1
|
Gabriel JA, Weerasinghe N, Balachandran P, Salih R, Orchard GE. A Narrative Review of Molecular, Immunohistochemical and In-Situ Techniques in Dermatopathology. Br J Biomed Sci 2024; 81:13437. [PMID: 39741925 PMCID: PMC11687224 DOI: 10.3389/bjbs.2024.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/15/2024] [Indexed: 01/03/2025]
Abstract
Skin disorders pose a significant health burden globally, affecting millions of individuals across diverse demographics. Advancements in molecular techniques have revolutionised our understanding of the underlying mechanisms of skin disorders, offering insights into their pathogenesis, diagnosis, and potential targeted treatment. Furthermore, the integration of molecular diagnostics into clinical practice has enhanced the accuracy of skin disorder diagnoses. Polymerase chain reaction (PCR), next-generation sequencing (NGS), and other molecular assays have allowed for the detection of infectious agents, assessment of genetic mutations, and profile gene expression patterns with unequalled precision. These techniques have proven instrumental in distinguishing between subtypes of skin cancers, aiding treatment strategies and prognostic assessments. Moreover, molecular profiling is increasingly guiding the selection of therapeutic agents, ensuring a personalised and effective approach to managing skin disorders. The application of PCR has revolutionised the field by enabling the identification of microbial DNA (i.e., Mycobacterium tuberculosis and Epstein-Barr Virus) in skin infections and detecting specific genetic mutations associated with dermatological disorders (e.g., BRAF). DNA sequencing technologies, such as next-generation sequencing, have facilitated the elucidation of genetic variations and mutations in skin diseases (i.e., bullous disorders), paving the way for personalised treatment approaches. Gene expression profiling techniques, such as microarrays and RNA sequencing, have provided insights into dysregulated pathways and molecular signatures associated with conditions ranging from inflammatory skin disorders to cutaneous malignancies. Immunohistochemistry and fluorescence in situ hybridization have proven invaluable in determining protein expression patterns and detecting chromosomal abnormalities, respectively, aiding in the characterization of skin lesions in conjunction with the molecular data. Proteomic studies have contributed to understanding the intricate protein networks involved in dermatological conditions (i.e., psoriasis), while epigenetic analyses have shed light on the role of epigenetic modifications in gene regulation within skin cancer (i.e., Malignant Melanoma). Together, these molecular techniques have laid the groundwork for targeted therapies and precision medicine in dermatology, with implications for improved diagnostics and treatment outcomes. This review focuses on the routinely employed molecular techniques within dermatopathology, with a focus on cutaneous malignancies, autoimmune diseases, infectious diseases, and neonatal screening which can be implemented in the diagnosis and contribute to improved patient care.
Collapse
Affiliation(s)
- J. A. Gabriel
- St. John’s Dermatopathology Laboratory, Synnovis Analytics, St. Thomas’ Hospital, London, United Kingdom
| | - N. Weerasinghe
- School of Health, Sports and Biosciences, University of East London, London, United Kingdom
| | - P. Balachandran
- St. John’s Dermatopathology Laboratory, Synnovis Analytics, St. Thomas’ Hospital, London, United Kingdom
| | - R. Salih
- St. John’s Dermatopathology Laboratory, Synnovis Analytics, St. Thomas’ Hospital, London, United Kingdom
| | - G. E. Orchard
- St. John’s Dermatopathology Laboratory, Synnovis Analytics, St. Thomas’ Hospital, London, United Kingdom
| |
Collapse
|
2
|
Jiang Q, Wei Z, Liu P, Li Z, Jiang H, Cao Y, Zhang B, Yan Y, He Y. Global trends and research hotspots in perioperative management of lung cancer: a bibliometric analysis from 2004 to 2024. Front Immunol 2024; 15:1500686. [PMID: 39640262 PMCID: PMC11617563 DOI: 10.3389/fimmu.2024.1500686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Objective This article aims to analyze the current status and research hotspots of literature related to perioperative management of patients with Lung Cancer and provide reference for future research directions. Methods This study conducted a bibliometric analysis of research literature related to perioperative management of Lung Cancer published between 2004 and 2024, retrieved from the Web of Science database. R software and VOSviewer were used for analyzing keyword clusters and research themes, revealing trends and frontiers in this field. Results A total of 4,942 studies on perioperative management of lung cancer were included. In recent years, research in this area has shown a global upward trend, with particular focus on surgical risk assessment, complication prevention, and postoperative management. Perioperative biomarkers before and after surgery have emerged as a central focus due to their impact on diagnosis and treatment. The application of novel therapies, such as targeted drugs and immunotherapy, in perioperative management is also becoming a significant research hotspot. Additionally, China has been a leading contributor to research output in this field, demonstrating strong performance in international collaborations. Conclusion Perioperative management is a critical factor influencing the prognosis of Resectable lung cancer patients. Through a systematic analysis of the current status and research hotspots in perioperative management of lung cancer, this study provides valuable references for future clinical practice and research, particularly regarding the integration of novel therapies to optimize patient outcomes.
