1
|
Muhammed MT, Er M, Akkoc S. Molecular modeling and cytotoxic activity studies of oxirane-2-carboxylate derivatives. J Biomol Struct Dyn 2024:1-12. [PMID: 39544072 DOI: 10.1080/07391102.2024.2428826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/08/2024] [Indexed: 11/17/2024]
Abstract
In this study, five 3-aryloxirane-2-carboxylate derivatives were prepared, and the antiproliferative activities of molecules were screened in lung and colon cancer cell lines. The results showed that molecules had antiproliferative activity on cancerous cells with IC50 values under 100 µM. Furthermore, all of the molecules were found to have a much higher cytotoxic effect than cisplatin in colon cancer cells. The interactions of the relatively active compounds to the crucial enzyme in cancer cell proliferation, cyclin-dependent kinase 1 (CDK1), were investigated using molecular docking. The stability of the resulting CDK1-compound complexes procured from the docking was also assessed through molecular dynamics (MD) simulations. Then, the binding affinity of compounds 2-3a and 2-3c to the target enzyme was computed by MMPBSA. The molecular docking study demonstrated that the two most active compounds could bind to the enzyme. The binding potential of 2-3a is anticipated to be higher as it had one more conventional hydrogen bond and a slightly lower binding energy than compound 2-3c. The MD simulation study exhibited that the two compounds formed a stable complex with the enzyme. On the other hand, the MMPBSA energy computation implicated a slightly higher binding affinity for compound 2-3c toward the enzyme. Furthermore, electrical and frontier molecular orbital analysis of all of the tested compounds was conducted by density functional theory (DFT) studies. Compound 2-3a is anticipated to be the most chemically stable as it gave the highest energy gap value in the DFT analysis.
Collapse
Affiliation(s)
- Muhammed Tilahun Muhammed
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Suleyman Demirel University, Isparta, Türkiye
| | - Mustafa Er
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Suleyman Demirel University, Isparta, Türkiye
| | - Senem Akkoc
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Suleyman Demirel University, Isparta, Türkiye
- Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Türkiye
| |
Collapse
|
2
|
Khongwichit S, Nualla-Ong A, Prompat N, Amatatongchai M, Lieberzeit PA, Chunta S. Computational and experimental investigations of a novel aptamer targeting oxidized low-density lipoprotein. Comput Biol Med 2024; 180:108994. [PMID: 39121680 DOI: 10.1016/j.compbiomed.2024.108994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Oxidized low-density lipoprotein (oxLDL) induces the formation of atherosclerotic plaques. Apolipoprotein B100 (apoB100) is a crucial protein component in low-density lipoprotein (LDL), which includes oxLDL. The oxidation of amino acids and subsequent alterations in their structure generate oxLDL, which is a significant biomarker for the initial phases of coronary artery disease. This study employed molecular docking and molecular dynamics utilizing the MM/GBSA method to identify aptamers with a strong affinity for oxidized apoB100. Molecular docking and molecular dynamics were performed on two sequences of the aptamer candidates (aptamer no.11 (AP11: 5'-CTTCGATGTAGTTTTTGTATGGGGTGCCCTGGTTCCTGCA-3') and aptamer no.26 (AP26: 5'-GCGAACTCGCGAATCCAGAACGGGCTCGGTCCCGGGTCGA-3')), yielding respective binding free energies of -149.08 kcal/mol and -139.86 kcal/mol. Interaction modeling of the simulation revealed a strong hydrogen bond between the AP11-oxidized apoB100 complexes. In an aptamer-based gold nanoparticle (AuNP) aggregation assay, AP11 exhibits a color shift from red to purple with the highest absorbance ratio, and shows strong binding affinity to oxLDL, correlating with the simulation model results. AP11 demonstrated the potential for application as a novel recognition element in diagnostic methodologies and may also contribute to future advancements in preventive therapies for coronary artery disease.
Collapse
Affiliation(s)
- Soemwit Khongwichit
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand; Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Aekkaraj Nualla-Ong
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand; Center for Genomics and Bioinformatic Research, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand; Medical of Technology Service Center, Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Napat Prompat
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand; Medical of Technology Service Center, Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Maliwan Amatatongchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Peter A Lieberzeit
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Vienna, 1090, Austria
| | - Suticha Chunta
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand.
