1
|
Banu HS, Parvin IS, Priyadharshini SD, Gayathiri E, Prakash P, Pratheep T. Molecular insights into the antioxidant and anticancer properties: A comprehensive analysis through molecular modeling, docking, and dynamics studies. J Cell Biochem 2024; 125:e30564. [PMID: 38747366 DOI: 10.1002/jcb.30564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 10/13/2024]
Abstract
Plants are rich sources of therapeutic compounds that often lack the side effects commonly found in synthetic chemicals. Researchers have effectively synthesized pharmaceuticals from natural sources, taking inspiration from traditional medicine, in their pursuit of modern drugs. This study aims to evaluate the phenolic and flavonoid content of Solanum virginianum seeds using different solvent extracts, enzymatic assays including 2,2-diphenyl-1-picrylhydrazyl activity, reducing power, and superoxide activity. Our phytochemical screening identified active compounds, such as phenols, flavonoids, tannins, and alkaloids. The methanol extract notably possesses higher levels of total phenolic and flavonoid content in comparison to the other extracts. The results highlight the superior antioxidant activity of methanol-extracted leaves, demonstrated by their exceptional IC50 values, which surpass the established standard. In this study, molecular docking techniques were used to assess the binding affinity and to predict the binding conformation of the compounds. Quercetin 3-O beta-d-galactopyranoside displayed a binding energy of -8.35 kcal/mol with several important amino acid residues, PHE222, TRP440, ILE184, LEU192, VAL221, LEU218, SER185, and ALA188. Kaempferol 3-O-beta-l-glucopyranoside exhibited a binding energy of -8.33 kcal/mol, interacting with specific amino acid residues including ALA 441, VAL318, VAL322, MET307, ILI409, GLY442, and PHE439. The results indicate that the methanol extract has a distinct composition of biologically active constituents compared to the other extracts. Overall, seeds exhibit promise as natural antioxidants and potential agents for combating cancer. This study highlights the significance of utilizing the therapeutic capabilities of natural compounds and enhancing our comprehension of their pharmacological characteristics.
Collapse
Affiliation(s)
- Hamza Serina Banu
- Department of Chemistry, Vellalar College for Women (Autonomous), Erode, Tamilnadu, India
| | - Ismail Sheriff Parvin
- Department of Chemistry, Vellalar College for Women (Autonomous), Erode, Tamilnadu, India
| | | | - Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai, India
| | - Palanisamy Prakash
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, India
| | - Thangaraj Pratheep
- Department of Biotechnology, Rathinam College of Arts and Science, Coimbatore, Tamil Nadu, India
| |
Collapse
|
2
|
Shalini K, Guleria S, Salaria D, Rolta R, Fadare OA, Mehta J, Awofisayo O, Mandyal P, Shandilya P, Kaushik N, Choi EH, Chandel SR, Kaushik NK. Antimicrobial potential of phytocompounds of Acorus calamus: in silico approach. J Biomol Struct Dyn 2024; 42:2726-2737. [PMID: 37177811 DOI: 10.1080/07391102.2023.2209653] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Medicinal plants are used from prehistoric time to cure various life-threatening bacterial diseases. Acorus calamus is an important medicinal plant widely used to cure gastrointestinal, respiratory, kidney and liver disorders. The objective of the current research was to investigate the interaction of major phytoconstituents of Acorus calamus with bacterial (6VJE) and fungal (1EA1) protein targets. Protein-ligand interactions were estimated using the AutoDock software, drug likeness was predicted by using the molinspiration server and toxicity was predicted with the swissADME and protox II servers. MD simulation of phytocompounds with the best profiles was done on the GROMACS software for 100 ns. Molecular docking results showed among all the selected major phytoconstituents, that β-cadinene showed best binding interaction in complex with bacterial (6VJE) and fungal (1EA1) protein targets with binding energy -7.66 ± 0.1 and -7.73 ± 0.15 kcal mol-1, respectively. Drug likeness and toxicity predictions showed that β-cadinene follows all rules of drug likeness and toxicity. MD simulation study revealed that β-cadinene fit in binding pocket of bacterial and fungal targets and found to be stable throughout the duration of the simulation. Based on the observations from this in-silico study it is being proposed that β-cadinene, a major phytocompound of Acorus calamus, can be considered for the treatment of bacterial and fungal infections since the study shows that it might be one of the compounds that contributes majorly to the plant's biological activity. This study needs in vitro and in vivo validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kumari Shalini
- Division of Microbiology, School of Pharmaceutical and Health Sciences, Career Point University, Hamirpur, India
| | - Shikha Guleria
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Deeksha Salaria
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajan Rolta
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Olatomide A Fadare
- Organic Chemistry Research Lab, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jyoti Mehta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Oladoja Awofisayo
- Department of Pharmaceutical and Medical Chemistry, University of Uyo, Uyo, Nigeria
| | - Parteek Mandyal
- School Advanced of Chemical Sciences, Shoolini University, Solan, India
| | - Pooja Shandilya
- School Advanced of Chemical Sciences, Shoolini University, Solan, India
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong-si, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Shikha Rangra Chandel
- Division of Microbiology, School of Pharmaceutical and Health Sciences, Career Point University, Hamirpur, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Gayathiri E, Prakash P, Selvam K, Pratheep T, Chaudhari SY, Priyadharshini SD. In silico elucidation for the identification of potential phytochemical against ACE-II inhibitors. J Mol Model 2024; 30:78. [PMID: 38386097 DOI: 10.1007/s00894-024-05868-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