Collapse
Affiliation(s)
- Qinling Jiang
- Department of Oncology, Nanxishan Hospital of the Guangxi Zhuang Autonomous Region, Guilin, China
| | - Zhuheng Wei
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Pingping Liu
- Department of Pharmacy, Sanya Central Hospital,The Third People’s Hospital of Hainan Province, Sanya, Hainan, China
| | - Zonghuai Li
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Huiqin Jiang
- Department of Oncology, Nanxishan Hospital of the Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yilin Cao
- Department of Oncology, Nanxishan Hospital of the Guangxi Zhuang Autonomous Region, Guilin, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Yuanyuan Yan
- Department of Pharmacy, Sanya Central Hospital,The Third People’s Hospital of Hainan Province, Sanya, Hainan, China
| | - Yulong He
- Department of Oncology, Nanxishan Hospital of the Guangxi Zhuang Autonomous Region, Guilin, China
| |
Collapse
|
3
|
Sardarabadi P, Lee KY, Sun WL, Kojabad AA, Liu CH. Investigating T Cell Immune Dynamics and IL-6's Duality in a Microfluidic Lung Tumor Model. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39471283 DOI: 10.1021/acsami.4c09065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Interleukin 6 (IL-6), produced by immune cells, is crucial in promoting T cell trafficking to infection and inflammation sites, influencing various physiological and pathological processes. Concentrations of IL-6 and other cytokines and chemokines can influence T cell differentiation and activation. Understanding the dual faces of IL-6 within the tumor microenvironment is crucial to understanding its role. A flow-based microsystem was designed to investigate CD4+ T cell activation in response to different IL-6 gradients in an under-control 3D culture. The study found that cancer cells' response to varying IL-6 concentrations was dynamic and dose-sensitive, with immune cell migration rates showing sensitivity to the IL-6 gradient. A549 cell expansion increases gradually and time-dependently with 50 ng of IL-6, while Jurkat cell migration follows a time-dependent pattern. However, when a total of 100 ng IL-6 concentration is applied, A549 cells expand rapidly, potentially influencing Jurkat cell migration. Jurkat cell mobility is lower, possibly due to increased A549 cell presence and heightened cell-cell interactions. Different IL-6 concentration gradients can modulate the expression of some CD markers like CD69 and programed cell death protein 1 in CD4+ T cells, suggesting that IL-6 concentration gradients affect immune cell phenotypes. This suggests that IL-6 plays a crucial role in activating T helper cells and may be involved in the later phases of inflammation. Also, the increased levels of IFN-γ and TNF-α highlight IL-6's impact on T cell inflammatory response. This study emphasizes the intricate effects of IL-6 on T cell activation, phenotype, cytokine production, and phenotypic heterogeneity, providing valuable insights into immune response modulation in an experimental setting.