| |
Collapse
|
3
|
Ashley CN, Broni E, Wood CM, Okuneye T, Ojukwu MPT, Dong Q, Gallagher C, Miller WA. Identifying potential monkeypox virus inhibitors: an in silico study targeting the A42R protein. Front Cell Infect Microbiol 2024; 14:1351737. [PMID: 38500508 PMCID: PMC10945028 DOI: 10.3389/fcimb.2024.1351737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Monkeypox (now Mpox), a zoonotic disease caused by the monkeypox virus (MPXV) is an emerging threat to global health. In the time span of only six months, from May to October 2022, the number of MPXV cases breached 80,000 and many of the outbreaks occurred in locations that had never previously reported MPXV. Currently there are no FDA-approved MPXV-specific vaccines or treatments, therefore, finding drugs to combat MPXV is of utmost importance. The A42R profilin-like protein of the MPXV is involved in cell development and motility making it a critical drug target. A42R protein is highly conserved across orthopoxviruses, thus A42R inhibitors may work for other family members. This study sought to identify potential A42R inhibitors for MPXV treatment using computational approaches. The energy minimized 3D structure of the A42R profilin-like protein (PDB ID: 4QWO) underwent virtual screening using a library of 36,366 compounds from Traditional Chinese Medicine (TCM), AfroDb, and PubChem databases as well as known inhibitor tecovirimat via AutoDock Vina. A total of seven compounds comprising PubChem CID: 11371962, ZINC000000899909, ZINC000001632866, ZINC000015151344, ZINC000013378519, ZINC000000086470, and ZINC000095486204, predicted to have favorable binding were shortlisted. Molecular docking suggested that all seven proposed compounds have higher binding affinities to A42R (-7.2 to -8.3 kcal/mol) than tecovirimat (-6.7 kcal/mol). This was corroborated by MM/PBSA calculations, with tecovirimat demonstrating the highest binding free energy of -68.694 kJ/mol (lowest binding affinity) compared to the seven shortlisted compounds that ranged from -73.252 to -97.140 kJ/mol. Furthermore, the 7 compounds in complex with A42R demonstrated higher stability than the A42R-tecovirimat complex when subjected to 100 ns molecular dynamics simulations. The protein-ligand interaction maps generated using LigPlot+ suggested that residues Met1, Glu3, Trp4, Ile7, Arg127, Val128, Thr131, and Asn133 are important for binding. These seven compounds were adequately profiled to be potential antivirals via PASS predictions and structural similarity searches. All seven potential lead compounds were scored Pa > Pi for antiviral activity while ZINC000001632866 and ZINC000015151344 were predicted as poxvirus inhibitors with Pa values of 0.315 and 0.215, and Pi values of 0.052 and 0.136, respectively. Further experimental validations of the identified lead compounds are required to corroborate their predicted activity. These seven identified compounds represent solid footing for development of antivirals against MPXV and other orthopoxviruses.
Collapse
Affiliation(s)
- Carolyn N. Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
| | - Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
| | - Chanyah M. Wood
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Department of Chemistry and Physics, Lincoln University, Lincoln, PA, United States
| | - Tunmise Okuneye
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Department of Biology, Lincoln University, Lincoln, PA, United States
| | - Mary-Pearl T. Ojukwu
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Department of Chemistry and Physics, Lincoln University, Lincoln, PA, United States
- College of Pharmacy, University of Florida, Orlando, FL, United States
| | - Qunfeng Dong
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Center for Biomedical Informatics, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Carla Gallagher
- Department of Chemistry and Physics, Lincoln University, Lincoln, PA, United States
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
4
|
Paligaspe PR, Weerasinghe S, Dissanayake DP, Senthilnithy R, Abeysinghe T, Jayasinghe CD. Computational investigation of impact of Pb(II) and Ni(II) ions on hUNG enzyme: insights from molecular dynamics simulations. J Biomol Struct Dyn 2024:1-10. [PMID: 38279925 DOI: 10.1080/07391102.2024.2307442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/08/2024] [Indexed: 01/29/2024]
Abstract
Human uracil DNA glycosylase (hUNG), a crucial player in the initiation of the base excision repair pathway, is susceptible to alterations in function and conformation induced by the accumulation of toxic metals. Despite the recognized impact of toxic metals on DNA repair enzymes, there exists a notable deficiency in theoretical investigations addressing this phenomenon. This study investigates the impact of toxic heavy metal ions, Pb(II) and Ni(II), on the stability of hUNG through molecular dynamics (MD) simulations. The initial analysis involved the identification of key cavities in the hUNG enzyme. Notably, the active site cavity emerged as a promising site for ligand binding. Subsequently, AutoDockTools software was employed to dock Pb(II) and Ni(II) onto the identified cavities, followed by extensive MD simulations. The MD analysis, encompassing parameters such as root mean square deviation, radius of gyration, solvent accessible surface area, hydrogen bond variations, Ramachandran plot, principal component analysis, and root mean square fluctuations, collectively revealed distinct alterations in the behavior of the enzyme upon complexation with Pb(II) and Ni(II). Interestingly, the enzyme exhibited enhanced structural stability, reduced flexibility, and modified hydrogen bonding patterns in the presence of these toxic metal ions. The observed limitation in structural flexibility implies a more rigid and stable conformation when the enzyme complex with Pb(II) and Ni(II) compared to its free form. This structural alteration may lead to a potential reduction in enzymatic activity, suggesting that toxic metal ions influence the functional dynamics of hUNG. These computational findings offer valuable insights into the molecular interactions between metal ions and enzymes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyani R Paligaspe