CONTEXT The present study aims to investigate the therapeutic potential of phytocompounds derived from Annona reticulata leaves for the treatment of hypertension, utilizing computational methodologies. Gaining a comprehensive understanding of the molecular interactions between neophytadiene and γ-sitosterol holds significant importance in the advancement of innovative therapeutic approaches. This study aims to examine the inhibitory effects of neophytadiene and γ-sitosterol using molecular docking and dynamics simulations. Additionally, we will evaluate their stability and predict their drug-like properties as well as their ADME/toxicity profiles. Neophytadiene and γ-sitosterol have a substantial binding affinity with 1O8A, as shown by the docking study. The stability of the complexes was confirmed through molecular dynamics simulations, while distinct clusters were identified using PCA. These findings suggest the presence of potential stabilizers. The drug-likeness and ADME/toxicity predictions revealed positive characteristics, such as efficient absorption rates, limited distribution volume and non-hazardous profiles. The neophytadiene and γ-sitosterol exhibit potential as hypertension medication options. Computational investigations reveal that these compounds exhibit high affinity for binding, stability and favourable pharmacokinetic properties. The results of this study lay the groundwork for additional experimental verification and highlight the promising prospects of utilizing natural compounds in the field of pharmaceutical research. METHODS Target proteins (1O8A) were used to perform molecular docking with representative molecules. Stability, conformational changes and binding energies were assessed through molecular dynamics simulations lasting 100 ns. Principal component analysis (PCA) was utilized to analyze molecular dynamics (MD) simulation data, to identify potential compounds that could stabilize the main protease. The safety and pharmacokinetic profiles of the compounds were evaluated through drug-likeness and ADME/toxicity predictions.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai, 600042, Tamil Nadu, India.
| | - Palanisamy Prakash
- Department of Botany, Periyar University, TamilNadu, Periyar Palkalai Nagar, Salem, 636011, India.
| | - Kuppusamy Selvam
- Department of Botany, Periyar University, TamilNadu, Periyar Palkalai Nagar, Salem, 636011, India
| | - Thangaraj Pratheep
- Department of Biotechnology, Rathinam College of Arts and Science, Coimbatore, 641021, Tamil Nadu, India
| | - Somdatta Y Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Nigdi, Pune, India
| | | |
Collapse
|
4
|
Rathod S, Dey S, Choudhari P, Mahuli D, Rochlani S, Dhavale R, Chaudhari S, Tamboli Y, Kilbile J, Rajakumara E. High-throughput computational screening for identification of potential hits against bacterial Acriflavine resistance protein B (AcrB) efflux pump. J Biomol Struct Dyn 2024:1-17. [PMID: 38264919 DOI: 10.1080/07391102.2024.2302936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
Antibiotic resistance is a pressing global health challenge, driven in part by the remarkable efflux capabilities of efflux pump in AcrB (Acriflavine Resistance Protein B) protein in Gram-negative bacteria. In this study, a multi-approached computational screening strategy encompassing molecular docking, In silico absorption, distribution, metabolism, excretion and toxicity (ADMET) analysis, druglikeness assessment, molecular dynamics simulations and density functional theory studies was employed to identify novel hits capable of acting against AcrB-mediated antibiotic resistance. Ligand library was acquired from the COCONUT database. Performed computational analyses unveiled four promising hit molecules (CNP0298667, CNP0399927, CNP0321542 and CNP0269513). Notably, CNP0298667 exhibited the highest negative binding affinity of -11.5 kcal/mol, indicating a possibility of strong potential to disrupt AcrB function. Importantly, all four hits met stringent druglikeness criteria and demonstrated favorable in silico ADMET profiles, underscoring their potential for further development. MD simulations over 100 ns revealed that the CNP0321542-4DX5 and CNP0269513-4DX5 complexes formed robust and stable interactions with the AcrB efflux pump. The identified hits represent a promising starting point for the design and optimization of novel therapeutics aimed at combating AcrB-mediated antibiotic resistance in Gram-negative bacteria.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanket Rathod
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Sreenath Dey
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology, Hyderabad, Sangareddy, India
| | - Prafulla Choudhari
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Deepak Mahuli
- Department of Pharmacology, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Sneha Rochlani
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Rakesh Dhavale
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Somdatta Chaudhari
- Department of Pharmaceutical Chemistry, Progressive Education Society's Modern College of Pharmacy, Nigdi, India
| | - Yasinalli Tamboli
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Jaydeo Kilbile
- University Department of Basic and Applied Sciences (Chemistry), MGM University, Aurangabad, India
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology, Hyderabad, Sangareddy, India
| |
Collapse
|
5
|
Rolta R, Salaria D, Fadare OA, Fadare RY, Masih GD, Prakash A, Medhi B. Identification of novel inhibitor phytoconstituents for Influenza A H3N2: an in silico approach. J Biomol Struct Dyn 2024:1-10. [PMID: 38247233 DOI: 10.1080/07391102.2024.2305313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