Collapse
Affiliation(s)
- Parvaneh Sardarabadi
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30044, Taiwan, R.O.C
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan, R.O.C
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, R.O.C
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Wei-Lun Sun
- Pythia Biotech LTD., New Taipei City 23561, Taiwan, R.O.C
| | - Amir Asri Kojabad
- Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Cheng-Hsien Liu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30044, Taiwan, R.O.C
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan, R.O.C
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 30044, Taiwan, R.O.C
| |
Collapse
|
4
|
Mikaeeli Kangarshahi B, Naghib SM, Rabiee N. DNA/RNA-based electrochemical nanobiosensors for early detection of cancers. Crit Rev Clin Lab Sci 2024; 61:473-495. [PMID: 38450458 DOI: 10.1080/10408363.2024.2321202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024]
Abstract
Nucleic acids, like DNA and RNA, serve as versatile recognition elements in electrochemical biosensors, demonstrating notable efficacy in detecting various cancer biomarkers with high sensitivity and selectivity. These biosensors offer advantages such as cost-effectiveness, rapid response, ease of operation, and minimal sample preparation. This review provides a comprehensive overview of recent developments in nucleic acid-based electrochemical biosensors for cancer diagnosis, comparing them with antibody-based counterparts. Specific examples targeting key cancer biomarkers, including prostate-specific antigen, microRNA-21, and carcinoembryonic antigen, are highlighted. The discussion delves into challenges and limitations, encompassing stability, reproducibility, interference, and standardization issues. The review suggests future research directions, exploring new nucleic acid recognition elements, innovative transducer materials and designs, novel signal amplification strategies, and integration with microfluidic devices or portable instruments. Evaluating these biosensors in clinical settings using actual samples from cancer patients or healthy donors is emphasized. These sensors are sensitive and specific at detecting non-communicable and communicable disease biomarkers. DNA and RNA's self-assembly, programmability, catalytic activity, and dynamic behavior enable adaptable sensing platforms. They can increase biosensor biocompatibility, stability, signal transduction, and amplification with nanomaterials. In conclusion, nucleic acids-based electrochemical biosensors hold significant potential to enhance cancer detection and treatment through early and accurate diagnosis.
Collapse
Affiliation(s)
- Babak Mikaeeli Kangarshahi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Ho HY, Chung KS(K, Kan CM, Wong SC(C. Liquid Biopsy in the Clinical Management of Cancers. Int J Mol Sci 2024; 25:8594. [PMID: 39201281 PMCID: PMC11354853 DOI: 10.3390/ijms25168594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Liquid biopsy, a noninvasive diagnosis that examines circulating tumor components in body fluids, is increasingly used in cancer management. An overview of relevant literature emphasizes the current state of liquid biopsy applications in cancer care. Biomarkers in liquid biopsy, particularly circulating tumor DNA (ctDNA), circulating tumor RNAs (ctRNA), circulating tumor cells (CTCs), extracellular vesicles (EVs), and other components, offer promising opportunities for early cancer diagnosis, treatment selection, monitoring, and disease assessment. The implementation of liquid biopsy in precision medicine has shown significant potential in various cancer types, including lung cancer, colorectal cancer, breast cancer, and prostate cancer. Advances in genomic and molecular technologies such as next-generation sequencing (NGS) and digital polymerase chain reaction (dPCR) have expanded the utility of liquid biopsy, enabling the detection of somatic variants and actionable genomic alterations in tumors. Liquid biopsy has also demonstrated utility in predicting treatment responses, monitoring minimal residual disease (MRD), and assessing tumor heterogeneity. Nevertheless, standardizing liquid biopsy techniques, interpreting results, and integrating them into the clinical routine remain as challenges. Despite these challenges, liquid biopsy has significant clinical implications in cancer management, offering a dynamic and noninvasive approach to understanding tumor biology and guiding personalized treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Sze-Chuen (Cesar) Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; (H.-Y.H.); (K.-S.C.); (C.-M.K.)
| |
Collapse
|
6
|
Huang H, Kai Z, Wang Y, Zhang X, Wang J, Zhang W, Xue Q, Zhang H, Jin H, Meng P, Zhang S, Yang Y, Yang H, Liang W, Zha G, Luo P, Xu Y, Shi W, Ruan Z. Evaluating personalized circulating tumor DNA detection for early-stage lung cancer. Cancer Med 2024; 13:e6817. [PMID: 38112031 PMCID: PMC11112296 DOI: 10.1002/cam4.6817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023] Open
Abstract
Circulating tumor DNA (ctDNA) has been widely used as a minimally invasive biomarker in clinical routine. However, a number of factors such as panel design, sample quality, patients' disease stages are known to influence ctDNA detection sensitivity. In this study, we systematically evaluated common factors associated with the variability of ctDNA detection in plasma and investigated ctDNA abundance in bronchoalveolar lavage (BAL). Whole exome profiling was conducted on 61 tumor tissue samples to identify tumor-specific variants, which were then used to design personalized assay MarRyDa® for ctDNA detection. DNA extracted from BAL fluid and plasma were genotyped using MarRyDa® platform. Our analysis showed that histological subtypes and disease stages had significant differences in ctDNA detection rate. Furthermore, we found that DNA purified from BAL supernatants contains the highest levels of ctDNA compared with BAL precipitates and plasma; therefore, utilizing BAL supernatants for tumor detection might provide additional benefits. Finally, we demonstrated that tumor cellularity played significant roles in the design of personalized ctDNA panel which eventually impacts ctDNA detection sensitivity. We suggest setting a flexible criteria for sample quality control and utilization of BAL might benefit more patients in clinics.
