methodology for evaluating thermal sensitivity upon NP-assisted PTT on different cell types and lay the groundwork for future translational studies.
Collapse
Affiliation(s)
- Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy; Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Sara Baroni
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Gabriela Paroni
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Martina Bruna Violatto
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Giulia Yuri Moscatiello
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Nicolò Panini
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Luca Russo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Fabio Fiordaliso
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy.
| | - Paolo Bigini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy.
| |
Collapse
|
23
|
Kothari R, Venuganti VVK. Effect of oxygen generating nanozymes on indocyanine green and IR 820 mediated phototherapy against oral cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113002. [PMID: 39141980 DOI: 10.1016/j.jphotobiol.2024.113002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
The hypoxic environment within a solid tumor is a limitation to the effectiveness of photodynamic therapy. Here, we demonstrate the use of oxygen generating nanozymes (CeO2, Fe3O4, and MnO2) to improve the photodynamic effect. The optimized combination of process parameters for irradiation was obtained using the Box Behnken experimental design. Indocyanine green, IR 820, and their different combinations with oxygen generators were studied for their effect on oral carcinoma. Dynamic light scattering technique showed the average particle size of CeO2, MnO2, and Fe3O4 to be 211 ± 16, and 157 ± 28, 143 ± 19 nm with PDI of 0.23, 0.28 and 0.20 and a zeta potential of -2.6 ± 0.45, -2.4 ± 0.60 and -6.1 ± 0.23 mV, respectively. The formation of metal oxides was confirmed using UV-visible, FTIR, and X-ray photon spectroscopies. The amount of dissolved oxygen produced by CeO2, MnO2, and Fe3O4 in the presence of H2O2 within 2 min was 1.7 ± 0.15, 1.7 ± 0.16, and 1.4 ± 0.12 mg/l, respectively. Growth inhibition studies in the FaDu oral carcinoma spheroid model showed a significant (P < 0.05) increase in growth reduction from 81 ± 2.9 and 88 ± 2.1% to 97 ± 1.2 and 99 ± 1.0% for ICG and IR 820, respectively, after irradiation (808 nm laser, 1 W/cm2, 5 min) in the presence of CeO2 (25 μg/ml). In conclusion, oxygen-generating nanozymes can improve the photodynamic effect of ICG and IR 820.
Collapse
Affiliation(s)
- Rupal Kothari
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Venkata Vamsi Krishna Venuganti
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India.
| |
Collapse
|
24
|
Xu H, Huang G, Cheng H, Li F, Zhang Z, Huang X, Huang H, Zheng C. Thermoelectric-Feedback Nanocomposite Hydrogel for Temperature-Synchronized Monitoring and Regulation in Accurate Photothermal Therapy. Adv Healthc Mater 2024; 13:e2401609. [PMID: 38888934 DOI: 10.1002/adhm.202401609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Photothermal therapy (PTT) is a promising approach for tumor ablation and cancer treatment. However, controlling the therapeutic temperature during treatment remains challenging, and imprecise thermal regulation can harm adjacent healthy tissues, reduce therapeutic accuracy, and promote the thermotolerance of cellular phenotypes, potentially leading to tumor invasion and recurrence. Although existing methods provide basic temperature control by adjusting irradiation power and photothermal agent dosing, they lack real-time temperature monitoring and feedback control capabilities, underscoring the urgent need for more integrated and precise PTT systems. In this context, an innovative photothermoelectric (PTE) cobalt-infused chitosan (CS) nanocomposite hydrogel (PTE-Co@CS) is developed for precise temperature-regulated PTT, exhibiting desirable mechanical properties and exceptional biocompatibility. Enhanced by embedded nanoparticles, PTE-Co@CS demonstrates superior photothermal conversion efficiency compared with existing methods, while also featuring thermoelectric responsiveness and increased sensitivity to photostimuli. Its advantageous PTE response characteristics ensure a linear correlation between temperature shifts and resistance changes (e.g., R2 = 0.99919 at 0.5 W cm⁻2), enabling synchronized qualitative and quantitative control of PTT temperature through electrical signal monitoring. This allows for real-time monitoring and regulation during PTT, effectively addressing the issue of uncontrollable temperatures and improving therapeutic efficacy.
Collapse
Affiliation(s)
- Hongtao Xu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Shanghai Research Institute of Stomatology & Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Gang Huang
- Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Han Cheng
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Shanghai Research Institute of Stomatology & Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Fangjie Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, P. R. China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Shanghai Research Institute of Stomatology & Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Xiaojuan Huang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Shanghai Research Institute of Stomatology & Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Hailong Huang
- Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Chongyang Zheng
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Shanghai Research Institute of Stomatology & Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| |
Collapse
|
25
|
Hlapisi N, Songca SP, Ajibade PA. Capped Plasmonic Gold and Silver Nanoparticles with Porphyrins for Potential Use as Anticancer Agents-A Review. Pharmaceutics 2024; 16:1268. [PMID: 39458600 PMCID: PMC11510308 DOI: 10.3390/pharmaceutics16101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) are potential cancer treatment methods that are minimally invasive with high specificity for malignant cells. Emerging research has concentrated on the application of metal nanoparticles encapsulated in porphyrin and their derivatives to improve the efficacy of these treatments. Gold and silver nanoparticles have distinct optical properties and biocompatibility, which makes them efficient materials for PDT and PTT. Conjugation of these nanoparticles with porphyrin derivatives increases their light absorption and singlet oxygen generation that create a synergistic effect that increases phototoxicity against cancer cells. Porphyrin encapsulation with gold or silver nanoparticles improves their solubility, stability, and targeted tumor delivery. This paper provides comprehensive review on the design, functionalization, and uses of plasmonic silver and gold nanoparticles in biomedicine and how they can be conjugated with porphyrins for synergistic therapeutic effects. Furthermore, it investigates this dual-modal therapy's potential advantages and disadvantages and offers perspectives for future prospects. The possibility of developing gold, silver, and porphyrin nanotechnology-enabled biomedicine for combination therapy is also examined.
