1
|
Zhou J, Ding S, Sandhu SS, Chang AY, Taechamahaphan A, Gudekar S, Wang J. Submersible voltammetric sensing probe for rapid and extended remote monitoring of opioids in community water systems. Mikrochim Acta 2024; 191:463. [PMID: 38995455 PMCID: PMC11245449 DOI: 10.1007/s00604-024-06520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024]
Abstract
The intensifying global opioid crisis, majorly attributed to fentanyl (FT) and its analogs, has necessitated the development of rapid and ultrasensitive remote/on-site FT sensing modalities. However, current approaches for tracking FT exposure through wastewater-based epidemiology (WBE) are unadaptable, time-consuming, and require trained professionals. Toward developing an extended in situ wastewater opioid monitoring system, we have developed a screen-printed electrochemical FT sensor and integrated it with a customized submersible remote sensing probe. The sensor composition and design have been optimized to address the challenges for extended in situ FT monitoring. Specifically, ZIF-8 metal-organic framework (MOF)-derived mesoporous carbon (MPC) nanoparticles (NPs) are incorporated in the screen-printed carbon electrode (SPCE) transducer to improve FT accumulation and its electrocatalytic oxidation. A rapid (10 s) and sensitive square wave voltammetric (SWV) FT detection down to 9.9 µgL-1 is thus achieved in aqueous buffer solution. A protective mixed-matrix membrane (MMM) has been optimized as the anti-fouling sensor coating to mitigate electrode passivation by FT oxidation products and enable long-term, intermittent FT monitoring. The unique MMM, comprising an insulating polyvinyl chloride (PVC) matrix and carboxyl-functionalized multi-walled carbon nanotubes (CNT-COOH) as semiconductive fillers, yielded highly stable FT sensor operation (> 95% normalized response) up to 10 h in domestic wastewater, and up to 4 h in untreated river water. This sensing platform enables wireless data acquisition on a smartphone via Bluetooth. Such effective remote operation of submersible opioid sensing probes could enable stricter surveillance of community water systems toward timely alerts, countermeasures, and legal enforcement.
Collapse
Affiliation(s)
- Jiachi Zhou
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shichao Ding
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Samar S Sandhu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - An-Yi Chang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Anubhap Taechamahaphan
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shipra Gudekar
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Plewa S, Pietkiewicz D, Kokot ZJ, Matysiak J. A Review of Wastewater-Based Epidemiology Studies for the Assessment of Over-the-Counter Medicines Used as Recreational Drugs: The Example of Dextromethorphan. Med Sci Monit 2024; 30:e944120. [PMID: 38902914 PMCID: PMC11305112 DOI: 10.12659/msm.944120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/02/2024] [Indexed: 06/22/2024] Open
Abstract
The 'recreational use' of selected over-the-counter (OTC) medicines is an unofficial activity. The traditional surveys assessing the use of drugs are affected by the bias of underreporting and are thus unreliable. The development of analytical techniques helps to monitor the substances at trace levels, such as in wastewater, and might be applied to estimate the consumption of an analyte of interest and ensure additional, evidence-based information complementary to population surveys. We reviewed studies focused on evaluating the estimated consumption of drugs as a reliable and unbiased source of evidence-based information (called wastewater-based epidemiology, WBE) to monitor the scale of this phenomenon. We found there is a need to test not only narcotics in the environment but also medicines that may be abused or recreationally used. The reviewed studies show methods that might provide reliable information about consumption of drugs, narcotics, and OTC medications for proposing targeted, preventive actions. Moreover, as all the selected studies were based on mass spectrometry, there is a potential to include the dextromethorphan and/or related compounds as part of the screening for narcotics and OTC drugs that can be socially harmful, overused, or misused. This article reviews the analytical methods for detecting dextromethorphan and/or its transformation products in environmental water samples.
Collapse
Affiliation(s)
- Szymon Plewa
- Department of Inorganic and Analytical Chemistry, Poznań University of Medical Sciences, Poznań, Poland
| | - Dagmara Pietkiewicz
- Department of Inorganic and Analytical Chemistry, Poznań University of Medical Sciences, Poznań, Poland
| | - Zenon J. Kokot
- Faculty of Health Sciences, Calisia University, Kalisz, Poland
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
3
|
Barbillon G, Cheap-Charpentier H. Advances in Surface-Enhanced Raman Scattering Sensors of Pollutants in Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2417. [PMID: 37686925 PMCID: PMC10489740 DOI: 10.3390/nano13172417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Water scarcity is a world issue, and a solution to address it is the use of treated wastewater. Indeed, in these wastewaters, pollutants such as pharmaceuticals, pesticides, herbicides, and heavy ions can be present at high concentrations. Thus, several analytical techniques were initiated throughout recent years for the detection and quantification of pollutants in different types of water. Among them, the surface-enhanced Raman scattering (SERS) technique was examined due to its high sensitivity and its ability to provide details on the molecular structure. Herein, we summarize the most recent advances (2021-2023) on SERS sensors of pollutants in water treatment. In this context, we present the results obtained with the SERS sensors in terms of detection limits serving as assessment of SERS performances of these sensors for the detection of various pollutants.