Collapse
Affiliation(s)
- Haihua Huang
- Department of Thoracic SurgeryShanghai First People's HospitalShanghaiChina
| | - Zhentian Kai
- Department of research and Development, Zhejiang Shaoxing Topgen Biomedical Technology Co., Ltd.ShanghaiChina
| | - Yuchen Wang
- Department of Thoracic SurgeryShanghai First People's HospitalShanghaiChina
| | - Xiaomiao Zhang
- Department of Thoracic SurgeryShanghai First People's HospitalShanghaiChina
| | - Jin Wang
- Department of Thoracic SurgeryShanghai First People's HospitalShanghaiChina
| | - Wei Zhang
- Department of Thoracic SurgeryShanghai First People's HospitalShanghaiChina
| | - Qian Xue
- Department of Thoracic SurgeryShanghai First People's HospitalShanghaiChina
| | - Hang Zhang
- Department of Thoracic SurgeryShanghai First People's HospitalShanghaiChina
| | - Hansong Jin
- Department of Thoracic SurgeryShanghai First People's HospitalShanghaiChina
| | - Peize Meng
- Department of Thoracic SurgeryShanghai First People's HospitalShanghaiChina
| | - Shuilong Zhang
- Department of research and Development, Zhejiang Shaoxing Topgen Biomedical Technology Co., Ltd.ShanghaiChina
| | - Yueyue Yang
- Department of research and Development, Zhejiang Shaoxing Topgen Biomedical Technology Co., Ltd.ShanghaiChina
| | - Honghua Yang
- Department of research and Development, Zhejiang Shaoxing Topgen Biomedical Technology Co., Ltd.ShanghaiChina
| | - Wanning Liang
- Department of research and Development, Zhejiang Shaoxing Topgen Biomedical Technology Co., Ltd.ShanghaiChina
| | - Guangbing Zha
- Department of research and Development, Zhejiang Shaoxing Topgen Biomedical Technology Co., Ltd.ShanghaiChina
| | - Peng Luo
- Department of research and Development, Zhejiang Shaoxing Topgen Biomedical Technology Co., Ltd.ShanghaiChina
| | - Yan Xu
- Department of research and Development, Zhejiang Shaoxing Topgen Biomedical Technology Co., Ltd.ShanghaiChina
| | - Weiwei Shi
- Department of research and Development, Zhejiang Shaoxing Topgen Biomedical Technology Co., Ltd.ShanghaiChina
| | - Zheng Ruan
- Department of Thoracic SurgeryShanghai First People's HospitalShanghaiChina
| |
Collapse
|
7
|
Huang Z, Fu Y, Yang H, Zhou Y, Shi M, Li Q, Liu W, Liang J, Zhu L, Qin S, Hong H, Liu Y. Liquid biopsy in T-cell lymphoma: biomarker detection techniques and clinical application. Mol Cancer 2024; 23:36. [PMID: 38365716 PMCID: PMC10874034 DOI: 10.1186/s12943-024-01947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
T-cell lymphoma is a highly invasive tumor with significant heterogeneity. Invasive tissue biopsy is the gold standard for acquiring molecular data and categorizing lymphoma patients into genetic subtypes. However, surgical intervention is unfeasible for patients who are critically ill, have unresectable tumors, or demonstrate low compliance, making tissue biopsies inaccessible to these patients. A critical need for a minimally invasive approach in T-cell lymphoma is evident, particularly in the areas of early diagnosis, prognostic monitoring, treatment response, and drug resistance. Therefore, the clinical application of liquid biopsy techniques has gained significant attention in T-cell lymphoma. Moreover, liquid biopsy requires fewer samples, exhibits good reproducibility, and enables real-time monitoring at molecular levels, thereby facilitating personalized health care. In this review, we provide a comprehensive overview of the current liquid biopsy biomarkers used for T-cell lymphoma, focusing on circulating cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), Epstein-Barr virus (EBV) DNA, antibodies, and cytokines. Additionally, we discuss their clinical application, detection methodologies, ongoing clinical trials, and the challenges faced in the field of liquid biopsy.