Collapse
Affiliation(s)
| | | | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (N.H.); (S.P.S.)
| |
Collapse
|
26
|
Gomes SM, Gaspar MM, Coelho JMP, Reis CP. Targeting superficial cancers with gold nanoparticles: a review of current research. Ther Deliv 2024; 15:781-799. [PMID: 39314189 PMCID: PMC11457633 DOI: 10.1080/20415990.2024.2395249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Superficial cancers typically refer to cancers confined to the surface layers of tissue. Low-targeting therapies or side effects prompt exploration of novel therapeutic approaches. Gold nanoparticles (AuNPs), due to their unique optical properties, serve as effective photosensitizers, enabling tumor ablation through photothermal therapy (PTT). PTT induced by AuNPs can be achieved through light sources externally applied to the skin. Near-infrared radiation is the main light candidate due to its deep tissue penetration capability. This review explores recent advancements in AuNP-based PTT for superficial cancers, specifically breast, head and neck, thyroid, bladder and prostate cancers. Additionally, challenges and future directions in utilizing AuNPs for cancer treatment are discussed, emphasizing the importance of balancing efficacy with safety in clinical applications.
Collapse
Affiliation(s)
- Susana M Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - João MP Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
27
|
Li L, Zhang Y, Liu Y, Wu Y, Wang X, Cao L, Feng X. Synthesis of Pt-MoS 2 with enhanced photothermal and peroxidase-like properties and its antibacterial application. RSC Adv 2024; 14:29428-29438. [PMID: 39297038 PMCID: PMC11409452 DOI: 10.1039/d4ra05487c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Despite tremendous efforts, bacterial infection and contamination remain a major clinical challenge to modern humans. Nanozyme materials with stimuli-responsive properties are expected to be powerful tools for the next generation of antibacterial therapy. Here, MoS2 nanosheet was firstly prepared by liquid phase exfoliation method, and Pt-MoS2 hybrid biomaterial was then successfully synthesized by a simple self-reduction method. The Pt decoration significantly improves the photothermal effect of MoS2 nanosheet under 808 nm NIR laser irradiation. Besides, benefiting from the formation of heterogeneous structure, the Pt-MoS2 has significantly enhanced peroxidase mimetic catalytic activity, which can kill bacteria through catalysis of H2O2 to generate antimicrobial hydroxyl radicals. Moreover, the temperature rise brought about by NIR laser stimulation further amplifies the nanozyme activity of the composites. After treatment by the synergistic platform, both Staphylococcus aureus and Escherichia coli can be effectively inhibited, demonstrating its broad-spectrum antibacterial properties. In addition, the developed antibacterial Pt-MoS2 nanozyme have the excellent biocompatibility, which makes them well suited for infection elimination in biological systems. Overall, this work shows great potential for rationally combining the multiple functions of MoS2-based nanomaterials for synergistic antibacterial therapy. In the future, the Pt-MoS2 nanozyme may find wider applications in areas such as personal healthcare or surface disinfection treatment of medical devices.
Collapse
Affiliation(s)
- Liangyu Li
- Department of Nursing, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
| | - Yueqin Zhang
- School of Public Health, Hangzhou Medical College Hangzhou China
| | - Yumeng Liu
- School of Public Health, Hangzhou Medical College Hangzhou China
| | - Yaojuan Wu
- Department of Nursing, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
| | - Xiao Wang
- School of Public Health, Hangzhou Medical College Hangzhou China
| | - Lidong Cao
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
- College of Mechanical Engineering, Zhejiang University Hangzhou China
| | - Xia Feng
- Department of Nursing, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
| |
Collapse
|
28
|
Shaw AK, Khurana D, Soni S. Assessment of thermal damage for plasmonic photothermal therapy of subsurface tumors. Phys Eng Sci Med 2024; 47:1107-1121. [PMID: 38753284 DOI: 10.1007/s13246-024-01433-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/22/2024] [Indexed: 09/18/2024]
Abstract
Plasmonic photothermal therapy (PPTT) involves the use of nanoparticles and near-infrared radiation to attain a temperature above 50 °C within the tumor for its thermal damage. PPTT is largely explored for superficial tumors, and its potential to treat deeper subsurface tumors is dealt feebly, requiring the assessment of thermal damage for such tumors. In this paper, the extent of thermal damage is numerically analyzed for PPTT of invasive ductal carcinoma (IDC) situated at 3-9 mm depths. The developed numerical model is validated with suitable tissue-tumor mimicking phantoms. Tumor (IDC) embedded with gold nanorods (GNRs) is subjected to broadband near-infrared radiation. The effect of various GNRs concentrations and their spatial distributions [viz. uniform distribution, intravenous delivery (peripheral distribution) and intratumoral delivery (localized distribution)] are investigated for thermal damage for subsurface tumors situated at various depths. Results show that lower GNRs concentrations lead to more uniform internal heat generation, eventually resulting in uniform temperature rise. Also, the peripheral distribution of nanoparticles provides a more uniform spatial temperature rise within the tumor. Overall, it is concluded that PPTT has potential to induce thermal damage for subsurface tumors, at depths of upto 9 mm, by proper choice of nanoparticle distribution, dose/concentration and irradiation parameters based on the tumor location. Moreover, intravenous administration of nanoparticles seems a good choice for shallower tumors, while for deeper tumors, uniform distribution is required to attain the necessary thermal damage. In the future, the algorithm may be extended further, involving 3D patient-specific tumors and through mice model-based experiments.