Collapse
Affiliation(s)
- Grégory Barbillon
- EPF-Ecole d’Ingénieurs, 55 Avenue du Président Wilson, 94230 Cachan, France;
| | - Hélène Cheap-Charpentier
- EPF-Ecole d’Ingénieurs, 55 Avenue du Président Wilson, 94230 Cachan, France;
- Laboratoire Interfaces et Systèmes Electrochimiques, Sorbonne Université, CNRS, UMR 8235, LISE, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
4
|
Juneja S, Zhang B, Wang AX. Limit-Defying μ-Total Analysis System: Achieving Part-Per-Quadrillion Sensitivity on a Hierarchical Optofluidic SERS Sensor. ACS OMEGA 2023; 8:17151-17158. [PMID: 37214736 PMCID: PMC10193394 DOI: 10.1021/acsomega.3c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023]
Abstract
Optofluidic sensors have accelerated the growth of smart sensor platforms with improved sensitivity, reliability, and innovation. In this article, we report the integration of a surface-enhanced Raman scattering (SERS) material consisting of silver nanoparticle-decorated diatomaceous earth (AgNPs-DE) with a flow-through microfluidic device, building up a hierarchical structured micro-total analysis system (μ-TAS) capable of achieving part-per-quadrillion (ppq)-level sensitivity. By the synergic integration of millimeter-scale microfluidic devices and porous laboratory filter paper with a micrometer-sized crosslinked cellulosic network that carries SERS-active AgNPs-DE, which possesses submicron to nanometer regimes of photonic crystals and plasmonic nanostructures, we achieved enhanced mass-transfer efficiency and unprecedented detection sensitivity. In our experiment, fentanyl as the testing analyte at different concentrations was measured using a portable Raman spectrometer. The limit of detection (LOD) was estimated to be 10 ppq from a small detection volume of 10 mL with an ultrafast time of sensing (TOS) of 3 min. To attain comparable signals, the traditional soaking method took more than 90 min to detect 10 part-per-trillion fentanyl from a 10 mL sample. Compared with existing SERS sensing results of fentanyl, the limit-defying μ-TAS reduced the LOD-TOS product by almost 4 orders of magnitude, which represents a new stage of ultrafast sensing of extremely low concentration analytes.
Collapse
Affiliation(s)
- Subhavna Juneja
- School
of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, United States
- Department
of Electrical and Computer Engineering, Baylor University, Waco, Texas 76798, United States
| | - Boxin Zhang
- School
of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, United States
| | - Alan X. Wang
- School
of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, United States
- Department
of Electrical and Computer Engineering, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
5
|
Muntean CM, Cuibus D, Boca S, Falamas A, Tosa N, Brezeştean IA, Bende A, Barbu-Tudoran L, Moldovan R, Bodoki E, Farcǎu C. Gold vs. Silver Colloidal Nanoparticle Films for Optimized SERS Detection of Propranolol and Electrochemical-SERS Analyses. BIOSENSORS 2023; 13:bios13050530. [PMID: 37232891 DOI: 10.3390/bios13050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
The increasing pollution of surface and groundwater bodies by pharmaceuticals is a general environmental problem requiring routine monitoring. Conventional analytical techniques used to quantify traces of pharmaceuticals are relatively expensive and generally demand long analysis times, associated with difficulties in performing field analyses. Propranolol, a widely used β-blocker, is representative of an emerging class of pharmaceutical pollutants with a noticeable presence in the aquatic environment. In this context, we focused on developing an innovative, highly accessible analytical platform based on self-assembled metal colloidal nanoparticle films for the fast and sensitive detection of propranolol based on Surface Enhanced Raman Spectroscopy (SERS). The ideal nature of the metal used as the active SERS substrate was investigated by comparing silver and gold self-assembled colloidal nanoparticle films, and the improved enhancement observed on the gold substrate was discussed and supported by Density Functional Theory calculations, optical spectra analyses, and Finite-Difference Time-Domain simulations. Next, direct detection of propranolol at low concentrations was demonstrated, reaching the ppb regime. Finally, we showed that the self-assembled gold nanoparticle films could be successfully used as working electrodes in electrochemical-SERS analyses, opening the possibility of implementing them in a wide array of analytical applications and fundamental studies. This study reports for the first time a direct comparison between gold and silver nanoparticle films and, thus, contributes to a more rational design of nanoparticle-based SERS substrates for sensing applications.