Collapse
Affiliation(s)
- Zongyao Huang
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Fu
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Yang
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yehan Zhou
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Min Shi
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qingyun Li
- Genecast Biotechnology Co., Ltd, Wuxi, 214104, China
| | - Weiping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Junheng Liang
- Nanjing Geneseeq Technology Inc., Nanjing, 210032, Jiangsu, China
| | - Liuqing Zhu
- Nanjing Geneseeq Technology Inc., Nanjing, 210032, Jiangsu, China
| | - Sheng Qin
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Huangming Hong
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Yang Liu
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
8
|
Shbeer AM, Robadi IA. liquid biopsy holds a promising approach for the early detection of cancer: Current information and future perspectives. Pathol Res Pract 2024; 254:155082. [PMID: 38246032 DOI: 10.1016/j.prp.2023.155082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
Cancer is becoming a global pandemic, and its occurrence is increasing rapidly, putting a strain on people's families, health systems, and finances, in addition to their physical, mental, and emotional well-being. Many cancer types lack screening programs, and many people at high risk of developing cancer do not follow recommended medical screening regimens because of the nature of currently available screening tests and other compliance issues, despite cancer being the second leading cause of death worldwide. Furthermore, a lot of liquid biopsy methods for early cancer screening are not sensitive enough to catch cancer early. Cancer treatment costs increase with the time it takes to diagnose the disease; therefore, early detection is essential to enhance the quality of life and survival rates. The current status of the liquid biopsy sector is examined in this paper.
Collapse
Affiliation(s)
- Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| | - Ibrahim Ahmed Robadi
- Department of Pathology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
9
|
Tang L, Li R, Wen H, Zhou Q, Xu C. Circulating tumor DNA (ctDNA)-based minimal residual disease in non-small cell lung cancer. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:207-214. [PMID: 39171282 PMCID: PMC11332816 DOI: 10.1016/j.pccm.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Indexed: 08/23/2024]
Abstract
Lung cancer is the second most common cancer worldwide and the leading cause of cancer-related fatalities, with non-small cell lung cancer (NSCLC) accounting for 85% of all lung cancers. Over the past forty years, patients with NSCLC have had a 5-year survival rate of only 16%, despite improvements in chemotherapy, targeted therapy, and immunotherapy. Circulating tumor DNA (ctDNA) in blood can be used to identify minimal residual disease (MRD), and ctDNA-based MRD has been shown to be of significance in prognostic assessment, recurrence monitoring, risk of recurrence assessment, efficacy monitoring, and therapeutic intervention decisions in NSCLC. The level of MRD can be obtained by monitoring ctDNA to provide guidance for more precise and personalized treatment, the scientific feasibility of which could dramatically modify lung cancer treatment paradigm. In this review, we present a comprehensive review of MRD studies in NSCLC and focus on the application of ctDNA-based MRD in different stages of NSCLC in current clinical practice.