Collapse
Affiliation(s)
- Amit Kumar Shaw
- Biomedical Applications Division, CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh, 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Divya Khurana
- Biomedical Applications Division, CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh, 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjeev Soni
- Biomedical Applications Division, CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh, 160030, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
29
|
Zhang P, Bai H, Yao Z, Gu J, Tian Y, Yi W, Li S. Tumor microenvironment responsive chitosan-coated W-doped MoO x biodegradable composite nanomaterials for photothermal/chemodynamic synergistic therapy. Int J Biol Macromol 2024; 276:133583. [PMID: 38960266 DOI: 10.1016/j.ijbiomac.2024.133583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Chemodynamic therapy (CDT), an approach that eradicates tumor cells through the catalysis of hydrogen peroxide (H2O2) into highly toxic hydroxyl radicals (·OH), possesses distinct advantages in tumor specificity and minimal side effects. However, CDT's therapeutic efficacy is currently hampered by the low production efficiency of ·OH. To address this limitation, this study introduces a water-soluble chitosan-coated W-doped MoOx (WMoOx/CS) designed for the combined application of photothermal therapy (PTT) combined with CDT. The W-doped MoOx (WMoOx) was synthesized in one step by the hydrothermal method, and its surface was modified by water-soluble chitosan (carboxylated chitosan, CS) to enhance its biocompatibility. WMoOx boasts a high near-infrared photothermal conversion efficiency of 52.66 %, efficiently transducing near-infrared radiation into heat. Moreover, the Mo4+/Mo5+ and W5+ ions in WMoOx catalyze H2O2 to produce ·OH for CDT, and the Mo5+/Mo6+ and W6+ ions in WMoOx reduce intracellular glutathione levels and prevent the scavenging of ·OH by glutathione. Crucially, the combination of WMoOx/CS and near-infrared light irradiation demonstrates promising synergistic antitumor effects in both in vitro and in vivo models, highlighting its potential for the combined application of PTT and CDT.
Collapse
Affiliation(s)
- Ping Zhang
- College of Science, Northwest A&F University, Yang ling 712100, China.
| | - Hongmei Bai
- College of Science, Northwest A&F University, Yang ling 712100, China
| | - Zhixiong Yao
- College of Science, Northwest A&F University, Yang ling 712100, China
| | - Jialin Gu
- College of Science, Northwest A&F University, Yang ling 712100, China
| | - Yilong Tian
- School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Wenhui Yi
- Key Laboratory for Information Photonic Technology of ShaanXi Province & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shaojun Li
- College of Life Sciences, Northwest A&F University, Yang ling 712100, China.
| |
Collapse
|
30
|
Al-Thani AN, Jan AG, Abbas M, Geetha M, Sadasivuni KK. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci 2024; 352:122899. [PMID: 38992574 DOI: 10.1016/j.lfs.2024.122899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
This comprehensive review provides an in-depth analysis of how nanotechnology has revolutionized cancer theragnostic, which combines diagnostic and therapeutic methods to customize cancer treatment. The study examines the unique attributes, uses, and difficulties linked to different types of nanoparticles, including gold, iron oxide, silica, Quantum dots, Carbon nanotubes, and liposomes, in the context of cancer treatment. In addition, the paper examines the progression of nanotheranostics, emphasizing its uses in precise medication administration, photothermal therapy, and sophisticated diagnostic methods such as MRI, CT, and fluorescence imaging. Moreover, the article highlights the capacity of nanoparticles to improve the effectiveness of drugs, reduce the overall toxicity in the body, and open up new possibilities for treating cancer by releasing drugs in a controlled manner and targeting specific areas. Furthermore, it tackles concerns regarding the compatibility of nanoparticles and their potential harmful effects, emphasizing the significance of continuous study to improve nanotherapeutic methods for use in medical treatments. The review finishes by outlining potential future applications of nanotechnology in predictive oncology and customized medicine.
Collapse
Affiliation(s)
- Alshayma N Al-Thani
- College of Arts and Sciences, Department of Biological and Environmental Science, Qatar
| | - Asma Ghafoor Jan
- College of Arts and Sciences, Department of Biological and Environmental Science, Qatar
| | - Mohamed Abbas
- Centre for Advanced Materials, Qatar University, Qatar.
| | - Mithra Geetha
- Centre for Advanced Materials, Qatar University, Qatar
| | - Kishor Kumar Sadasivuni
- Centre for Advanced Materials, Qatar University, Qatar; Centre for Advanced Materials, Qatar University, Qatar Department of Mechanical and Industrial Engineering, Qatar
| |
Collapse
|
31
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Zhou J, Shen W, Feng W, Zhang X, Wu T, Zhou J, Su Z, Yin T. Temperature Self-Limited Intelligent Thermo-chemotherapeutic Lipid Nanosystem for P-gp Reversal Time Window Matched Pulse Treatment of MDR Tumor. NANO LETTERS 2024; 24:10631-10641. [PMID: 39150779 DOI: 10.1021/acs.nanolett.4c02978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Mild photothermal therapy (PTT) shows the potential for chemosensitization by tumor-localized P-glycoprotein (P-gp) modulation. However, conventional mild PTT struggles with real-time uniform temperature control, obscuring the temperature-performance relationship and resulting in thermal damage. Besides, the time-performance relationship and the underlying mechanism of mild PTT-mediated P-gp reversal remains elusive. Herein, we developed a temperature self-limiting lipid nanosystem (RFE@PD) that integrated a reversible organic heat generator (metal-phenolic complexes) and metal chelator (deferiprone, DFP) encapsulated phase change material. Upon NIR irradiation, RFE@PD released DFP for blocking ligand-metal charge transfer to self-limit temperature below 45 °C, and rapidly reduced P-gp within 3 h via Ubiquitin-proteasome degradation. Consequently, the DOX·HCl-loaded thermo-chemotherapeutic lipid nanosystem (RFE@PD-DOX) led to dramatically improved drug accumulation and 5-fold chemosensitization in MCF-7/ADR tumor models by synchronizing P-gp reversal and drug pulse liberation, achieving a tumor inhibition ratio of 82.42%. This lipid nanosystem integrated with "intrinsic temperature-control" and "temperature-responsive pulse release" casts new light on MDR tumor therapy.