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Samantha Weerasinghe
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | - Rajendram Senthilnithy
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Thelma Abeysinghe
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Chanika D Jayasinghe
- Department of Zoology, Faculty of Natural Sciences, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| |
Collapse
|
5
|
Arthur MN, Bebla K, Broni E, Ashley C, Velazquez M, Hua X, Radhakrishnan R, Kwofie SK, Miller WA. Design of Inhibitors That Target the Menin-Mixed-Lineage Leukemia Interaction. COMPUTATION (BASEL, SWITZERLAND) 2024; 12:3. [PMID: 38938622 PMCID: PMC11209892 DOI: 10.3390/computation12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The prognosis of mixed-lineage leukemia (MLL) has remained a significant health concern, especially for infants. The minimal treatments available for this aggressive type of leukemia has been an ongoing problem. Chromosomal translocations of the KMT2A gene are known as MLL, which expresses MLL fusion proteins. A protein called menin is an important oncogenic cofactor for these MLL fusion proteins, thus providing a new avenue for treatments against this subset of acute leukemias. In this study, we report results using the structure-based drug design (SBDD) approach to discover potential novel MLL-mediated leukemia inhibitors from natural products against menin. The three-dimensional (3D) protein model was derived from Protein Databank (Protein ID: 4GQ4), and EasyModeller 4.0 and I-TASSER were used to fix missing residues during rebuilding. Out of the ten protein models generated (five from EasyModeller and I-TASSER each), one model was selected. The selected model demonstrated the most reasonable quality and had 75.5% of residues in the most favored regions, 18.3% of residues in additionally allowed regions, 3.3% of residues in generously allowed regions, and 2.9% of residues in disallowed regions. A ligand library containing 25,131 ligands from a Chinese database was virtually screened using AutoDock Vina, in addition to three known menin inhibitors. The top 10 compounds including ZINC000103526876, ZINC000095913861, ZINC000095912705, ZINC000085530497, ZINC000095912718, ZINC000070451048, ZINC000085530488, ZINC000095912706, ZINC000103580868, and ZINC000103584057 had binding energies of -11.0, -10.7, -10.6, -10.2, -10.2, -9.9, -9.9, -9.9, -9.9, and -9.9 kcal/mol, respectively. To confirm the stability of the menin-ligand complexes and the binding mechanisms, molecular dynamics simulations including molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) computations were performed. The amino acid residues that were found to be potentially crucial in ligand binding included Phe243, Met283, Cys246, Tyr281, Ala247, Ser160, Asn287, Asp185, Ser183, Tyr328, Asn249, His186, Leu182, Ile248, and Pro250. MI-2-2 and PubChem CIDs 71777742 and 36294 were shown to possess anti-menin properties; thus, this justifies a need to experimentally determine the activity of the identified compounds. The compounds identified herein were found to have good pharmacological profiles and had negligible toxicity. Additionally, these compounds were predicted as antileukemic, antineoplastic, chemopreventive, and apoptotic agents. The 10 natural compounds can be further explored as potential novel agents for the effective treatment of MLL-mediated leukemia.
Collapse
Affiliation(s)
- Moses N. Arthur
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Biomedical Engineering Department, University of Rochester, Rochester, NY 14627, USA
| | - Kristeen Bebla
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Carolyn Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Miriam Velazquez
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Xianin Hua
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Sarker P, Mitro A, Hoque H, Hasan MN, Nurnabi Azad Jewel GM. Identification of potential novel therapeutic drug target against Elizabethkingia anophelis by integrative pan and subtractive genomic analysis: An in silico approach. Comput Biol Med 2023; 165:107436. [PMID: 37690289 DOI: 10.1016/j.compbiomed.2023.107436] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/08/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Elizabethkingia anophelis is a human pathogen responsible for severe nosocomial infections in neonates and immunocompromised patients. The significantly higher mortality rate from E. anophelis infections and the lack of available regimens highlight the critical need to explore novel drug targets. The current study investigated effective novel drug targets by employing a comprehensive in silico subtractive genomic approach integrated with pangenomic analysis of E. anophelis strains. A total of 2809 core genomic proteins were found by pangenomic analysis of non-paralogous proteins. Subsequently, 156 pathogen-specific, 442 choke point, 202 virulence factor, 53 antibiotic resistant and 119 host-pathogen interacting proteins were identified in E. anophelis. By subtractive genomic approach, at first 791 proteins were found to be indispensable for the survival of E. anophelis. 558 and 315 proteins were detected as non-homologous to human and gut microflora respectively. Following that 245 cytoplasmic, 245 novel, and 23 broad-spectrum targets were selected and finally four proteins were considered as potential therapeutic targets of E. anophelis based on highest degree score in PPI network. Among those, three proteins were subjected to molecular docking and subsequent MD simulation as one protein did not contain a plausible binding pocket with sufficient surface area and volume. All the complexes were found to be stable and compact in 100 ns molecular dynamics simulation studies as measured by RMSD, RMSF, and Rg. These three short-listed targets identified in this study may lead to the development of novel antimicrobials capable of curing infections and pave the way to prevent and control the disease progression caused by the deadly agent E. anophelis.