Collapse
Affiliation(s)
- Libo Tang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, China
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Ruiyang Li
- Youyang Hospital, First Affiliated Hospital of Chongqing Medical University, Chongqing 409800, China
| | - Huahai Wen
- Youyang Hospital, First Affiliated Hospital of Chongqing Medical University, Chongqing 409800, China
| | - Qing Zhou
- Cancer Hospital of Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Chongrui Xu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
10
|
Chen C, Hu C, He B, Bai Y, He F, Li S, Tan CS. Functionalized GD2 Electrochemical Immunosensor to Diagnose Minimum Residual Disease of Bone Marrow in Neuroblastoma Effectively. BIOSENSORS 2023; 13:920. [PMID: 37887113 PMCID: PMC10605222 DOI: 10.3390/bios13100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Neuroblastoma (NB) is known as the "king of childhood tumors" due to its highly metastatic, recurrence-prone, and difficult-to-treat characteristics. International Neuroblastoma Risk Grading Group (INRG) has recommended GD2, a disialoganglioside expressed on neuroectodermal tumor cells, as the target for detecting minimal residual disease in bone marrow metastases of high-risk neuroblastoma in children. Therefore, accurately identifying GD2-positive cells is crucial for diagnosing children with high-risk NB. Here, we designed a graphene/AuNP/GD2 Ab-functionalized electrochemical biosensor for GD2 detection. A three-electrode system was processed using a screen-printed technique with a working electrode of indium tin oxide, a counter electrode of carbon, and a reference electrode of silver/silver chloride. Graphene/AuNPs were modified on the indium tin oxide electrode using chronoamperometric scans, and then, the GD2 antibody was modified on the biosensor by electrostatic adsorption to achieve sensitive and specific detection of GD2-positive cells in bone marrow fluid. The results showed that a graphene/AuNP/GD2 Ab-functionalized electrochemical biosensor achieved GD2-positive cell detection in the range of 102 cells/mL~105 cells/mL by differential pulse voltammetry. Bone marrow fluid samples from 12 children with high-risk NB were retained for testing on our biosensor and showed 100% compliance with the clinical application of the gold-standard immunocytochemical staining technique for detecting GD2-positive cells qualitatively. The GD2-based electrochemical assay can accurately detect children with high-risk NB, providing a rapidly quantitative basis for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (C.C.); (C.H.); (B.H.); (Y.B.); (F.H.)
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Chang Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (C.C.); (C.H.); (B.H.); (Y.B.); (F.H.)
| | - Baixun He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (C.C.); (C.H.); (B.H.); (Y.B.); (F.H.)
| | - Yongchang Bai
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (C.C.); (C.H.); (B.H.); (Y.B.); (F.H.)
| | - Feng He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (C.C.); (C.H.); (B.H.); (Y.B.); (F.H.)
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (C.C.); (C.H.); (B.H.); (Y.B.); (F.H.)
| | - Cherie S. Tan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (C.C.); (C.H.); (B.H.); (Y.B.); (F.H.)
| |
Collapse
|
11
|
Paired Comparison of Routine Molecular Screening of Patient Samples with Advanced Non-Small Cell Lung Cancer in Circulating Cell-Free DNA Using Three Targeted Assays. Cancers (Basel) 2023; 15:cancers15051574. [PMID: 36900363 PMCID: PMC10001056 DOI: 10.3390/cancers15051574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
INTRODUCTION Progressive advanced non-small cell lung cancer (NSCLC) accounts for about 80-85% of all lung cancers. Approximately 10-50% of patients with NSCLC harbor targetable activating mutations, such as in-frame deletions in Exon 19 (Ex19del) of EGFR. Currently, for patients with advanced NSCLC, testing for sensitizing mutations in EGFR is mandatory prior to the administration of tyrosine kinase inhibitors. PATIENTS AND METHODS Plasma was collected from patients with NSCLC. We carried out targeted NGS using the Plasma-SeqSensei™ SOLID CANCER IVD kit on cfDNA (circulating free DNA). Clinical concordance for plasma detection of known oncogenic drivers was reported. In a subset of cases, validation was carried out using an orthogonal OncoBEAMTM EGFR V2 assay, as well as with our custom validated NGS assay. Somatic alterations were filtered, removing somatic mutations attributable to clonal hematopoiesis for our custom validated NGS assay. RESULTS In the plasma samples, driver targetable mutations were studied, with a mutant allele frequency (MAF) ranging from 0.00% (negative detection) to 82.25%, using the targeted next-generation sequencing Plasma-SeqSensei™ SOLID CANCER IVD Kit. In comparison with the OncoBEAMTM EGFR V2 kit, the EGFR concordance is 89.16% (based on the common genomic regions). The sensitivity and specificity rates based on the genomic regions (EGFR exons 18, 19, 20, and 21) were 84.62% and 94.67%. Furthermore, the observed clinical genomic discordances were present in 25% of the samples: 5% in those linked to the lower of coverage of the OncoBEAMTM EGFR V2 kit, 7% in those induced by the sensitivity limit on the EGFR with the Plasma-SeqSensei™ SOLID CANCER IVD Kit, and 13% in the samples linked to the larger KRAS, PIK3CA, BRAF coverage of the Plasma-SeqSensei™ SOLID CANCER IVD kit. Most of these somatic alterations were cross validated in our orthogonal custom validated NGS assay, used in the routine management of patients. The concordance is 82.19% in the common genomic regions (EGFR exons 18, 19, 20, 21; KRAS exons 2, 3, 4; BRAF exons 11, 15; and PIK3CA exons 10, 21). The sensitivity and specificity rates were 89.38% and 76.12%, respectively. The 32% of genomic discordances were composed of 5% caused by the limit of coverage of the Plasma-SeqSensei™ SOLID CANCER IVD kit, 11% induced by the sensitivity limit of our custom validated NGS assay, and 16% linked to the additional oncodriver analysis, which is only covered by our custom validated NGS assay. CONCLUSIONS The Plasma-SeqSensei™ SOLID CANCER IVD kit resulted in de novo detection of targetable oncogenic drivers and resistance alterations, with a high sensitivity and accuracy for low and high cfDNA inputs. Thus, this assay is a sensitive, robust, and accurate test.