Collapse
Affiliation(s)
- Jiyuan Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Weiyang Shen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Wenna Feng
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xin Zhang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Tongyu Wu
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Zhigui Su
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
33
|
Yang H, Zhang Q, Dai L, Wang Y, Zheng G, Zhang X, Zheng D, Ji X, Sang Y, Nie Z. Docetaxel-Encapsulated Catalytic Pt/Au Nanotubes for Synergistic Chemo-Photothermal Therapy of Triple-Negative Breast Cancer. Adv Healthc Mater 2024:e2400662. [PMID: 39188193 DOI: 10.1002/adhm.202400662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/10/2024] [Indexed: 08/28/2024]
Abstract
The combination of photothermal therapy with chemotherapy has emerged as a promising therapeutic modality for addressing triple-negative breast cancer (TNBC). This manuscript describes a novel hybrid nanoplatform comprising ultrathin catalytic platinum/gold (Pt/Au) nanotubes encapsulated with docetaxel and phase-change materials (PCMs) for the photoacoustic imaging-guided synergistic chemo-photothermal therapy of TNBC. Upon irradiation of near-infrared laser, the photothermal heating of nanotubes converts solid-state PCM into liquid, triggering the controlled release of the encapsulated docetaxel. The thin Pt layer within nanotubes enhances the nanotube's thermal stability, thus prolonging the photothermal ablation of tumors. Furthermore, platinum effectively mitigates tumor hypoxia by catalyzing the decomposition of hydrogen peroxides to generate oxygen in the tumor microenvironment, thus improving the efficiency of chemotherapy. It is demonstrated that the drug-loaded nanotubes achieve significant tumor inhibition rates of 75.4% in vivo on 4T1 tumor-bearing mice, significantly surpassing control groups. These nanotubes also notably extend survival, attributable to the synergistic effects of prolonged photothermal therapy facilitated by platinum and oxygenation-enhanced chemotherapy. This combination leverages the unique properties of the Pt/Au NTs-DTX/PCM nanoplatform, optimizing therapeutic outcomes. It is envisioned that this nanoplatform may find important applications in managing superficial malignant solid tumors in general.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438, P. R. China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400146, P. R. China
| | - Qian Zhang
- Department of Materials Science and Engineering, University of Maryland, College Park, 20742, USA
| | - Liwei Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438, P. R. China
| | - Yazi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438, P. R. China
| | - Guangrong Zheng
- Department of Radiology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, P. R. China
| | - Xinyue Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438, P. R. China
| | - Di Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaojuan Ji
- Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, P. R. China
- Department of ultrasound, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, 400015, P. R. China
| | - Yutao Sang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecule Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
34
|
Zhang H, Wang X, Yang X, Wu Z, Chen Q, Wei Q, Guo Y, Hu Q, Shen JW. NIR-triggered and Thermoresponsive Core-shell nanoparticles for synergistic anticancer therapy. J Control Release 2024; 374:194-204. [PMID: 39142356 DOI: 10.1016/j.jconrel.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Recent advancements in cancer treatment have underscored the inadequacy of conventional monotherapies in addressing complex malignant tumors. Consequently, there is a growing interest in synergistic therapies capable of overcoming the limitations of monotherapies, leading to more personalized and effective approaches. Among these, the combination of photothermal therapy (PTT) and chemotherapy has emerged as a promising avenue for tumor management. In this study, we present a novel approach utilizing thermoresponsive mesoporous silica nanoparticles (MSN) as a delivery system for the chemotherapeutic drug doxorubicin. By incorporating photothermal agent copper sulfide (CuS) nanoparticles into the MSN, the resulting composite material exhibits potent photothermal properties. Furthermore, the integration of an upper critical solution temperature (UCST) polymer within the silica outer layer serves as a "gatekeeper", enabling precise control over drug release kinetics. This innovative nanomaterial effectively merges thermoresponsive behavior with PTT, thereby minimizing the collateral damage associated with traditional chemotherapy on healthy tissues. Moreover, in both in vitro studies using mouse breast carcinoma cells (4 T1) and in vivo experiments utilizing a 4 T1 tumor-bearing mouse model, our nanomaterials demonstrated synergistic effects, enhancing the anti-tumor efficacy of combined PTT and chemotherapy. With its remarkable photothermal conversion efficiency, robust stability, and biocompatibility, the UCST-responsive nanoplatform holds immense potential for clinical applications.
Collapse
Affiliation(s)
- Hong Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaorong Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zehua Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qiaolin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yong Guo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Quan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
35
|
Bhattacharya T, Preetam S, Mukherjee S, Kar S, Roy DS, Singh H, Ghose A, Das T, Mohapatra G. Anticancer activity of quantum size carbon dots: opportunities and challenges. DISCOVER NANO 2024; 19:122. [PMID: 39103694 DOI: 10.1186/s11671-024-04069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Research into the anticancer activity of quantum-sized carbon dots (CDs) has emerged as a promising avenue in cancer research. This CDs delves into the opportunities and challenges associated with harnessing the potential of these nanostructures for combating cancer. Quantum-sized carbon dots, owing to their unique physicochemical properties, exhibit distinct advantages as potential therapeutic agents. Opportunities lie in their tunable size, surface functionalization capabilities, and biocompatibility, enabling targeted drug delivery and imaging in cancer cells. However, we include challenges, a comprehensive understanding of the underlying mechanisms, potential toxicity concerns, and the optimization of synthesis methods for enhanced therapeutic efficacy. A succinct summary of the state of the research in this area is given in this review, emphasizing the exciting possibilities and ongoing challenges in utilizing quantum-sized carbon dots as a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Sanjukta Kar
- Dietetics and Applied Nutrition, Amity University Kolkata, Kadampukur, India
| | | | - Harshita Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Arak Ghose
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Gautam Mohapatra
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
36
|
Li S, Liu Y, Wu Y, Ren L, Lu Y, Yamaguchi S, Lu Q, Hu C, Li D, Jiang N. An Outlook on Platinum-Based Active Ingredients for Dermatologic and Skincare Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1303. [PMID: 39120408 PMCID: PMC11314049 DOI: 10.3390/nano14151303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Platinum-based materials exhibit a broad spectrum of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and pro-collagen synthesis properties, making them particularly useful for various biomedical applications. This review summarizes the biological effects and therapeutic potential of platinum-based active ingredients in dermatological and skincare applications. We discuss their synthesis methods and their antioxidant, anti-inflammatory, antimicrobial, and collagen synthesis properties, which play essential roles in treating skin conditions including psoriasis and acne, as well as enhancing skin aesthetics in anti-aging products. Safety and sustainability concerns, including the need for green synthesis and comprehensive toxicological assessments to ensure safe topical applications, are also discussed. By providing an up-to-date overview of current research, we aim to highlight both the potential and the current challenges of platinum-based active ingredients in advancing dermatology and skincare solutions.