Influenza A virus subtype H3N2 is a highly infectious respiratory virus that is responsible for global seasonal flu epidemics. The current study was designed to investigate the antiviral activity of 150 phytocompounds of North Western Himalayas medicinal plants by molecular docking. Two target proteins of hemagglutinin of influenza virus A (PDB ID 4WE8) and Influenza virus H3N2 nucleoprotein - R416A mutant (PDB ID 7NT8) are selected for this study. Molecular docking was done by AutoDock vina tool, toxicity and drug-likeness prediction was done by protox II and Moleinspiration. MD simulation of best protein-ligand complexes was done by using Gromacs, version 2021.5. Molecular docking and toxicity data revealed that clicoemodin and rumexocide showed the best binding with both target proteins 4WEB & 7NT8. Clicoemodin showed the -7.5 KJ/mol binding energy with 4WE8 and 7NT8. Similarly, rumexoside showed the -7.6 KJ/mol binding energy with 4WE8 and -7.6 KJ/mol with 7NT8. Furthermore, Molecular dynamic simulation and MMPBSA binding free energy validated the stability of protein-ligand complexes. The current study suggested that clicoemodin and rumexocide are the promising inhibitors of H3N2 proteins hemagglutinin of influenza virus A and Influenza virus H3N2 nucleoprotein - R416A mutant, though there is further in vitro and in vivo validation is required.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajan Rolta
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Deeksha Salaria
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Olatomide A Fadare
- Organic Chemistry Research Lab, Obafemi Awolowo University, Ile-Ife Osun, Nigeria
| | - Racheal Y Fadare
- Department of Physical and Chemical Sciences, Elizade University, Ilara-Mokin, Nigeria
| | - Gladson David Masih
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
6
|
Alorini T, Al-Hakimi AN, Daoud I, Alminderej F, Albadri AEAE, Aroua L. Synthesis, characterization, anticancer activity and molecular docking of metal complexes bearing a new Schiff base ligand. J Biomol Struct Dyn 2023; 41:10969-10984. [PMID: 36961125 DOI: 10.1080/07391102.2023.2191725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/10/2022] [Indexed: 03/25/2023]
Abstract
2-((E)-((4-(((E)-4-Nitrobenzylidene)amino)phenyl)imino)methyl)naphthalen-1-ol, was synthesised followed by metalation with Fe(III), Co(III), Cu(II), Zn(II) and Ni(II) metals. The compounds were characterised by different methods CHN, AAS, IR, NMR, XRD, TGA and UV-Vis. The results reveal that the ligand has bidentate behavior, and it is bound with metals by a coordination bond through both the nitrogen atom of the azomethine group and the oxygen atom, this provided an octahedral geometry. The X-ray diffraction of the compounds indicate that the ligands and complexes of Co(III), Fe(III) and Zn(II) have a crystalline nature, whereas the Ni(II) and Cu(II) have an amorphous structure. The agar diffusion method (hole plate) was used to evaluate the ligand's and its complexes' antibacterial and antifungal effects on Salmonella enterica serovar typhi and Candida albicans, respectively. It was observed that the Fe(III) complex had the best activity among the compounds against microbial strains. Cytotoxicity of new metal complexes was also assessed against A549, HepG-2 and PC-3 cancer cells. Results demonstrated that the Cu(II) complex displayed the preeminent activity among the synthesised compounds against all the tested cell lines. Furthermore, molecular docking simulation revealed that the Fe(III) complex is shown to have a high affinity with the active sites of two targets of microbial strains. Also, the Cu(II) complex shown to has a high affinity with the active sites of three targets of A-549, HepG-2 and PC-3 cancer cells, which was confirmed by the formation of the different modes of interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thamer Alorini
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Ahmed N Al-Hakimi
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
- Department of Chemistry, College of Sciences, Ibb University, Ibb, Yemen
| | - Ismail Daoud
- Faculty of Science, Department of Chemistry, Laboratory of Natural Substances and Bioactive (LASNABIO), University Abou-Bakr Belkaid, Tlemcen, Algeria
- Department of Matter Sciences, University of Mohamed Khider Biskra, Biskra, Algeria
| | - Fahad Alminderej
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Abuzar E A E Albadri
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Lotfi Aroua
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
- Laboratory of Organic Structural Chemistry & Macromolecules, Department of Chemistry, Faculty of Sciences of Tunis, Tunis El-Manar University, Tunis, Tunisia
| |
Collapse
|
7
|
Mondal H, Silvia DDG, Emerson IA, Chandrasekaran N, Mukherjee A, Thomas J. Antibacterial activity of a novel compound isolated from Bacillus licheniformis for treating bacterial infections in fishes: An in-silico approach. Mol Cell Biochem 2023; 478:2609-2620. [PMID: 36894690 DOI: 10.1007/s11010-023-04687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
Aeromonas hydrophila is a fish pathogen which is widely associated with diseases related to freshwater fishes. Vibrio parahemolyticus is a major globally emerging marine pathogen. Seven novel compounds were extracted from the ethyl acetate extract of Bacillus licheniformis, a novel marine bacterium isolated from marine actinomycetes. The compounds were identified using Gas Chromatography-Mass Spectroscopy (GC-MS). Only one bioactive compound having potent antibacterial activity was virtually screened to understand its drug-like property according to Lipinski's rule. The core proteins, 3L6E and 3RYL from the pathogens, A. hydrophila and V. parahemolyticus were targeted for drug discovery. In the present in-silico approach, Phenol,2,4-Bis(1,1-Dimethylethyl) a potent bioactive compound present in Bacillus licheniformis was used to prevent the infection due to the two pathogens. Further, using this bioactive compound, molecular docking was done to block their specific target proteins. This bioactive compound satisfied all the five rules of Lipinski. Molecular docking result revealed the best binding efficacy of Phenol,2,4-Bis(1,1-Dimethylethyl) against 3L6E and 3RYL with - 4.24 kcal/mol and - 4.82 kcal/mol, respectively. Molecular dynamics (MD) simulations were also executed to determine the binding modes as well as the stability of the protein-ligand docking complexes in the dynamic structure. The in vitro toxicity analysis of this potent bioactive compound against Artemia salina was carried out, revealing the non-toxic nature of B. licheniformis ethyl acetate extract. Thus, the bioactive compound of B. licheniformis was found to be a potent antibacterial agent against A. hydrophila and V. parahemolyticus.