Collapse
Affiliation(s)
- Cristina M Muntean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Denisa Cuibus
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Sanda Boca
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babeş-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
| | - Alexandra Falamas
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Nicoleta Tosa
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Ioana Andreea Brezeştean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Attila Bende
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Rebeca Moldovan
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Cosmin Farcǎu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babeş-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Dai Z. Recent Advances in the Development of Portable Electrochemical Sensors for Controlled Substances. SENSORS (BASEL, SWITZERLAND) 2023; 23:3140. [PMID: 36991851 PMCID: PMC10058808 DOI: 10.3390/s23063140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
This review article summarizes recent achievements in developing portable electrochemical sensing systems for the detection and/or quantification of controlled substances with potential on-site applications at the crime scene or other venues and in wastewater-based epidemiology. Electrochemical sensors employing carbon screen-printed electrodes (SPEs), including a wearable glove-based one, and aptamer-based devices, including a miniaturized aptamer-based graphene field effect transistor platform, are some exciting examples. Quite straightforward electrochemical sensing systems and methods for controlled substances have been developed using commercially available carbon SPEs and commercially available miniaturized potentiostats. They offer simplicity, ready availability, and affordability. With further development, they might become ready for deployment in forensic field investigation, especially when fast and informed decisions are to be made. Slightly modified carbon SPEs or SPE-like devices might be able to offer higher specificity and sensitivity while they can still be used on commercially available miniaturized potentiostats or lab-fabricated portable or even wearable devices. Affinity-based portable devices employing aptamers, antibodies, and molecularly imprinted polymers have been developed for more specific and sensitive detection and quantification. With further development of both hardware and software, the future of electrochemical sensors for controlled substances is bright.
Collapse
Affiliation(s)
- Zhaohua Dai
- Forensic Science Program, Department of Chemistry and Physical Sciences, Pace University, New York, NY 10038, USA
| |
Collapse
|
7
|
Juneja S, Zhang B, Nujhat N, Wang AX. Quantitative Sensing of Domoic Acid from Shellfish Using Biological Photonic Crystal Enhanced SERS Substrates. Molecules 2022; 27:8364. [PMID: 36500455 PMCID: PMC9736055 DOI: 10.3390/molecules27238364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Frequent monitoring of sea food, especially shellfish samples, for the presence of biotoxins serves not only as a valuable strategy to mitigate adulteration associated health risks, but could also be used to develop predictive models to understand algal explosion and toxin trends. Periodic toxin assessment is often restricted due to poor sensitivity, multifarious cleaning/extraction protocols and high operational costs of conventional detection methods. Through this work, a simplistic approach to quantitatively assess the presence of a representative marine neurotoxin, Domoic acid (DA), from spiked water and crab meat samples is presented. DA sensing was performed based on surface-enhanced Raman scattering (SERS) using silver nanoparticle enriched diatomaceous earth—a biological photonic crystal material in nature. Distinctive optical features of the quasi-ordered pore patterns in diatom skeleton with sporadic yet uniform functionalization of silver nanoparticles act as excellent SERS substrates with improved DA signals. Different concentrations of DA were tested on the substrates with the lowest detectable concentration being 1 ppm that falls well below the regulatory DA levels in seafood (>20 ppm). All the measurements were rapid and were performed within a measurement time of 1 min. Utilizing the measurement results, a standard calibration curve between SERS signal intensity and DA concentration was developed. The calibration curve was later utilized to predict the DA concentration from spiked Dungeness crab meat samples. SERS based quantitative assessment was further complemented with principal component analysis and partial least square regression studies. The tested methodology aims to bring forth a sensitive yet simple, economical and an extraction free routine to assess biotoxin presence in sea food samples onsite.
Collapse
Affiliation(s)
- Subhavna Juneja
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
- Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76798, USA
| | - Boxin Zhang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Nabila Nujhat
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Alan X. Wang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
- Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
8
|
Jiang W, Yi J, Li X, He F, Niu N, Chen L. A Comprehensive Review on Upconversion Nanomaterials-Based Fluorescent Sensor for Environment, Biology, Food and Medicine Applications. BIOSENSORS 2022; 12:1036. [PMID: 36421153 PMCID: PMC9688752 DOI: 10.3390/bios12111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Near-infrared-excited upconversion nanoparticles (UCNPs) have multicolor emissions, a low auto-fluorescence background, a high chemical stability, and a long fluorescence lifetime. The fluorescent probes based on UCNPs have achieved great success in the analysis of different samples. Here, we presented the research results of UCNPs probes utilized in analytical applications including environment, biology, food and medicine in the last five years; we also introduced the design and construction of upconversion optical sensing platforms. Future trends and challenges of the UCNPs used in the analytical field have also been discussed with particular emphasis.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jiaqi Yi
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xiaoshuang Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|