Collapse
|
12
|
Zhang X, Zhang Y, Zhang S, Wang S, Yang P, Liu C. Investigate the application of postoperative ctDNA-based molecular residual disease detection in monitoring tumor recurrence in patients with non-small cell lung cancer--A retrospective study of ctDNA. Front Oncol 2023; 13:1098128. [PMID: 37091156 PMCID: PMC10115944 DOI: 10.3389/fonc.2023.1098128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/20/2023] [Indexed: 04/25/2023] Open
Abstract
Purpose To evaluate whether postoperative circulating tumor DNA (ctDNA) in plasma of patients with non-small cell lung cancer (NSCLC) can be used as a biomarker for early detection of molecular residual disease (MRD) and prediction of postoperative recurrence. Methods This study subjects were evaluated patients with surgical resected non-small cell lung cancer. All eligible patients underwent radical surgery operation followed by adjuvant therapy. Tumor tissue samples collected during operation were used to detect tumor mutation genes, and blood samples collected from peripheral veins after operation were used to collect ctDNA. Molecular residue disease (MRD) positive was defined as at least 1 true shared mutation identified in both the tumor sample and a plasma sample from the same patient was. Results Positive postoperatively ctDNA was associated with lower recurrence-free survival (RFS).The presence of MRD was a strong predictor of disease recurrence. The relative contribution of ctDNA-based MRD to the prediction of RFS is higher than all other clinicopathological variables, even higher than traditional TNM staging. In addition, MRD-positive patients who received adjuvant therapy had improved RFS compared to those who did not, the RFS of MRD-negative patients receiving adjuvant therapy was lower than that of patients not receiving adjuvant therapy. Conclusions Post-operative ctDNA analysis is an effective method for recurrence risk stratification of NSCLC, which is beneficial to the management of patients with NSCLC.
Collapse
Affiliation(s)
- Xuefei Zhang
- Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Youguo Zhang
- Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shanli Zhang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Sha Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Peng Yang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Changhong Liu
- Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
- *Correspondence: Changhong Liu,
| |
Collapse
|
13
|
Ren Y, Cao L, You M, Ji J, Gong Y, Ren H, Xu F, Guo H, Hu J, Li Z. “SMART” digital nucleic acid amplification technologies for lung cancer monitoring from early to advanced stages. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Li FQ, Cui JW. Circulating tumor DNA-minimal residual disease: An up-and-coming nova in resectable non-small-cell lung cancer. Crit Rev Oncol Hematol 2022; 179:103800. [PMID: 36031171 DOI: 10.1016/j.critrevonc.2022.103800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 10/31/2022] Open
Abstract
Circulating tumor DNA (ctDNA) in the bloodstream can be used to reliably identify a minimal residual disease (MRD). ctDNA-MRD has demonstrated clinical values as a predictive and prognostic marker for resectable non-small cell lung cancer (NSCLC) regarding efficacy evaluation, recurrence monitoring, risk classification, and adjuvant treatment choices, and it has the advantage of being non-invasive, real-time, and dynamic. A recent large-scale prospective study of patients with resectable NSCLC revealed that patients with longitudinal undetectable MRD might represent a potentially curable population, benefiting many patients by eliminating wasteful therapies and side effects. However, there are still barriers to using ctDNA-MRD in clinical management, and the most significant is the lack of high-sensitivity detection technologies and consistent detection times. Herein, we defined the clinical significance of ctDNA-MRD in resectable NSCLC, summarized the available next-generation sequencing (NGS) detection approaches, and speculated on future clinical trial design and detection technology optimization.