Collapse
Affiliation(s)
- Parth Sarker
- Dept. of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, University Ave, Sylhet-3114, Bangladesh; Computational Biology and Bioinformatics Lab, Dept. of GEB, SUST, Sylhet-3114, Bangladesh
| | - Arnob Mitro
- Dept. of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, University Ave, Sylhet-3114, Bangladesh; Computational Biology and Bioinformatics Lab, Dept. of GEB, SUST, Sylhet-3114, Bangladesh
| | - Hammadul Hoque
- Dept. of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, University Ave, Sylhet-3114, Bangladesh
| | - Md Nazmul Hasan
- Dept. of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, University Ave, Sylhet-3114, Bangladesh
| | - G M Nurnabi Azad Jewel
- Dept. of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, University Ave, Sylhet-3114, Bangladesh; Computational Biology and Bioinformatics Lab, Dept. of GEB, SUST, Sylhet-3114, Bangladesh.
| |
Collapse
|
7
|
Gökçe B, Muhammed MT. Evaluation of in vitro effect, molecular docking, and molecular dynamics simulations of some dihydropyridine-class calcium channel blockers on human serum paraoxonase 1 (hPON1) enzyme activity. Biotechnol Appl Biochem 2023; 70:1707-1719. [PMID: 37071114 DOI: 10.1002/bab.2467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/11/2023] [Indexed: 04/19/2023]
Abstract
Paraoxonase 1 (PON1) was purified 148.80-fold in 37.92% yield by hydrophobic interaction chromatography technique. The purity of PON1 was checked by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with a single band of 43 kDa. The in vitro effects of nine different calcium channel blockers on PON1 activity were evaluated. All drugs strongly decreased PON1 activity, and IC50 levels were between 13.987 ± 0.59 and 238.104 ± 2.14 μM, Ki values between 8.58 ± 0.36 and 111 ± 1.27 μM. The drugs with the strongest inhibitory effect were nisoldipine with 13.987 ± 0.59 μM and nicardipine with 20.158 ± 0.43 μM. The mechanism of action for the inhibition of the enzyme by nisoldipine and nicardipine was investigated through molecular docking. The stability of enzyme-ligand complexes obtained from the docking was explored through molecular dynamics simulation. The binding affinity of the ligands toward the enzyme was also investigated through MMPBSA (molecular mechanics Poisson-Boltzmann surface area method). The computational analysis demonstrated these compounds could inhibit the enzyme. Nisoldipine had the strongest binding, and its complex was the most stable one. Furthermore, nicardipine was found to have the highest affinity toward the enzyme.
Collapse
Affiliation(s)
- Başak Gökçe
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Türkiye
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Türkiye
| |
Collapse
|
8
|
Broni E, Ashley C, Velazquez M, Khan S, Striegel A, Sakyi PO, Peracha S, Bebla K, Sodhi M, Kwofie SK, Ademokunwa A, Miller WA. In Silico Discovery of Potential Inhibitors Targeting the RNA Binding Loop of ADAR2 and 5-HT2CR from Traditional Chinese Natural Compounds. Int J Mol Sci 2023; 24:12612. [PMID: 37628792 PMCID: PMC10454645 DOI: 10.3390/ijms241612612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Adenosine deaminase acting on RNA 2 (ADAR2) is an important enzyme involved in RNA editing processes, particularly in the conversion of adenosine to inosine in RNA molecules. Dysregulation of ADAR2 activity has been implicated in various diseases, including neurological disorders (including schizophrenia), inflammatory disorders, viral infections, and cancers. Therefore, targeting ADAR2 with small molecules presents a promising therapeutic strategy for modulating RNA editing and potentially treating associated pathologies. However, there are limited compounds that effectively inhibit ADAR2 reactions. This study therefore employed computational approaches to virtually screen natural compounds from the traditional Chinese medicine (TCM) library. The shortlisted compounds demonstrated a stronger binding affinity to the ADAR2 (<-9.5 kcal/mol) than the known inhibitor, 8-azanebularine (-6.8 kcal/mol). The topmost compounds were also observed to possess high binding affinity towards 5-HT2CR with binding energies ranging from -7.8 to -12.9 kcal/mol. Further subjecting the top ADAR2-ligand complexes to molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations revealed that five potential hit compounds comprising ZINC000014637370, ZINC000085593577, ZINC000042890265, ZINC000039183320, and ZINC000101100339 had favorable binding free energies of -174.911, -137.369, -117.236, -67.023, and -64.913 kJ/mol, respectively, with the human ADAR2 protein. Residues Lys350, Cys377, Glu396, Cys451, Arg455, Ser486, Gln488, and Arg510 were also predicted to be crucial in ligand recognition and binding. This finding will provide valuable insights into the molecular interactions between ADAR2 and small molecules, aiding in the design of future ADAR2 inhibitors with potential therapeutic applications. The potential lead compounds were also profiled to have insignificant toxicities. A structural similarity search via DrugBank revealed that ZINC000039183320 and ZINC000014637370 were similar to naringin and naringenin, which are known adenosine deaminase (ADA) inhibitors. These potential novel ADAR2 inhibitors identified herein may be beneficial in treating several neurological disorders, cancers, viral infections, and inflammatory disorders caused by ADAR2 after experimental validation.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Carolyn Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Miriam Velazquez
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Sufia Khan
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Andrew Striegel
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Chemical and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Saqib Peracha
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Kristeen Bebla
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Monsheel Sodhi
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Adesanya Ademokunwa
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Cognitive and Behavioral Neuroscience, Loyola University Chicago, Chicago, IL 60660, USA
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
9
|
R S, Mahalakshmi S, Vetrivelan V, Irfan A, Muthu S. Absorption wavelength (TD-DFT) and adsorption of metal chalcogen clusters with methyl nicotinate: Structural, electronic, IRI, SERS, pharmacological and antiviral studies (HIV and omicron). Heliyon 2023; 9:e16066. [PMID: 37234664 PMCID: PMC10208831 DOI: 10.1016/j.heliyon.2023.e16066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The DFT B3LYP-LAND2DZ technique is used to examine interactions of Methyl nicotinate with copper selenide and zinc selenide clusters. The existence of reactive sites is determined using ESP maps and Fukui data. The energy variations between HOMO and LUMO are utilised to calculate various energy parameters. The Atoms in Molecules and ELF (Electron Localisation Function) maps are employed to investigate the topology of the molecule. The Interaction Region Indicator is used to determine the existence of non-covalent zones in the molecule. The UV-Vis spectrum using the TD-DFT method and DOS graphs are used to obtain the theoretical determination of electronic transition and properties. Structural analysis of the compound is obtained using theoretical IR spectra. To explore the adsorption of copper selenide and zinc selenide clusters on the Methyl nicotinate, the adsorption energy and theoretical SERS spectra are employed. Furthermore, pharmacological investigations are carried out to confirm the drug's non-toxicity. The compound's antiviral efficacy against HIV and Omicron is demonstrated via protein-ligand docking.