Collapse
Affiliation(s)
- Shining Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yizhou Liu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Wu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lu Ren
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Yongjie Lu
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | | | - Qipeng Lu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuangang Hu
- State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongcui Li
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Naisheng Jiang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
37
|
Bravo M, Fortuni B, Mulvaney P, Hofkens J, Uji-I H, Rocha S, Hutchison JA. Nanoparticle-mediated thermal Cancer therapies: Strategies to improve clinical translatability. J Control Release 2024; 372:751-777. [PMID: 38909701 DOI: 10.1016/j.jconrel.2024.06.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Despite significant advances, cancer remains a leading global cause of death. Current therapies often fail due to incomplete tumor removal and nonspecific targeting, spurring interest in alternative treatments. Hyperthermia, which uses elevated temperatures to kill cancer cells or boost their sensitivity to radio/chemotherapy, has emerged as a promising alternative. Recent advancements employ nanoparticles (NPs) as heat mediators for selective cancer cell destruction, minimizing damage to healthy tissues. This approach, known as NP hyperthermia, falls into two categories: photothermal therapies (PTT) and magnetothermal therapies (MTT). PTT utilizes NPs that convert light to heat, while MTT uses magnetic NPs activated by alternating magnetic fields (AMF), both achieving localized tumor damage. These methods offer advantages like precise targeting, minimal invasiveness, and reduced systemic toxicity. However, the efficacy of NP hyperthermia depends on many factors, in particular, the NP properties, the tumor microenvironment (TME), and TME-NP interactions. Optimizing this treatment requires accurate heat monitoring strategies, such as nanothermometry and biologically relevant screening models that can better mimic the physiological features of the tumor in the human body. This review explores the state-of-the-art in NP-mediated cancer hyperthermia, discussing available nanomaterials, their strengths and weaknesses, characterization methods, and future directions. Our particular focus lies in preclinical NP screening techniques, providing an updated perspective on their efficacy and relevance in the journey towards clinical trials.
Collapse
Affiliation(s)
- M Bravo
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia; Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - B Fortuni
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - P Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - J Hofkens
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Max Planck Institute for Polymer Research, Mainz D-55128, Germany
| | - H Uji-I
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita ward, Sapporo 001-0020, Hokkaido, Japan
| | - S Rocha
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | - J A Hutchison
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
38
|
Stern NB, Shrestha B, Porter T. A Facile Approach to Producing Liposomal J-Aggregates of Indocyanine Green with Diagnostic and Therapeutic Potential. ADVANCED THERAPEUTICS 2024; 7:2400042. [PMID: 39132131 PMCID: PMC11308451 DOI: 10.1002/adtp.202400042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Indexed: 08/13/2024]
Abstract
Liposomal J-Aggregates of Indocyanine Green (L-JA) can serve as a biocompatible and biodegradable nanoparticle for photoacoustic imaging and photothermal therapy. When compared to monomeric IcG, L-JA are characterized by longer circulation, improved photostability, elevated absorption at longer wavelengths, and increased photoacoustic signal generation. However, the documented methods for production of L-JA vary widely. We developed an approach to efficiently form IcG J-aggregates (IcG-JA) directly in liposomes at elevated temperatures. Aggregating within fully formed liposomes ensures particle uniformity and allows for control of J-aggregate size. L-JA have unique properties compared to IcG. L-JA provide significant contrast enhancement in photoacoustic images for up to 24 hours after injection, while IcG and unencapsulated IcG-JA are cleared within an hour. L-JA allow for more accurate photoacoustic-based sO2 estimation and particle tracking compared to IcG. Furthermore, photothermal heating of L-JA with an 852nm laser is demonstrated to be more effective at lower laser powers than conventional 808nm lasers for the first time. The presented technique offers an avenue for formulating a multi-faceted contrast agent for photoacoustic imaging and photothermal therapy that offers significant advantages over other conventional agents.
Collapse
|
39
|
Branco F, Cunha J, Mendes M, Vitorino C, Sousa JJ. Peptide-Hitchhiking for the Development of Nanosystems in Glioblastoma. ACS NANO 2024; 18:16359-16394. [PMID: 38861272 PMCID: PMC11223498 DOI: 10.1021/acsnano.4c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024]
Abstract
Glioblastoma (GBM) remains the epitome of aggressiveness and lethality in the spectrum of brain tumors, primarily due to the blood-brain barrier (BBB) that hinders effective treatment delivery, tumor heterogeneity, and the presence of treatment-resistant stem cells that contribute to tumor recurrence. Nanoparticles (NPs) have been used to overcome these obstacles by attaching targeting ligands to enhance therapeutic efficacy. Among these ligands, peptides stand out due to their ease of synthesis and high selectivity. This article aims to review single and multiligand strategies critically. In addition, it highlights other strategies that integrate the effects of external stimuli, biomimetic approaches, and chemical approaches as nanocatalytic medicine, revealing their significant potential in treating GBM with peptide-functionalized NPs. Alternative routes of parenteral administration, specifically nose-to-brain delivery and local treatment within the resected tumor cavity, are also discussed. Finally, an overview of the significant obstacles and potential strategies to overcome them are discussed to provide a perspective on this promising field of GBM therapy.
Collapse
Affiliation(s)
- Francisco Branco
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Joana Cunha
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria Mendes
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - João J. Sousa
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
40
|
Parvin N, Kumar V, Joo SW, Mandal TK. Emerging Trends in Nanomedicine: Carbon-Based Nanomaterials for Healthcare. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1085. [PMID: 38998691 PMCID: PMC11243447 DOI: 10.3390/nano14131085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
Carbon-based nanomaterials, such as carbon quantum dots (CQDs) and carbon 2D nanosheets (graphene, graphene oxide, and graphdiyne), have shown remarkable potential in various biological applications. CQDs offer tunable photoluminescence and excellent biocompatibility, making them suitable for bioimaging, drug delivery, biosensing, and photodynamic therapy. Additionally, CQDs' unique properties enable bioimaging-guided therapy and targeted imaging of biomolecules. On the other hand, carbon 2D nanosheets exhibit exceptional physicochemical attributes, with graphene excelling in biosensing and bioimaging, also in drug delivery and antimicrobial applications, and graphdiyne in tissue engineering. Their properties, such as tunable porosity and high surface area, contribute to controlled drug release and enhanced tissue regeneration. However, challenges, including long-term biocompatibility and large-scale synthesis, necessitate further research. Potential future directions encompass theranostics, immunomodulation, neural interfaces, bioelectronic medicine, and expanding bioimaging capabilities. In summary, both CQDs and carbon 2D nanosheets hold promise to revolutionize biomedical sciences, offering innovative solutions and improved therapies in diverse biological contexts. Addressing current challenges will unlock their full potential and can shape the future of medicine and biotechnology.