Collapse
Affiliation(s)
- Haimanti Mondal
- Center for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - D Delsy Gnana Silvia
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - I Arnold Emerson
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Natarajan Chandrasekaran
- Center for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Amitava Mukherjee
- Center for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - John Thomas
- Center for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
8
|
Oyedara OO, Fadare OA, Franco-Frías E, Heredia N, García S. Computational assessment of phytochemicals of medicinal plants from Mexico as potential inhibitors of Salmonella enterica efflux pump AcrB protein. J Biomol Struct Dyn 2023; 41:1776-1789. [PMID: 34996337 DOI: 10.1080/07391102.2021.2024261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The AcrAB-TolC efflux pump (EP) confers multidrug resistance to Salmonella enterica, a major etiological agent of foodborne infections. Phytochemicals that inhibit the functions of AcrAB-TolC EP present ideal candidates for reversal of antibiotic resistance. Progressive technological advancements, have facilitated the development of computational methods that offer a rapid low-cost approach to screen and identify phytochemicals with inhibitory potential against EP. In this study, 71 phytochemicals derived from plants used for medicinal purposes in Mexico were screened for their potential as inhibitors of Salmonella AcrB protein using in silico approaches including molecular docking and molecular dynamics (MD) simulation. Consequently, naringenin, 5-methoxypsoralen, and licarin A were identified as candidate inhibitors of AcrB protein. The three phytochemicals bound distal/deep pocket (DP) and hydrophobic trap (HPT) residues of AcrB protein critical for interactions with inhibitors, with estimated binding free energies of -95.5 kJ/mol, -97.4 kJ/mol, and -143.8 kJ/mol for naringenin, 5-methoxypsoralen, and licarin A, respectively. Data from the 50 ns MD simulation study revealed stability of the protein-ligand complex and alterations in the AcrB protein DP conformation upon binding of phytochemicals to the DP and HPT regions. Based on the estimated binding free energy and interactions with three out of five residues lining the hydrophobic trap, licarin A demonstrated the highest inhibitory potential, supporting its further application as a candidate for overcoming drug resistance in pathogens. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Omotayo O Oyedara
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México.,Department of Microbiology, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | | | - Eduardo Franco-Frías
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Norma Heredia
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Santos García
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| |
Collapse
|
9
|
In silico study of inhibition effects of phytocompounds from four medicinal plants against the Staphylococcus aureus β-lactamase. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
10
|
Chugh A, Sehgal I, Khurana N, Verma K, Rolta R, Vats P, Salaria D, Fadare OA, Awofisayo O, Verma A, Phartyal R, Verma M. Comparative docking studies of drugs and phytocompounds for emerging variants of SARS-CoV-2. 3 Biotech 2023; 13:36. [PMID: 36619821 PMCID: PMC9815891 DOI: 10.1007/s13205-022-03450-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
In the last three years, COVID-19 has impacted the world with back-to-back waves leading to devastating consequences. SARS-CoV-2, the causative agent of COVID-19, was first detected in 2019 and since then has spread to 228 countries. Even though the primary focus of research groups was diverted to fight against COVID-19, yet no dedicated drug has been developed to combat the emergent life-threatening medical conditions. In this study, 35 phytocompounds and 43 drugs were investigated for comparative docking analysis. Molecular docking and virtual screening were performed against SARS-CoV-2 spike glycoprotein of 13 variants using AutoDock Vina tool 1.5.6 and Discovery Studio, respectively, to identify the most efficient drugs. Selection of the most suitable compounds with the best binding affinity was done after screening for toxicity, ADME (absorption, distribution, metabolism and excretion) properties and drug-likeliness. The potential candidates were discovered to be Liquiritin (binding affinities ranging between -7.0 and -8.1 kcal/mol for the 13 variants) and Apigenin (binding affinities ranging between -6.8 and -7.3 kcal/mol for the 13 variants) based on their toxicity and consistent binding affinity with the Spike protein of all variants. The stability of the protein-ligand complex was determined using Molecular dynamics (MD) simulation of Apigenin with the Delta plus variant of SARS-CoV-2. Furthermore, Liquiritin and Apigenin were also found to be less toxic than the presently used drugs and showed promising results based on in silico studies, though, confirmation using in vitro studies is required. This in-depth comparative investigation suggests potential drug candidates to fight against SARS-CoV-2 variants. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03450-6.