Collapse
Affiliation(s)
- Sravanthi R
- Department of Physics, Ethiraj College for Women, Chennai, 600008, Tamil Nadu, India
- University of Madras, Chennai, 600005, Tamil Nadu, India
| | - S. Mahalakshmi
- Department of Physics, Ethiraj College for Women, Chennai, 600008, Tamil Nadu, India
| | - V. Vetrivelan
- Department of Physics, Government College of Engineering, Srirangam, Trichy 620012, Tamil Nadu, India
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia
| | - S. Muthu
- Department of Physics, Arignar Anna Govt.Arts College, Cheyyar, 604407, Tamil Nadu, India
| |
Collapse
|
10
|
Broni E, Striegel A, Ashley C, Sakyi PO, Peracha S, Velazquez M, Bebla K, Sodhi M, Kwofie SK, Ademokunwa A, Khan S, Miller WA. Molecular Docking and Dynamics Simulation Studies Predict Potential Anti-ADAR2 Inhibitors: Implications for the Treatment of Cancer, Neurological, Immunological and Infectious Diseases. Int J Mol Sci 2023; 24:6795. [PMID: 37047766 PMCID: PMC10095294 DOI: 10.3390/ijms24076795] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Altered RNA editing has been linked to several neurodevelopmental disorders, including autism spectrum disorder (ASD) and intellectual disability, in addition to depression, schizophrenia, some cancers, viral infections and autoimmune disorders. The human ADAR2 is a potential therapeutic target for managing these various disorders due to its crucial role in adenosine to inosine editing. This study applied consensus scoring to rank potential ADAR2 inhibitors after performing molecular docking with AutoDock Vina and Glide (Maestro), using a library of 35,161 compounds obtained from traditional Chinese medicine. A total of 47 compounds were predicted to be good binders of the human ADAR2 and had insignificant toxicity concerns. Molecular dynamics (MD) simulations, including the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) procedure, also emphasized the binding of the shortlisted compounds. The potential compounds had plausible binding free energies ranging from -81.304 to -1068.26 kJ/mol from the MM/PBSA calculations. ZINC000085511995, a naphthoquinone had more negative binding free energy (-1068.26 kJ/mol) than inositol hexakisphosphate (IHP) [-873.873 kJ/mol], an agonist and a strong binder of ADAR2. The potential displacement of IHP by ZINC000085511995 in the IHP binding site of ADAR2 could be explored for possible deactivation of ADAR2. Bayesian-based biological activity prediction corroborates the neuropharmacological, antineoplastic and antiviral activity of the potential lead compounds. All the potential lead compounds, except ZINC000014612330 and ZINC000013462928, were predicted to be inhibitors of various deaminases. The potential lead compounds also had probability of activity (Pa) > 0.442 and probability of inactivity (Pi) < 0.116 values for treating acute neurologic disorders, except for ZINC000085996580 and ZINC000013462928. Pursuing these compounds for their anti-ADAR2 activities holds a promising future, especially against neurological disorders, some cancers and viral infections caused by RNA viruses. Molecular interaction, hydrogen bond and per-residue decomposition analyses predicted Arg400, Arg401, Lys519, Trp687, Glu689, and Lys690 as hot-spot residues in the ADAR2 IHP binding site. Most of the top compounds were observed to have naphthoquinone, indole, furanocoumarin or benzofuran moieties. Serotonin and tryptophan, which are beneficial in digestive regulation, improving sleep cycle and mood, are indole derivatives. These chemical series may have the potential to treat neurological disorders, prion diseases, some cancers, specific viral infections, metabolic disorders and eating disorders through the disruption of ADAR2 pathways. A total of nine potential lead compounds were shortlisted as plausible modulators of ADAR2.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Andrew Striegel
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Chemical and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Carolyn Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Saqib Peracha
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Miriam Velazquez
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Kristeen Bebla
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Monsheel Sodhi
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Adesanya Ademokunwa
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Cognitive and Behavioral Neuroscience, Loyola University Chicago, Chicago, IL 60660, USA
| | - Sufia Khan
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
11
|
