1
|
Luk SJ, IJsselsteijn ME, Somarakis A, Acem I, de Bruijn IB, Szuhai K, Bovee JVMG, de Miranda NFCC, Falkenburg JHF, Heemskerk MHM. Immunological differences between monophasic and biphasic synovial sarcoma with implications for immunotherapy. Cancer Immunol Immunother 2024; 74:31. [PMID: 39708175 DOI: 10.1007/s00262-024-03868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 10/22/2024] [Indexed: 12/23/2024]
Abstract
Synovial sarcoma is an aggressive soft-tissue cancer that shows limited responses to current immunotherapeutic approaches using immune checkpoint blockade or adoptive cell therapy. To improve immunotherapy for this cancer, understanding how the immune cells in the tumor microenvironment associate with histological subtype, disease progression and current therapies is vital. To evaluate the immune infiltrate in synovial sarcoma in relation to histological subtype, disease progression and in response to cytotoxic treatment, we performed immunodetection of T cells, CD68+ myeloid cells, endothelial cells and keratin on a series of 41 synovial sarcoma patients at various stages of disease. The immune composition of synovial sarcoma was dominated by CD68+ myeloid cells of which a substantial part was of the CD163+ immunosuppressive phenotype, which increased after chemotherapy or radiotherapy. Biphasic synovial sarcomas were more densely infiltrated by both T cells and myeloid cells than monophasic synovial sarcomas. In these tumors, the immune and endothelial cells were mostly located within the stromal like, spindle cell compartment and excluded from the epithelial compartment, greatly resembling the spatial organization of healthy epithelium such as in the colon. Together these data demonstrate that biphasic synovial sarcoma is immunologically different from monophasic synovial sarcoma and might be more susceptible to immunotherapies such as adoptive T-cell therapy. Finally, T-cell infiltration in primary synovial sarcoma was associated with prolonged overall survival of patients which suggests that intratumoral T cells may demonstrate anti-tumor activity.
Collapse
Affiliation(s)
- S J Luk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands.
| | - M E IJsselsteijn
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - A Somarakis
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - I Acem
- Department of Orthopedic Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Department of Oncological and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - I Briaire de Bruijn
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - K Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - J V M G Bovee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - N F C C de Miranda
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - J H F Falkenburg
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - M H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
2
|
van Oost S, Meijer DM, Ijsselsteijn ME, Roelands JP, van den Akker BEMW, van der Breggen R, Briaire-de Bruijn IH, van der Ploeg M, Wijers-Koster PM, Polak SB, Peul WC, van der Wal RJP, de Miranda NFCC, Bovee JVMG. Multimodal profiling of chordoma immunity reveals distinct immune contextures. J Immunother Cancer 2024; 12:e008138. [PMID: 38272563 PMCID: PMC10824073 DOI: 10.1136/jitc-2023-008138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Chordomas are rare cancers from the axial skeleton which present a challenging clinical management with limited treatment options due to their anatomical location. In recent years, a few clinical trials demonstrated that chordomas can respond to immunotherapy. However, an in-depth portrayal of chordoma immunity and its association with clinical parameters is still lacking. METHODS We present a comprehensive characterization of immunological features of 76 chordomas through application of a multimodal approach. Transcriptomic profiling of 20 chordomas was performed to inform on the activity of immune-related genes through the immunologic constant of rejection (ICR) signature. Multidimensional immunophenotyping through imaging mass cytometry was applied to provide insights in the different immune contextures of 32 chordomas. T cell infiltration was further evaluated in all 76 patients by means of multispectral immunofluorescence and then associated with clinical parameters through univariate and multivariate Cox proportional hazard models as well as Kaplan-Meier estimates. Moreover, distinct expression patterns of human leukocyte antigen (HLA) class I were assessed by immunohistochemical staining in all 76 patients. Finally, clonal enrichment of the T cell receptor (TCR) was sought through profiling of the variable region of TCRB locus of 24 patients. RESULTS Chordomas generally presented an immune "hot" microenvironment in comparison to other sarcomas, as indicated by the ICR transcriptional signature. We identified two distinct groups of chordomas based on T cell infiltration which were independent from clinical parameters. The highly infiltrated group was further characterized by high dendritic cell infiltration and the presence of multicellular immune aggregates in tumors, whereas low T cell infiltration was associated with lower overall cell densities of immune and stromal cells. Interestingly, patients with higher T cell infiltration displayed a more pronounced clonal enrichment of the TCR repertoire compared with those with low T cell counts. Furthermore, we observed that the majority of chordomas maintained HLA class I expression. CONCLUSION Our findings shed light on the natural immunity against chordomas through the identification of distinct immune contextures. Understanding their immune landscape could guide the development and application of immunotherapies in a tailored manner, ultimately leading to an improved clinical outcome for patients with chordoma.