Collapse
Affiliation(s)
- Ananya Chugh
- Sri Venkateswara College, University of Delhi, New Delhi, 110021 India
| | - Ishita Sehgal
- Sri Venkateswara College, University of Delhi, New Delhi, 110021 India
| | - Nimisha Khurana
- Sri Venkateswara College, University of Delhi, New Delhi, 110021 India
| | - Kangna Verma
- Sri Venkateswara College, University of Delhi, New Delhi, 110021 India
| | - Rajan Rolta
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Pranjal Vats
- School of Biological Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL UK
| | - Deeksha Salaria
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Olatomide A. Fadare
- Organic Chemistry Research Lab, Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Osun 220282 Nigeria
| | - Oladoja Awofisayo
- Department of Pharmaceutical and Medical Chemistry, University of Uyo, Uyo, 520003 Nigeria
| | - Anita Verma
- Sri Venkateswara College, University of Delhi, New Delhi, 110021 India
| | - Rajendra Phartyal
- Sri Venkateswara College, University of Delhi, New Delhi, 110021 India
| | - Mansi Verma
- Department of Zoology, Hansraj College, University of Delhi, Delhi, 110007 India
| |
Collapse
|
11
|
Al-Sallami D, Alsultan A, Abbas KH, Clarke SR. Evaluation of efflux pump inhibitory activity of some plant extracts and using them as adjuvants to potentiate the inhibitory activity of some antibiotics against Staphylococcus aureus. Open Vet J 2023; 13:42-47. [PMID: 36777436 PMCID: PMC9897506 DOI: 10.5455/ovj.2023.v13.i1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/11/2022] [Indexed: 02/05/2023] Open
Abstract
Background Antibiotic-resistant pathogens became a real global threat to human and animal health. This needs to concentrate the efforts to minimize and control these organisms. Efflux pumps are considered one of the important strategies used by bacteria to exclude harmful materials from the cell. Inhibition of these pumps can be an active strategy against multidrug resistance pathogens. There are two sources of efflux pump inhibitors that can be used, chemical and natural inhibitors. The chemical origin efflux pump inhibitors have many toxic side effects while the natural origin is characterized by a wide margin of safety for the host cell. Aim In this study, the ability of some plant extracts like (propolis show rosemary, clove, capsaicin, and cumin) to potentiate the inhibitory activity of some antibiotics such as (ciprofloxacin, erythromycin, gentamycin, tetracycline, and ampicillin) against Staphylococcus aureus pathogen were tested. Methods Efflux pump inhibitory activity of the selected plant extracts was tested using an ethidium bromide (EtBr) accumulation assay. Results The results have shown that Propolis has a significant synergistic effect in combination with ciprofloxacin, erythromycin, and gentamycin. While it has no effect with tetracycline or ampicillin. Also, no synergic effect was noticed in a combination of the minimum inhibitory concentration for the selected plant extracts (rosemary, clove, capsaicin, and cumin) with any of the tested antibiotics. Interestingly, according to the results of the EtBr accumulation assay, Propolis has potent inhibitory activity against the S. aureus (MRS usa300) pump system. Conclusion This study suggests that Propolis might act as a resistance breaker that is able to restore the activity of ciprofloxacin, erythromycin, and gentamycin against S. aureus strains, in case of the efflux-mediated antimicrobial resistance mechanisms.
Collapse
Affiliation(s)
- Dhama Al-Sallami
- Department of Physiology, Pharmacology and Biochemistry, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Amjed Alsultan
- Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq,Corresponding Author: Amjed Alsultan. Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Al- Diwaniyah, Iraq.
| | - Kadhim Hassan Abbas
- Department of Veterinary Public Health, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Simon R. Clarke
- Department of Physiology, Pharmacology and Biochemistry, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| |
Collapse
|
12
|
Salaria D, Rolta R, Sharma N, Patel CN, Ghosh A, Dev K, Sourirajan A, Kumar V. In vitro and in silico antioxidant and anti-inflammatory potential of essential oil of Cymbopogon citratus (DC.) Stapf. of North-Western Himalaya. J Biomol Struct Dyn 2022; 40:14131-14145. [PMID: 34787050 DOI: 10.1080/07391102.2021.2001371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cymbopogon citratus (DC.) Stapf is an aromatic perennial herb of Gramineae (Poaceae) family and is known for its application in food and healthcare industry. The present study aimed to evaluate anti-inflammatory and antioxidant potential of C. citratus essential oil (CEO) through in vitro and in silico studies. Chemical characterization of CEO was done using Gas chromatography-mass spectrophotometry (GC-MS) method. In vitro antioxidant activity was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and ferric ion reducing antioxidant power (FRAP) assays, while egg albumin denaturation method was used to evaluate in vitro anti-inflammatory activity of CEO. Molecular docking investigation of major phytocompounds of CEO was done using Autodock vina software against human peroxiredoxin 5 (PDB ID: 1HD2) and human cyclooxygenase 2 (PDB ID: 5IKQ) proteins, which were further analyzed through molecular dynamics (MD) simulation using YASARA. GC-MS analysis of CEO showed the presence of geranial (48%) neral (34.04%), β-myrcene (9.77%), geraniol (1.88%), linalool (0.84%), isogeranial (0.81%), β-caryophyllene (0.80%), D-limonene (0.51%) as major constituents. CEO showed significant antioxidant activity with DPPH (IC50-47.53 ± 2.16 µg/ml), FRAP (IC50-30.7 ± 0.31 µM), and ABTS assays (IC50-27.87 ± 0.09 µg/ml). CEO also exhibited significant in-vitro anti-inflammatory activity with IC50-29.71 ± 1.95 µg/ml as compared to that of Diclofenac sodium (IC50-36.52 ± 1.95 µg/ml). Molecular docking revealed that β-caryophyllene showed considerable binding potential with human peroxiredoxin 5 receptor (-6.0 kcal/mol) and human cyclooxygenase 2 receptor (-10.1 kcal/mol). Further, MD simulations demonstrated considerable and stable interactions of β-caryophyllene with 1HD2 and 5IKQ proteins up to 100 ns. Drug-likeness and ADME/T features also showed that β-caryophyllene can be used as a potential candidate to replace the synthetic anti-inflammatory drugs with side effects and also act as natural antioxidants.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deeksha Salaria