Collapse
Affiliation(s)
| | | | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| |
Collapse
|
41
|
Wu L, He C, Zhao T, Li T, Xu H, Wen J, Xu X, Gao L. Diagnosis and treatment status of inoperable locally advanced breast cancer and the application value of inorganic nanomaterials. J Nanobiotechnology 2024; 22:366. [PMID: 38918821 PMCID: PMC11197354 DOI: 10.1186/s12951-024-02644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Locally advanced breast cancer (LABC) is a heterogeneous group of breast cancer that accounts for 10-30% of breast cancer cases. Despite the ongoing development of current treatment methods, LABC remains a severe and complex public health concern around the world, thus prompting the urgent requirement for innovative diagnosis and treatment strategies. The primary treatment challenges are inoperable clinical status and ineffective local control methods. With the rapid advancement of nanotechnology, inorganic nanoparticles (INPs) exhibit a potential application prospect in diagnosing and treating breast cancer. Due to the unique inherent characteristics of INPs, different functions can be performed via appropriate modifications and constructions, thus making them suitable for different imaging technology strategies and treatment schemes. INPs can improve the efficacy of conventional local radiotherapy treatment. In the face of inoperable LABC, INPs have proposed new local therapeutic methods and fostered the evolution of novel strategies such as photothermal and photodynamic therapy, magnetothermal therapy, sonodynamic therapy, and multifunctional inorganic nanoplatform. This article reviews the advances of INPs in local accurate imaging and breast cancer treatment and offers insights to overcome the existing clinical difficulties in LABC management.
Collapse
Affiliation(s)
- Linxuan Wu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tingting Zhao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tianqi Li
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Xiaoqian Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China.
| | - Lin Gao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
42
|
Zheng H, An G, Yang X, Huang L, Wang N, Zhu Y. Iron-Based Metal-Organic Frameworks as Multiple Cascade Synergistic Therapeutic Effect Nano-Drug Delivery Systems for Effective Tumor Elimination. Pharmaceuticals (Basel) 2024; 17:812. [PMID: 38931479 PMCID: PMC11206809 DOI: 10.3390/ph17060812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Efforts have been made to improve the therapeutic efficiency of tumor treatments, and metal-organic frameworks (MOFs) have shown excellent potential in tumor therapy. Monotherapy for the treatment of tumors has limited effects due to the limitation of response conditions and inevitable multidrug resistance, which seriously affect the clinical therapeutic effect. In this study, we chose to construct a multiple cascade synergistic tumor drug delivery system MIL-101(Fe)-DOX-TCPP-MnO2@PDA-Ag (MDTM@P-Ag) using MOFs as drug carriers. Under near-infrared (NIR) laser irradiation, 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) and Ag NPs loaded on MDTM@P-Ag can be activated to generate cytotoxic reactive oxygen species (ROS) and achieve photothermal conversion, thus effectively inducing the apoptosis of tumor cells and achieving a combined photodynamic/photothermal therapy. Once released at the tumor site, manganese dioxide (MnO2) can catalyze the decomposition of hydrogen peroxide (H2O2) in the acidic microenvironment of the tumor to generate oxygen (O2) and alleviate the hypoxic environment of the tumor. Fe3+/Mn2+ will mediate a Fenton/Fenton-like reaction to generate cytotoxic hydroxyl radicals (·OH), while depleting the high concentration of glutathione (GSH) in the tumor, thus enhancing the chemodynamic therapeutic effect. The successful preparation of the tumor drug delivery system and its good synergistic chemodynamic/photodynamic/photothermal therapeutic effect in tumor treatment can be demonstrated by the experimental results of material characterization, performance testing and in vitro experiments.
Collapse
Affiliation(s)
- Heming Zheng
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (H.Z.); (G.A.); (Y.Z.)
| | - Guanghui An
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (H.Z.); (G.A.); (Y.Z.)
| | - Xiaohui Yang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Lei Huang
- School of Stomatology, Minzhu Clinic of Stomatology Hospital Affiliated to Guangxi Medical University, Nanning 530007, China;
| | - Nannan Wang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (H.Z.); (G.A.); (Y.Z.)
| | - Yanqiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (H.Z.); (G.A.); (Y.Z.)
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| |
Collapse
|
43
|
Talukdar S, Singh SK, Mishra MK, Singh R. Emerging Trends in Nanotechnology for Endometriosis: Diagnosis to Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:976. [PMID: 38869601 PMCID: PMC11173792 DOI: 10.3390/nano14110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
Endometriosis, an incurable gynecological disease that causes abnormal growth of uterine-like tissue outside the uterine cavity, leads to pelvic pain and infertility in millions of individuals. Endometriosis can be treated with medicine and surgery, but recurrence and comorbidities impair quality of life. In recent years, nanoparticle (NP)-based therapy has drawn global attention, notably in medicine. Studies have shown that NPs could revolutionize conventional therapeutics and imaging. Researchers aim to enhance the prognosis of endometriosis patients with less invasive and more effective NP-based treatments. This study evaluates this potential paradigm shift in endometriosis management, exploring NP-based systems for improved treatments and diagnostics. Insights into nanotechnology applications, including gene therapy, photothermal therapy, immunotherapy, and magnetic hyperthermia, offering a theoretical reference for the clinical use of nanotechnology in endometriosis treatment, are discussed in this review.