Collapse
Affiliation(s)
- Siddh van Oost
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Debora M Meijer
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Jessica P Roelands
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | | - Manon van der Ploeg
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Samuel B Polak
- University Neurosurgical Center Holland, Leiden University Medical Center, Leiden, Zuid-Holland, Netherlands
| | - Wilco C Peul
- University Neurosurgical Center Holland, Leiden University Medical Center, Leiden, Zuid-Holland, Netherlands
| | - Robert J P van der Wal
- Department of Orthopaedic Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Noel F C C de Miranda
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Judith V M G Bovee
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
3
|
Luk SJ, Schoppmeyer R, Ijsselsteijn ME, Somarakis A, Acem I, Remst DFG, Cox DT, van Bergen CAM, Briaire-de Bruijn I, Grönloh MLB, van der Meer WJ, Hawinkels LJAC, Koning RI, Bos E, Bovée JVMG, de Miranda NFCC, Szuhai K, van Buul JD, Falkenburg JHF, Heemskerk MHM. VISTA Expression on Cancer-Associated Endothelium Selectively Prevents T-cell Extravasation. Cancer Immunol Res 2023; 11:1480-1492. [PMID: 37695550 DOI: 10.1158/2326-6066.cir-22-0759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/14/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Cancers evade T-cell immunity by several mechanisms such as secretion of anti-inflammatory cytokines, down regulation of antigen presentation machinery, upregulation of immune checkpoint molecules, and exclusion of T cells from tumor tissues. The distribution and function of immune checkpoint molecules on tumor cells and tumor-infiltrating leukocytes is well established, but less is known about their impact on intratumoral endothelial cells. Here, we demonstrated that V-domain Ig suppressor of T-cell activation (VISTA), a PD-L1 homolog, was highly expressed on endothelial cells in synovial sarcoma, subsets of different carcinomas, and immune-privileged tissues. We created an ex vivo model of the human vasculature and demonstrated that expression of VISTA on endothelial cells selectively prevented T-cell transmigration over endothelial layers under physiologic flow conditions, whereas it does not affect migration of other immune cell types. Furthermore, endothelial VISTA correlated with reduced infiltration of T cells and poor prognosis in metastatic synovial sarcoma. In endothelial cells, we detected VISTA on the plasma membrane and in recycling endosomes, and its expression was upregulated by cancer cell-secreted factors in a VEGF-A-dependent manner. Our study reveals that endothelial VISTA is upregulated by cancer-secreted factors and that it regulates T-cell accessibility to cancer and healthy tissues. This newly identified mechanism should be considered when using immunotherapeutic approaches aimed at unleashing T cell-mediated cancer immunity.
Collapse
Affiliation(s)
- Sietse J Luk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rouven Schoppmeyer
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Antonios Somarakis
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ibtissam Acem
- Department of Orthopedic Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Department of Oncological and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Dennis F G Remst
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daan T Cox
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Max L B Grönloh
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Werner J van der Meer
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Lukas J A C Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roman I Koning
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Erik Bos
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab, Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Anzar I, Malone B, Samarakoon P, Vardaxis I, Simovski B, Fontenelle H, Meza-Zepeda LA, Stratford R, Keung EZ, Burgess M, Tawbi HA, Myklebost O, Clancy T. The interplay between neoantigens and immune cells in sarcomas treated with checkpoint inhibition. Front Immunol 2023; 14:1226445. [PMID: 37799721 PMCID: PMC10548483 DOI: 10.3389/fimmu.2023.1226445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/10/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction Sarcomas are comprised of diverse bone and connective tissue tumors with few effective therapeutic options for locally advanced unresectable and/or metastatic disease. Recent advances in immunotherapy, in particular immune checkpoint inhibition (ICI), have shown promising outcomes in several cancer indications. Unfortunately, ICI therapy has provided only modest clinical responses and seems moderately effective in a subset of the diverse subtypes. Methods To explore the immune parameters governing ICI therapy resistance or immune escape, we performed whole exome sequencing (WES) on tumors and their matched normal blood, in addition to RNA-seq from tumors of 31 sarcoma patients treated with pembrolizumab. We used advanced computational methods to investigate key immune properties, such as neoantigens and immune cell composition in the tumor microenvironment (TME). Results A multifactorial analysis suggested that expression of high quality neoantigens in the context of specific immune cells in the TME are key prognostic markers of progression-free survival (PFS). The presence of several types of immune cells, including T cells, B cells and macrophages, in the TME were associated with improved PFS. Importantly, we also found the presence of both CD8+ T cells and neoantigens together was associated with improved survival compared to the presence of CD8+ T cells or neoantigens alone. Interestingly, this trend was not identified with the combined presence of CD8+ T cells and TMB; suggesting that a combined CD8+ T cell and neoantigen effect on PFS was important. Discussion The outcome of this study may inform future trials that may lead to improved outcomes for sarcoma patients treated with ICI.
Collapse
Affiliation(s)
- Irantzu Anzar
- Oslo Cancer Cluster, NEC OncoImmunity AS, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | | | - Leonardo A. Meza-Zepeda
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Oslo University Hospital, Oslo, Norway
| | | | - Emily Z. Keung
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Melissa Burgess
- Department of Medical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Hussein A. Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ola Myklebost
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Trevor Clancy
- Oslo Cancer Cluster, NEC OncoImmunity AS, Oslo, Norway
| |
Collapse
|
5
|
Dickerson EB, Chen EY, Kim JH. Editorial: Unravelling the sarcoma microenvironment: Impact of the genomic landscape on molecular signaling, immunosuppression, and treatment resistance. Front Oncol 2023; 13:1180954. [PMID: 37035184 PMCID: PMC10080149 DOI: 10.3389/fonc.2023.1180954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Erin B. Dickerson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
- Animal Cancer Care and Research Program, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Erin B. Dickerson,
| | - Eleanor Y. Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Jong Hyuk Kim
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|