Saah SA, Sakyi PO, Adu-Poku D, Boadi NO, Djan G, Amponsah D, Devine RNOA, Ayittey K. Docking and Molecular Dynamics Identify Leads against 5 Alpha Reductase 2 for Benign Prostate Hyperplasia Treatment. J CHEM-NY 2023. [DOI: 10.1155/2023/8880213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Steroid 5 alpha-reductase 2 (5αR-2) is a membrane-embedded protein that together with other isoforms plays a key role in the metabolism of steroids. This enzyme catalyzes the reduction of testosterone to the more potent ligand, dihydrotestosterone (DHT) in the prostate. Androgens, testosterone, and DHT play important roles in prostate growth, development, and function. At the same time, both testosterone and DHT have been implicated in the pathogenesis of benign prostate hyperplasia (BPH). Inhibition of the DHT formation, therefore, provides a therapeutic strategy that offers the possibility of preventing, delaying, or treating BPH. Currently, two steroidal drugs that inhibit 5αR-2, dutasteride and finasteride, have been approved for clinical use. These two come at a high cost and also portray undesirable sexual side effects which necessitate the need to find new chemotherapeutic alternatives for the disease. Based on the aforementioned, finasteride and dutasteride were subjected to scaffold hopping, fragment-based de novo design, molecular docking, and molecular dynamics simulations employing databases like ChEMBL, DrugBank, PubChem, ChemSpider, and Zinc15 in the identification of potential hits targeting 5αR-2. Altogether, ten novel compounds targeting 5αR-2 were identified with binding energies lower or comparable to finasteride and dutasteride, the main inhibitors for this target. Molecular docking and molecular dynamics simulations studies identify amino acid residues Glu57, Phe219, Phe223, and Leu224 to be critical for ligand binding and complex stability. The physicochemical and pharmacological profiling suggests the potential of the hit compounds to be drug-like and orally active. Similarly, the quality parameter assessments revealed the hits possess LELP greater than 3 implying their promise as lead-like molecules. The compounds A5, A9, and A10 were, respectively, predicted to treat prostate disorders with Pa (0.188, 0.361, and 0.270) and Pi (0.176, 0.050, and 0.093), while A8 and A9 were found to be associated with BPH treatment with Pa (0.09 and 0.127) and Pi (0.077 and 0.033), respectively. Structural similarity searches via DrugBank identified the drugs faropenem, acemetacin, estradiol valerate, and yohimbine to be useful for BPH treatment suggesting the de novo designed ligands as potential chemotherapeutic agents for treating this disease.
Collapse
|
12
|
Broni E, Ashley C, Adams J, Manu H, Aikins E, Okom M, Miller WA, Wilson MD, Kwofie SK. Cheminformatics-Based Study Identifies Potential Ebola VP40 Inhibitors. Int J Mol Sci 2023; 24:ijms24076298. [PMID: 37047270 PMCID: PMC10094735 DOI: 10.3390/ijms24076298] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The Ebola virus (EBOV) is still highly infectious and causes severe hemorrhagic fevers in primates. However, there are no regulatorily approved drugs against the Ebola virus disease (EVD). The highly virulent and lethal nature of EVD highlights the need to develop therapeutic agents. Viral protein 40 kDa (VP40), the most abundantly expressed protein during infection, coordinates the assembly, budding, and release of viral particles into the host cell. It also regulates viral transcription and RNA replication. This study sought to identify small molecules that could potentially inhibit the VP40 protein by targeting the N-terminal domain using an in silico approach. The statistical quality of AutoDock Vina’s capacity to discriminate between inhibitors and decoys was determined, and an area under the curve of the receiver operating characteristic (AUC-ROC) curve of 0.791 was obtained. A total of 29,519 natural-product-derived compounds from Chinese and African sources as well as 2738 approved drugs were successfully screened against VP40. Using a threshold of −8 kcal/mol, a total of 7, 11, 163, and 30 compounds from the AfroDb, Northern African Natural Products Database (NANPDB), traditional Chinese medicine (TCM), and approved drugs libraries, respectively, were obtained after molecular docking. A biological activity prediction of the lead compounds suggested their potential antiviral properties. In addition, random-forest- and support-vector-machine-based algorithms predicted the compounds to be anti-Ebola with IC50 values in the micromolar range (less than 25 μM). A total of 42 natural-product-derived compounds were identified as potential EBOV inhibitors with desirable ADMET profiles, comprising 1, 2, and 39 compounds from NANPDB (2-hydroxyseneganolide), AfroDb (ZINC000034518176 and ZINC000095485942), and TCM, respectively. A total of 23 approved drugs, including doramectin, glecaprevir, velpatasvir, ledipasvir, avermectin B1, nafarelin acetate, danoprevir, eltrombopag, lanatoside C, and glycyrrhizin, among others, were also predicted to have potential anti-EBOV activity and can be further explored so that they may be repurposed for EVD treatment. Molecular dynamics simulations coupled with molecular mechanics Poisson–Boltzmann surface area calculations corroborated the stability and good binding affinities of the complexes (−46.97 to −118.9 kJ/mol). The potential lead compounds may have the potential to be developed as anti-EBOV drugs after experimental testing.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Carolyn Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Joseph Adams
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
| | - Hammond Manu
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
| | - Ebenezer Aikins
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
| | - Mary Okom
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (W.A.M.III); (S.K.K.); Tel.: +1(708)-2168451 (W.A.M.III); +23-320-3797922 (S.K.K.)