Collapse
Affiliation(s)
- Fang-Qi Li
- Cancer Center, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun 130012, China.
| | - Jiu-Wei Cui
- Cancer Center, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun 130012, China.
| |
Collapse
|
15
|
Yan X, Liu C. Application of Non-Blood-Derived Fluid Biopsy in Monitoring Minimal Residual Diseases of Lung Cancer. Front Surg 2022; 9:865040. [PMID: 35651679 PMCID: PMC9149287 DOI: 10.3389/fsurg.2022.865040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/28/2022] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is one of the most fatal malignant tumors in the world. Overcoming this disease is difficult due to its late diagnosis and relapse after treatment. Minimal residual disease (MRD) is described as the presence of free circulating tumor cells or other tumor cell derivatives in the biological fluid of patients without any clinical symptoms of cancer and negative imaging examination after the treatment of primary tumors. It has been widely discussed in the medical community as a bridge to solid tumor recurrence. Radiology, serology (carcinoembryonic antigen), and other clinical diagnosis and treatment methods widely used to monitor the progression of disease recurrence have obvious time-limited and -specific defects. Furthermore, as most samples of traditional liquid biopsies come from patients’ blood (including plasma and serum), the low concentration of tumor markers in blood samples limits the ability of these liquid biopsies in the early detection of cancer recurrence. The use of non-blood-derived fluid biopsy in monitoring the status of MRD and further improving the postoperative individualized treatment of patients with lung cancer is gradually ushering in the dawn of hope. This paper reviews the progress of several non-blood-derived fluid samples (urine, saliva, sputum, and pleural effusion) in detecting MRD in lung cancer as well as selecting the accurate treatment for it.
Collapse
Affiliation(s)
- Xing Yan
- Thoracic Surgery Department, The Second Affiliated Hospital of Dalian Medical University Thoracic surgery, DaLian, China
| | - Changhong Liu
- Thoracic Surgery Department, The Second Affiliated Hospital of Dalian Medical University Thoracic surgery, DaLian, China
- Correspondence: Changhong Liu
| |
Collapse
|
16
|
Diagnostic Yield of Transbronchial Cryobiopsy Guided by Radial Endobronchial Ultrasound and Fluoroscopy in the Radiologically Suspected Lung Cancer: A Single Institution Prospective Study. Cancers (Basel) 2022; 14:cancers14061563. [PMID: 35326713 PMCID: PMC8946852 DOI: 10.3390/cancers14061563] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/05/2023] Open
Abstract
Transbronchial cryobiopsy (TBCB) is being studied in the diagnosis of peripheral lung lesions; however, there are only a few clinical studies around the world. The aim of our study was to evaluate the diagnostic values and safety of transbronchial cryobiopsy for radiologically suspected peripheral lung cancer. The prospective clinical study was executed from September 2019 to September 2021 at a tertiary clinical centre in Lithuania. A total of 48 patients out of 102 underwent combined procedures of transbronchial forceps biopsy (TBFB) and TBCB. Diagnostic values and safety outcomes of TBFB and TBCB were analysed. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were 72.9%, 100%, 100%, 7.7%, and 88.0% for TBFB, 85.1%, 100%, 100%, 12.5%, and 93% for TBCB, as well as 91.5%, 100%, 100%, 20.0% and 96.7% for the combined procedures, respectively, with a significantly higher accuracy for cryobiopsies compared to forceps biopsies (p < 0.05). The diagnostic values for transbronchial cryobiopsies were similar, irrespective of the radial mini probe endobronchial ultrasound (RP-EBUS) position, lesion size or bronchus sign, however, the sensitivity of the combined procedures in cases with RP-EBUS adjacent to the target was significantly higher compared to TBFB (86.2% vs. 64.3%, p = 0.016). Samples of cryobiopsies were significantly larger than forceps biopsies (34.62 mm2 vs. 4.4 mm2, p = 0.001). The cumulative diagnostic yield of transbronchial cryobiopsy was 80.0% after the second biopsy and reached a plateau of 84.1% after four biopsies. No severe bleeding, pneumothorax, respiratory failure or death was registered in our study. TBCB is a potentially safe procedure, which increases diagnostic values in diagnosing peripheral lung lesions compared to TBFB.
Collapse
|