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Mohali, India
| | - Chirag N Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, University School of Science, Gujarat University, Ahmedabad, India
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Vikas Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| |
Collapse
|
13
|
Chemical Compositions of Essential Oil from Aerial Parts of Cyclospermum leptophyllum and Its Application as Antibacterial Activity against Some Food Spoilage Bacteria. J CHEM-NY 2022. [DOI: 10.1155/2022/5426050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclospermum leptophyllum is plant species known for its medicinal value and pleasant aroma. The aerial part and plant seeds are traditionally used as food additives as a spice. This study aims to isolate the chemical constituents of essential oil of the aerial part of the plant and study their potential antibacterial activities against some food contaminating bacteria. The essential oil of C. leptophyllum (CSEO) was isolated from aerial parts of the plant species and studied using GC-MS and FTIR techniques. The first four major chemical constituents determined from GC-MS analysis of CSEO (for peak area % ≥ 1.15%) were 2,5-dimethoxy-p-cymene (87.09%), 2-methoxy-1-methyl-4-(1-methylethyl) benzene (3.09%), 2-methoxy-4-methyl-1-(1-methylethyl) benzene (1.71%), and humulene (1.15%). 60%, 30%, 15%, 7.5%, and 3.75% of CSEO solutions were prepared and evaluated for their potential antibacterial activities against six food spoilage pathogenic bacterial strains. Three Gram-positive strains: Staphylococcus aureus (ATCC 25923), Staphylococcus epidermidis (ATCC 12228), Streptococcus agalactiae (ATCC 12386) and three Gram-negative strains: Escherichia coli (ATCC 25922), Proteus mirabilis (ATCC 35659), and Pseudomonas aeruginosa (ATCC 27853) were used as test microorganisms. Compared to ciprofloxacin, a positive control, the promising antibacterial activity was observed for CSEO against S. aureus at minimum and maximum test solutions as the values of the zone of inhibition diameter (ZID, mm) were recorded as 14.33 ± 0.58 for 3.75% CSEO solution and 30.67 ± 0.58 for 60% CSEO solution. Tests of CSEO solutions generally showed stronger antibacterial activities against Gram-positive than Gram-negative strains. Therefore, CSEO contains potent chemical constituents that might be applicable in treating pathogenic bacterial species.
Collapse
|
14
|
Mehta J, Utkarsh K, Fuloria S, Singh T, Sekar M, Salaria D, Rolta R, Begum MY, Gan SH, Rani NNIM, Chidambaram K, Subramaniyan V, Sathasivam KV, Lum PT, Uthirapathy S, Fadare OA, Awofisayo O, Fuloria NK. Antibacterial Potential of Bacopa monnieri (L.) Wettst. and Its Bioactive Molecules against Uropathogens-An In Silico Study to Identify Potential Lead Molecule(s) for the Development of New Drugs to Treat Urinary Tract Infections. Molecules 2022; 27:4971. [PMID: 35956923 PMCID: PMC9370325 DOI: 10.3390/molecules27154971] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
Urinary tract infections (UTIs) are becoming more common, requiring extensive protection from antimicrobials. The global expansion of multi-drug resistance uropathogens in the past decade emphasizes the necessity of newer antibiotic treatments and prevention strategies for UTIs. Medicinal plants have wide therapeutic applications in both the prevention and management of many ailments. Bacopa monnieri is a medicinal plant that is found in the warmer and wetlands regions of the world. It has been used in Ayurvedic systems for centuries. The present study aimed to investigate the antibacterial potential of the extract of B. monnieri leaves and its bioactive molecules against UTIs that are caused by Klebsiella pneumoniae and Proteus mirabilis. This in vitro experimental study was conducted by an agar well diffusion method to evaluate the antimicrobial effect of 80% methanol, 96% ethanol, and aqueous extracts of B. monnieri leaves on uropathogens. Then, further screening of their phytochemicals was carried out using standard methods. To validate the bioactive molecules and the microbe interactions, AutoDock Vina software was used for molecular docking with the Klebsiella pneumoniae fosfomycin resistance protein (5WEW) and the Zn-dependent receptor-binding domain of Proteus mirabilis MR/P fimbrial adhesin MrpH (6Y4F). Toxicity prediction and drug likeness were predicted using ProTox-II and Molinspiration, respectively. A molecular dynamics (MD) simulation was carried out to study the protein ligand complexes. The methanolic leaves extract of B. monnieri revealed a 22.3 mm ± 0.6 mm to 25.0 mm ± 0.5 mm inhibition zone, while ethanolic extract seemed to produce 19.3 mm ± 0.8 mm to 23.0 mm ± 0.4 mm inhibition zones against K. pneumoniae with the use of increasing concentrations. In the case of P. mirabilis activity, the methanolic extracts showed a 21.0 mm ± 0.8 mm to 24.0 mm ± 0.6 mm zone of inhibition and the ethanol extract produced a 17.0 mm ± 0.9 mm to 23.0 mm ± 0.7 mm inhibition zone with increasing concentrations. Carbohydrates, flavonoids, saponin, phenolic, and terpenoid were common phytoconstituents identified in B. monnieri extracts. Oroxindin showed the best interactions with the binding energies with 5WEW and 6Y4F, -7.5 kcal/mol and -7.4 kcal/mol, respectively. Oroxindin, a bioactive molecule, followed Lipinski's rule of five and exhibited stability in the MD simulation. The overall results suggest that Oroxindin from B. monnieri can be a potent inhibitor for the effective killing of K. pneumoniae and P. mirabilis. Additionally, its safety has been established, indicating its potential for future drug discovery and development in the treatment for UTIs.