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana
- Correspondence: (W.A.M.III); (S.K.K.); Tel.: +1(708)-2168451 (W.A.M.III); +23-320-3797922 (S.K.K.)
| |
Collapse
|
13
|
Sakyi PO, Kwofie SK, Tuekpe JK, Gwira TM, Broni E, Miller WA, Wilson MD, Amewu RK. Inhibiting Leishmania donovani Sterol Methyltransferase to Identify Lead Compounds Using Molecular Modelling. Pharmaceuticals (Basel) 2023; 16:ph16030330. [PMID: 36986430 PMCID: PMC10054574 DOI: 10.3390/ph16030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
The recent outlook of leishmaniasis as a global public health concern coupled with the reportage of resistance and lack of efficacy of most antileishmanial drugs calls for a concerted effort to find new leads. The study combined In silico and in vitro approaches to identify novel potential synthetic small-molecule inhibitors targeting the Leishmania donovani sterol methyltransferase (LdSMT). The LdSMT enzyme in the ergosterol biosynthetic pathway is required for the parasite’s membrane fluidity, distribution of membrane proteins, and control of the cell cycle. The lack of LdSMT homologue in the human host and its conserved nature among all Leishmania parasites makes it a viable target for future antileishmanial drugs. Initially, six known inhibitors of LdSMT with IC50 < 10 μM were used to generate a pharmacophore model with a score of 0.9144 using LigandScout. The validated model was used to screen a synthetic library of 95,630 compounds obtained from InterBioScreen limited. Twenty compounds with pharmacophore fit scores above 50 were docked against the modelled three-dimensional structure of LdSMT using AutoDock Vina. Consequently, nine compounds with binding energies ranging from −7.5 to −8.7 kcal/mol were identified as potential hit molecules. Three compounds comprising STOCK6S-06707, STOCK6S-84928, and STOCK6S-65920 with respective binding energies of −8.7, −8.2, and −8.0 kcal/mol, lower than 22,26-azasterol (−7.6 kcal/mol), a known LdSMT inhibitor, were selected as plausible lead molecules. Molecular dynamics simulation studies and molecular mechanics Poisson–Boltzmann surface area calculations showed that the residues Asp25 and Trp208 were critical for ligand binding. The compounds were also predicted to have antileishmanial activity with reasonable pharmacological and toxicity profiles. When the antileishmanial activity of the three hits was evaluated in vitro against the promastigotes of L. donovani, mean half-maximal inhibitory concentrations (IC50) of 21.9 ± 1.5 μM (STOCK6S-06707), 23.5 ± 1.1 μM (STOCK6S-84928), and 118.3 ± 5.8 μM (STOCK6S-65920) were obtained. Furthermore, STOCK6S-84928 and STOCK6S-65920 inhibited the growth of Trypanosoma brucei, with IC50 of 14.3 ± 2.0 μM and 18.1 ± 1.4 μM, respectively. The identified compounds could be optimised to develop potent antileishmanial therapeutic agents.
Collapse
Affiliation(s)
- Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
- Correspondence: (S.K.K.); (R.K.A.); Tel.: +233-203797922 (S.K.K.); +233-543823483 (R.K.A.)
| | - Julius K. Tuekpe
- Department of Biochemistry, Cell, and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Theresa M. Gwira
- Department of Biochemistry, Cell, and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra P.O. Box LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra P.O. Box LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Richard K. Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana
- Correspondence: (S.K.K.); (R.K.A.); Tel.: +233-203797922 (S.K.K.); +233-543823483 (R.K.A.)
| |
Collapse
|
14
|
Sakyi PO, Broni E, Amewu RK, Miller WA, Wilson MD, Kwofie SK. Targeting Leishmania donovani sterol methyltransferase for leads using pharmacophore modeling and computational molecular mechanics studies. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
15
|
Saman S, Chen CC, Malak N, Khan A, Nasreen N, Khan A, Niaz S, Rehman G, Rodriguez-Vivas RI, Cossío-Bayúgar R. Ethanolic Extracts of Datura innoxia Have Promising Acaricidal Activity against Rhipicephalus microplus as It Blocks the Glutathione S-Transferase Activity of the Target Tick. Genes (Basel) 2022; 14:genes14010118. [PMID: 36672859 PMCID: PMC9859338 DOI: 10.3390/genes14010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Rhipicephalus microplus is a major bovine ectoparasite that negatively impacts the cattle industry. The acaricidal activity of Datura innoxia ethanolic plant extract against R. microplus, compared with trichlorfon, was examined using the adult immersion test (AIT), and larval packet test (LPT). In vitro acaricidal activity of the selected plant extract against R. microplus engorged females was evaluated at different concentrations (2.5, 5, 10, 20, and 40 mg/mL), and was the same for AIT and LPT. It was further supported by in silico molecular docking of D. innoxia's 21 phytochemicals against the R. microplus Glutathione S-transferases (RmGST) protein's three-dimensional (3D) structure predicted by the trRosetta server. The modeled 3D structure was then evaluated and confirmed with PROCHECK, ERRAT, and Verify3D online servers. To predict the binding mechanisms of these compounds, molecular docking was performed using Auto dock Vina software, and molecular dynamic (MD) simulations were used to investigate the protein atom's dynamic motion. D. innoxia has a relatively higher inhibitory effect on oviposition (from 9.81% to 45.37%) and total larval mortality (42.33% at 24 h and 93.67% at 48 h) at 40 mg/mL. Moreover, the docking results showed that the chemicals norapoatropine and 7-Hydroxyhyoscyamine have strong interactions with active site residues of the target protein, with a docking score of -7.3 and -7.0 Kcal/mol, respectively. The current work also provided a computational basis for the inhibitors of Glutathione S-transferases that were studied in this research work, and this new knowledge should aid in creating new and effective acaricidal chemicals. Furthermore, this plant extract's acaricide activity and its effect on oviposition and larval mortality were established in this work for the first time, indicating the possible use of this extract in the management of ticks.