Collapse
Affiliation(s)
- Souvanik Talukdar
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.T.); (S.K.S.)
| | - Santosh K. Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.T.); (S.K.S.)
| | - Manoj K. Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.T.); (S.K.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
44
|
Belyaev IB, Zelepukin IV, Kotelnikova PA, Tikhonowski GV, Popov AA, Kapitannikova AY, Barman J, Kopylov AN, Bratashov DN, Prikhozhdenko ES, Kabashin AV, Deyev SM, Zvyagin AV. Laser-Synthesized Germanium Nanoparticles as Biodegradable Material for Near-Infrared Photoacoustic Imaging and Cancer Phototherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307060. [PMID: 38516744 PMCID: PMC11132077 DOI: 10.1002/advs.202307060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Biodegradable nanomaterials can significantly improve the safety profile of nanomedicine. Germanium nanoparticles (Ge NPs) with a safe biodegradation pathway are developed as efficient photothermal converters for biomedical applications. Ge NPs synthesized by femtosecond-laser ablation in liquids rapidly dissolve in physiological-like environment through the oxidation mechanism. The biodegradation of Ge nanoparticles is preserved in tumor cells in vitro and in normal tissues in mice with a half-life as short as 3.5 days. Biocompatibility of Ge NPs is confirmed in vivo by hematological, biochemical, and histological analyses. Strong optical absorption of Ge in the near-infrared spectral range enables photothermal treatment of engrafted tumors in vivo, following intravenous injection of Ge NPs. The photothermal therapy results in a 3.9-fold reduction of the EMT6/P adenocarcinoma tumor growth with significant prolongation of the mice survival. Excellent mass-extinction of Ge NPs (7.9 L g-1 cm-1 at 808 nm) enables photoacoustic imaging of bones and tumors, following intravenous and intratumoral administrations of the nanomaterial. As such, strongly absorbing near-infrared-light biodegradable Ge nanomaterial holds promise for advanced theranostics.
Collapse
Affiliation(s)
- Iaroslav B. Belyaev
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscow117997Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)Moscow115409Russia
| | - Ivan V. Zelepukin
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscow117997Russia
- Department of Medicinal ChemistryUppsala UniversityUppsala751 23Sweden
| | - Polina A. Kotelnikova
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscow117997Russia
| | - Gleb V. Tikhonowski
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)Moscow115409Russia
| | - Anton A. Popov
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)Moscow115409Russia
| | | | - Jugal Barman
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscow117997Russia
| | - Alexey N. Kopylov
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)Moscow115409Russia
| | | | | | - Andrei V. Kabashin
- CNRSLP3Campus de Luminy – Case 917Aix Marseille UniversityMarseilleCedex13288France
| | - Sergey M. Deyev
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscow117997Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)Moscow115409Russia
- Institute of Molecular TheranosticsSechenov UniversityMoscow119435Russia
| | - Andrei V. Zvyagin
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscow117997Russia
- Institute of Molecular TheranosticsSechenov UniversityMoscow119435Russia
- MQ Photonics CentreMacquarie UniversitySydney2109Australia
| |
Collapse
|
45
|
Croitoru AM, Ficai D, Ficai A. Novel Photothermal Graphene-Based Hydrogels in Biomedical Applications. Polymers (Basel) 2024; 16:1098. [PMID: 38675017 PMCID: PMC11053615 DOI: 10.3390/polym16081098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In the last decade, photothermal therapy (PTT) has attracted tremendous attention because it is non-invasive, shows high efficiency and antibacterial activity, and minimizes drug side effects. Previous studies demonstrated that PTT can effectively inhibit the growth of bacteria and promotes cell proliferation, accelerating wound healing and tissue regeneration. Among different NIR-responsive biomaterials, graphene-based hydrogels with photothermal properties are considered as the best candidates for biomedical applications, due to their excellent properties. This review summarizes the current advances in the development of innovative graphene-based hydrogels for PTT-based biomedical applications. Also, the information about photothermal properties and the potential applications of graphene-based hydrogels in biomedical therapies are provided. These findings provide a great potential for supporting their applications in photothermal biomedicine.
Collapse
Affiliation(s)
- Alexa-Maria Croitoru
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, Spl. Independentei 91-95, 0500957 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University for Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 011061 Bucharest, Romania;
- National Centre for Food Safety, National University for Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University for Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 011061 Bucharest, Romania;
- National Centre for Food Safety, National University for Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University for Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 011061 Bucharest, Romania;
- National Centre for Micro- and Nanomaterials, National University for Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| |
Collapse
|
46
|
Zheng J, Liu H, Chen SH, Huang B, Tang T, Huang P, Cui R. Biosynthesis of CuTe Nanorods with Large Molar Extinction Coefficients for NIR-II Photoacoustic Imaging. Anal Chem 2024; 96:5315-5322. [PMID: 38511619 DOI: 10.1021/acs.analchem.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Photoacoustic imaging (PAI) in the second near-infrared region (NIR-II), due to deeper tissue penetration and a lower background interference, has attracted widespread concern. However, the development of NIR-II nanoprobes with a large molar extinction coefficient and a high photothermal conversion efficiency (PCE) for PAI and photothermal therapy (PTT) is still a big challenge. In this work, the NIR-II CuTe nanorods (NRs) with large molar extinction coefficients ((1.31 ± 0.01) × 108 cm-1·M-1 at 808 nm, (7.00 ± 0.38) × 107 cm-1·M-1 at 1064 nm) and high PCEs (70% at 808 nm, 48% at 1064 nm) were synthesized by living Staphylococcus aureus (S. aureus) cells as biosynthesis factories. Due to the strong light-absorbing and high photothermal conversion ability, the in vitro PA signals of CuTe NRs were about 6 times that of indocyanine green (ICG) in both NIR-I and NIR-II. In addition, CuTe NRs could effectively inhibit tumor growth through PTT. This work provides a new strategy for developing NIR-II probes with large molar extinction coefficients and high PCEs for NIR-II PAI and PTT.