Collapse
Affiliation(s)
- Jyoti Mehta
- Faculty of Applied sciences and Biotechnology, Shoolini University, Solan 173212, India
| | - Kumar Utkarsh
- Faculty of Applied sciences and Biotechnology, Shoolini University, Solan 173212, India
- DNA Lab’s Center for Applied Sciences, Dehradun 248001, Uttarakhand, India
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Tejpal Singh
- DNA Lab’s Center for Applied Sciences, Dehradun 248001, Uttarakhand, India
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Perak, Malaysia
| | - Deeksha Salaria
- Faculty of Applied sciences and Biotechnology, Shoolini University, Solan 173212, India
| | - Rajan Rolta
- Faculty of Applied sciences and Biotechnology, Shoolini University, Solan 173212, India
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Perak, Malaysia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | | | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Perak, Malaysia
| | - Subasini Uthirapathy
- Department of Pharmacology, Faculty of Pharmacy, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| | - Olatomide A. Fadare
- Organic Chemistry Research Lab, Obafemi Awolowo University, Osun 220282, Nigeria
| | - Oladoja Awofisayo
- Department of Pharmaceutical and Medical Chemistry, University of Uyo, Uyo 520003, Nigeria
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| |
Collapse
|
15
|
Kaur B, Rolta R, Salaria D, Kumar B, Fadare OA, da Costa RA, Ahmad A, Al-Rawi MBA, Raish M, Rather IA. An In Silico Investigation to Explore Anti-Cancer Potential of Foeniculum vulgare Mill. Phytoconstituents for the Management of Human Breast Cancer. Molecules 2022; 27:4077. [PMID: 35807321 PMCID: PMC9268524 DOI: 10.3390/molecules27134077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is one of the most prevalent cancers in the world. Traditionally, medicinal plants have been used to cure various types of diseases and disorders. Based on a literature survey, the current study was undertaken to explore the anticancer potential of Foeniculum vulgare Mill. phytoconstituents against breast cancer target protein (PDB ID: 6CHZ) by the molecular docking technique. Molecular docking was done using Autodock/vina software. Toxicity was predicted by the Protox II server and drug likeness was predicted by Molinspiration. 100 ns MD simulation of the best protein-ligand complexes were done using the Amber 18 tool. The present molecular docking investigation has revealed that among the 40 selected phytoconstituents of F. vulgare, α-pinene and D-limonene showed best binding energy (-6 and -5.9 kcal/mol respectively) with the breast cancer target. α-Pinene and D-limonene followed all the parameters of toxicity, and 100 ns MD simulations of α-pinene and D-limonene complexes with 6CHZ were found to be stable. α-Pinene and D-limonene can be used as new therapeutic agents to cure breast cancer.
Collapse
Affiliation(s)
- Baljinder Kaur
- Systems Biology Laboratory, Department of Biotechnology, Punjabi University Patiala, Patiala 147002, Punjab, India
| | - Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173212, Himachal Pradesh, India; (R.R.); (D.S.)
| | - Deeksha Salaria
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173212, Himachal Pradesh, India; (R.R.); (D.S.)
| | - Balvir Kumar
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India;
| | - Olatomide A. Fadare
- Organic Chemistry Research Lab, Department of Chemistry, Obafemi Awolowo University, Ile-Ife 220282, Nigeria;
| | - Renato Araujo da Costa
- Federal Institute of Education, Science, and Technology of Para, Belém 66000-000, Para, Brazil;
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy and King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Mahmood Basil A. Al-Rawi
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy and King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Irfan A. Rather
- Department of Applied Microbiology and Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
16
|
Fuloria S, Mehta J, Chandel A, Sekar M, Rani NNIM, Begum MY, Subramaniyan V, Chidambaram K, Thangavelu L, Nordin R, Wu YS, Sathasivam KV, Lum PT, Meenakshi DU, Kumarasamy V, Azad AK, Fuloria NK. A Comprehensive Review on the Therapeutic Potential of Curcuma longa Linn. in Relation to its Major Active Constituent Curcumin. Front Pharmacol 2022; 13:820806. [PMID: 35401176 PMCID: PMC8990857 DOI: 10.3389/fphar.2022.820806] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/27/2022] [Indexed: 12/16/2022] Open
Abstract
Curcuma longa Linn. (C. longa), popularly known as turmeric, belongs to the Zingiberaceae family and has a long historical background of having healing properties against many diseases. In Unani and Ayurveda medicine, C. longa has been used for liver obstruction and jaundice, and has been applied externally for ulcers and inflammation. Additionally, it is employed in several other ailments such as cough, cold, dental issues, indigestion, skin infections, blood purification, asthma, piles, bronchitis, tumor, wounds, and hepatic disorders, and is used as an antiseptic. Curcumin, a major constituent of C. longa, is well known for its therapeutic potential in numerous disorders. However, there is a lack of literature on the therapeutic potential of C. longa in contrast to curcumin. Hence, the present review aimed to provide in-depth information by highlighting knowledge gaps in traditional and scientific evidence about C. longa in relation to curcumin. The relationship to one another in terms of biological action includes their antioxidant, anti-inflammatory, neuroprotective, anticancer, hepatoprotective, cardioprotective, immunomodulatory, antifertility, antimicrobial, antiallergic, antidermatophytic, and antidepressant properties. Furthermore, in-depth discussion of C. longa on its taxonomic categorization, traditional uses, botanical description, phytochemical ingredients, pharmacology, toxicity, and safety aspects in relation to its major compound curcumin is needed to explore the trends and perspectives for future research. Considering all of the promising evidence to date, there is still a lack of supportive evidence especially from clinical trials on the adjunct use of C. longa and curcumin. This prompts further preclinical and clinical investigations on curcumin.