Collapse
Affiliation(s)
- Saman Saman
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Chien-Chin Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Nosheen Malak
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Afshan Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Nasreen Nasreen
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Adil Khan
- Department of Zoology, Bacha Khan University Charsadda, Charsadda 24631, Pakistan
- Correspondence:
| | - Sadaf Niaz
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Roger I. Rodriguez-Vivas
- Departamento de Salud Animal y Medicina Preventiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Merida 97000, Yucatán, Mexico
| | - Raquel Cossío-Bayúgar
- Departamento de Artropodología, Centro Nacional de Investigaciones Disciplinarias en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Boulevard Cuauhnahuac No. 8534, Jiutepec 62574, Morelos, Mexico
| |
Collapse
|
16
|
Akkoc S, Karatas H, Muhammed MT, Kökbudak Z, Ceylan A, Almalki F, Laaroussi H, Ben Hadda T. Drug design of new therapeutic agents: molecular docking, molecular dynamics simulation, DFT and POM analyses of new Schiff base ligands and impact of substituents on bioactivity of their potential antifungal pharmacophore site. J Biomol Struct Dyn 2022:1-14. [DOI: 10.1080/07391102.2022.2111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Senem Akkoc
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Türkiye
- Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Türkiye
| | - Halis Karatas
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Türkiye
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Türkiye
| | - Zülbiye Kökbudak
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Türkiye
| | - Ahmet Ceylan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| | - Faisal Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Hamid Laaroussi
- Laboratory of Applied Chemistry & Environment, Faculty of Science, Mohammed Premier University, Oujda, Morocco
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
- Laboratory of Applied Chemistry & Environment, Faculty of Science, Mohammed Premier University, Oujda, Morocco
| |
Collapse
|
17
|
Sakyi PO, Broni E, Amewu RK, Miller WA, Wilson MD, Kwofie SK. Homology Modeling, de Novo Design of Ligands, and Molecular Docking Identify Potential Inhibitors of Leishmania donovani 24-Sterol Methyltransferase. Front Cell Infect Microbiol 2022; 12:859981. [PMID: 35719359 PMCID: PMC9201040 DOI: 10.3389/fcimb.2022.859981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
The therapeutic challenges pertaining to leishmaniasis due to reported chemoresistance and toxicity necessitate the need to explore novel pathways to identify plausible inhibitory molecules. Leishmania donovani 24-sterol methyltransferase (LdSMT) is vital for the synthesis of ergosterols, the main constituents of Leishmania cellular membranes. So far, mammals have not been shown to possess SMT or ergosterols, making the pathway a prime candidate for drug discovery. The structural model of LdSMT was elucidated using homology modeling to identify potential novel 24-SMT inhibitors via virtual screening, scaffold hopping, and de-novo fragment-based design. Altogether, six potential novel inhibitors were identified with binding energies ranging from −7.0 to −8.4 kcal/mol with e-LEA3D using 22,26-azasterol and S1–S4 obtained from scaffold hopping via the ChEMBL, DrugBank, PubChem, ChemSpider, and ZINC15 databases. These ligands showed comparable binding energy to 22,26-azasterol (−7.6 kcal/mol), the main inhibitor of LdSMT. Moreover, all the compounds had plausible ligand efficiency-dependent lipophilicity (LELP) scores above 3. The binding mechanism identified Tyr92 to be critical for binding, and this was corroborated via molecular dynamics simulations and molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) calculations. The ligand A1 was predicted to possess antileishmanial properties with a probability of activity (Pa) of 0.362 and a probability of inactivity (Pi) of 0.066, while A5 and A6 possessed dermatological properties with Pa values of 0.205 and 0.249 and Pi values of 0.162 and 0.120, respectively. Structural similarity search via DrugBank identified vabicaserin, daledalin, zanapezil, imipramine, and cefradine with antileishmanial properties suggesting that the de-novo compounds could be explored as potential antileishmanial agents.
Collapse
Affiliation(s)
- Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani, Ghana
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Accra, Ghana
| | - Richard K. Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL, United States
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL, United States
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Accra, Ghana
- Department of Medicine, Loyola University Medical Center, Maywood, IL, United States
| | - Samuel Kojo Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- *Correspondence: Samuel Kojo Kwofie,
| |
Collapse
|
18
|
Sakyiamah M, Larbi E, Kwofie S. In silico-based identification of some selected phytoconstituents in Ageratum conyzoides Leaves as potential inhibitors of crucial proteins of Blastomyces dermatitidis. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2022. [DOI: 10.4103/bbrj.bbrj_224_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|