Collapse
Affiliation(s)
- Jie Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hengke Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Shi-Hui Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Biao Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Tao Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Ran Cui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
47
|
Zhang Y, Yang Z, Song L, Li Y, Lin Q. Novel nanoparticle AuNCs conjugated with Desmoglein-3 antibody for FL/CT dual-mode targeted imaging and precise treatment of lung squamous cell carcinoma. J Colloid Interface Sci 2024; 659:1003-1014. [PMID: 38224630 DOI: 10.1016/j.jcis.2024.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Due to lack of effective, early and non-invasive diagnostic as well as treatment tools, the surgical treatment opportunities for lung squamous cell carcinoma (SCC) are limited, resulting in high mortality rates. Therefore, the combination of targeted recognition and precise treatment of lung SCC is of great significance. In this study, a multifunctional nanoparticle is designed and synthesized, which specifically identifies lung SCC cells for target imaging and therapy. Desmoglein-3 (Dsg-3), a transmembrane glycoprotein found in desmosomes, is highly expressed in lung SCC cells. Gold nanoclusters (AuNCs) conjugated with Dsg-3 antibodies to form Au-Dsg-3 through coupling reaction. The results showed that the fluorescence imaging (FI) intensity and computed tomography (CT) signal of Au-Dsg-3 significantly increased within 6 h in vitro and in vivo, achieving dual-modal imaging to detect lung SCC effectively. Besides, Au-Dsg-3 even integrates targeted photothermal therapy (PTT) characteristics in a single nanoparticle. When exposed to near-infrared radiation (NIR), the temperature of the tumor site increased rapidly and reached a high temperature of 53.3 °C after 600 s, causing tumor ablation and growth inhibition. In summary, Au-Dsg-3 provides a key platform for targeted biological imaging and collaborative PTT, which demonstrates good performance on lung SCC.
Collapse
Affiliation(s)
- Yujia Zhang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhe Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lei Song
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Yang Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
48
|
Huynh M, Vinck R, Gibert B, Gasser G. Strategies for the Nuclear Delivery of Metal Complexes to Cancer Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311437. [PMID: 38174785 DOI: 10.1002/adma.202311437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The nucleus is an essential organelle for the function of cells. It holds most of the genetic material and plays a crucial role in the regulation of cell growth and proliferation. Since many antitumoral therapies target nucleic acids to induce cell death, tumor-specific nuclear drug delivery could potentiate therapeutic effects and prevent potential off-target side effects on healthy tissue. Due to their great structural variety, good biocompatibility, and unique physico-chemical properties, organometallic complexes and other metal-based compounds have sparked great interest as promising anticancer agents. In this review, strategies for specific nuclear delivery of metal complexes are summarized and discussed to highlight crucial parameters to consider for the design of new metal complexes as anticancer drug candidates. Moreover, the existing opportunities and challenges of tumor-specific, nucleus-targeting metal complexes are emphasized to outline some new perspectives and help in the design of new cancer treatments.
Collapse
Affiliation(s)
- Marie Huynh
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Robin Vinck
- Orano, 125 avenue de Paris, Châtillon, 92320, France
| | - Benjamin Gibert
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
| |
Collapse
|
49
|
Yu H, He X, Yao J, Gu X, Zhou L, Gao L, Wang J. Potential Exploration of Biocompatible Carbon-Coated MoSe 2 Nanoparticles for Exploration of the Photothermal Potential in the Treatment of Human Choriocarcinoma. Int J Nanomedicine 2024; 19:2359-2375. [PMID: 38476276 PMCID: PMC10929259 DOI: 10.2147/ijn.s444738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/03/2024] [Indexed: 03/14/2024] Open
Abstract
Background Molybdenum diselenide (MoSe2), as a nano near-infrared absorber, has been widely studied in the field of photothermal therapy of cancer. However, there is little research on its application in the treatment of human choriocarcinoma. Methods and Results In this paper, a new type of carbon-coated MoSe2 (MEC) nanoparticles was prepared by a one-step hydrothermal method. The chemical characterization including SEM, TEM, EDS, XRD, FT-IR, TGA, Roman, and XPS showed that MEC was successfully synthesized. MEC exhibited a high photothermal conversion efficiency (50.97%) and extraordinary photothermal stability under laser irradiation. The cell experiment results showed that MEC had good biocompatibility on normal cells while significant photothermal effect on human choriocarcinoma (JEG-3) cells, achieving a good anticancer effect. The level of reactive oxygen species (ROS) in JEG-3 cells was significantly increased under the combination of MEC nanoparticles and near-infrared radiation. MEC nanoparticles could induce apoptosis of JEG-3 cells in combination with near-infrared radiation. Finally, transcriptomic analysis verified that MEC combined with laser radiation could inhibit DNA replication and induce apoptosis, thus improving its therapeutic effect on human choriocarcinoma. Conclusion MEC nanoparticles exert an excellent photothermal effect and may become an important candidate drug for the treatment of human choriocarcinoma.
Collapse
Affiliation(s)
- Hui Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xinyi He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jinmeng Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xiaoya Gu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Lin Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Li Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jia Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
50
|
Gazo Hanna E, Younes K, Roufayel R, Khazaal M, Fajloun Z. Engineering innovations in medicine and biology: Revolutionizing patient care through mechanical solutions. Heliyon 2024; 10:e26154. [PMID: 38390063 PMCID: PMC10882044 DOI: 10.1016/j.heliyon.2024.e26154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The overlap between mechanical engineering and medicine is expanding more and more over the years. Engineers are now using their expertise to design and create functional biomaterials and are continually collaborating with physicians to improve patient health. In this review, we explore the state of scientific knowledge in the areas of biomaterials, biomechanics, nanomechanics, and computational fluid dynamics (CFD) in relation to the pharmaceutical and medical industry. Focusing on current research and breakthroughs, we provide an overview of how these fields are being used to create new technologies for medical treatments of human patients. Barriers and constraints in these fields, as well as ways to overcome them, are also described in this review. Finally, the potential for future advances in biomaterials to fundamentally change the current approach to medicine and biology is also discussed.
Collapse
Affiliation(s)
- Eddie Gazo Hanna
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Khaled Younes
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Mickael Khazaal
- École Supérieure des Techniques Aéronautiques et de Construction Automobile, ISAE-ESTACA, France
| | - Ziad Fajloun
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, 1300, Tripoli, Lebanon
| |
Collapse
|