Collapse
Affiliation(s)
| | - Jyoti Mehta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Aditi Chandel
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Lakshmi Thangavelu
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Rusli Nordin
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
| | - Yuan Seng Wu
- Department of Biological Sciences and Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | | | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | | | - Vinoth Kumarasamy
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Perak, Malaysia
| | | | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Kedah, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
17
|
Salaria D, Rolta R, Mehta J, Awofisayo O, Fadare OA, Kaur B, Kumar B, Araujo da Costa R, Chandel SR, Kaushik N, Choi EH, Kaushik NK. Phytoconstituents of traditional Himalayan Herbs as potential inhibitors of Human Papillomavirus (HPV-18) for cervical cancer treatment: An In silico Approach. PLoS One 2022; 17:e0265420. [PMID: 35298541 PMCID: PMC8929605 DOI: 10.1371/journal.pone.0265420] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Human papillomavirus (HPV) induced cervical cancer is becoming a major cause of mortality in women. The present research aimed to identify the natural inhibitors of HPV-18 E1 protein (1R9W) from Himalayan herbs with lesser toxicity and higher potency. In this study, one hundred nineteen phytoconstituents of twenty important traditional medicinal plants of Northwest Himalayas were selected for molecular docking with the target protein 1R9W of HPV-18 E1 Molecular docking was performed by AutoDock vina software. ADME/T screening of the bioactive phytoconstituents was done by SwissADME, admetSAR, and Protox II. A couple of best protein-ligand complexes were selected for 100 ns MD simulation. Molecular docking results revealed that among all the selected phytoconstituents only thirty-five phytoconstituents showed the binding affinity similar or more than the standard anti-cancer drugs viz. imiquimod (-6.1 kJ/mol) and podofilox (-6.9 kJ/mol). Among all the selected thirty-five phytoconstituents, eriodictyol-7-glucuronide, stigmasterol, clicoemodin and thalirugidine showed the best interactions with a docking score of -9.1, -8.7, -8.4, and -8.4 kJ/mol. Based on the ADME screening, only two phytoconstituents namely stigmasterol and clicoemodin selected as the best inhibitor of HPV protein. MD simulation study also revealed that stigmasterol and clicoemodin were stable inside the binding pocket of 1R9W, Stigmasterol and clicoemodin can be used as a potential investigational drug to cure HPV infections.
Collapse
Affiliation(s)
- Deeksha Salaria
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Jyoti Mehta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Oladoja Awofisayo
- Department of Pharmaceutical and Medical Chemistry, University of Uyo, Uyo, Nigeria
| | - Olatomide A. Fadare
- Organic Chemistry Research Lab, Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Baljinder Kaur
- Department of Biotechnology, Punjabi University Patiala, Patiala, Punjab, India
| | - Balvir Kumar
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | | | - Shikha Rangra Chandel
- Division of Microbiology, School of Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, University of Suwon, Hwaseong-si, South Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center & Applied Plasma Medicine Center, Kwangwoon University, Seoul, South Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center & Applied Plasma Medicine Center, Kwangwoon University, Seoul, South Korea
| |
Collapse
|
18
|
Mehta J, Rolta R, Mehta BB, Kaushik N, Choi EH, Kaushik NK. Role of Dexamethasone and Methylprednisolone Corticosteroids in Coronavirus Disease 2019 Hospitalized Patients: A Review. Front Microbiol 2022; 13:813358. [PMID: 35242118 PMCID: PMC8886296 DOI: 10.3389/fmicb.2022.813358] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
The WHO announced coronavirus disease 2019 (COVID-19) as a pandemic disease globally on March 11, 2020, after it emerged in China. The emergence of COVID-19 has lasted over a year, and despite promising vaccine reports that have been produced, we still have a long way to go until such remedies are accessible to everyone. The immunomodulatory strategy has been kept at the top priority for the research agenda for COVID-19. Corticosteroids have been used to modulate the immune response in a wide range of diseases for the last 70 years. These drugs have been shown to avoid and reduce inflammation in tissues and the bloodstream through non-genomic and genomic effects. Now, the use of corticosteroids increased the chance of survival and relief by combating the viral strong inflammatory impacts and has moved to the forefront in the management of patients seeking supplemental oxygen. The goal of this review is to illuminate dexamethasone and methylprednisolone, i.e., in terms of their chemical and physical properties, role in COVID-19 patients suffering from pneumonia, the proposed mode of action in COVID-19, pharmacokinetics, pharmacodynamics, clinical outcomes in immunocompromised populations with COVID-19, interaction with other drugs, and contradiction to explore the trends and perspectives for future research. Literature was searched from scientific databases such as Science Direct, Wiley, Springer, PubMed, and books for the preparation of this review. The RECOVERY trial, a massive, multidisciplinary, randomized, and open-label trial, is mainly accountable for recommendations over the usage of corticosteroids in COVID-19 patients. The corticosteroids such as dexamethasone and methylprednisolone in the form of medication have anti-inflammatory, analgesic, and anti-allergic characteristics, including the ability to inhibit the immune system. These drugs are also recommended for treating symptoms of multiple ailments such as rheumatic and autoimmune diseases, leukemia, multiple myeloma, and Hodgkin’s and non-Hodgkin’s lymphoma along with other drugs. Toxicology studies proved them safe usually at low dosage via oral or other routes.
Collapse
Affiliation(s)
- Jyoti Mehta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | | | - Neha Kaushik
- Department of Biotechnology, The University of Suwon, Hwaseong, South Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea
| |
Collapse
|