1
|
Zhu J, Zhao C, Xia B, Wang N, Chen X, Jing X, Chen M, Xu X. An enhanced SPR optical fiber biosensor using Ti 3C 2T x MXene/AuNPs for label-free and sensitive detection of human IgG. NANOSCALE 2024; 16:18477-18487. [PMID: 39264164 DOI: 10.1039/d4nr01883d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Abnormal human immunoglobulin G (IgG) may induce the risk of immune system disorder, infectious diseases, tumors and so on. However, the current detection methods exhibit low sensitivity, which limits their practical application. In this work, an SPR optical fiber sensor (SPR-OFS) with high sensitivity is designed for label-free detection of human IgG. It is fabricated using a heterostructure optical fiber coated with Au film/AuNPs and the Ti3C2Tx MXene biofunctionalized with goat anti-human IgG by polydopamine (PDA). In the experiment, the optimal thickness of the Ti3C2Tx MXene was explored and determined to be about 93 nm by comprehensively considering the refractive index (RI) sensitivity and spectral bandwidth of the SPR sensor. When the largest figure of merit (FOM) is calculated to be 17.8279 RIU-1, its RI sensitivity was ultimately found to be 2804.5 nm per RIU. The SPR-OFS was employed to detect human IgG within the concentration range of 0-30 μg mL-1 and its sensitivity is demonstrated to be 1.7046 nm (μg mL-1)-1. The SPR-OFS was also proved to have excellent linearity, specificity and stability. The proposed sensor offers outstanding performance with simple fabrication, providing a cutting-edge bioanalytical platform with potential applications in clinical diagnosis.
Collapse
Affiliation(s)
- Jiayi Zhu
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan, 430070, China.
| | - Chao Zhao
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan, 430070, China.
| | - Binyun Xia
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan, 430070, China.
| | - Ning Wang
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan, 430070, China.
| | - Xi Chen
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
| | - Xinyue Jing
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan, 430070, China.
| | - Minxuan Chen
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan, 430070, China.
| | - Xinrui Xu
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan, 430070, China.
| |
Collapse
|
2
|
Wu X, Wang Y, Zhang J, Zhang Y, Rao X, Chen C, Liu H, Deng Y, Liao C, Smietana MJ, Chen GY, Liu L, Qu J, Wang Y. A D-Shaped Polymer Optical Fiber Surface Plasmon Resonance Biosensor for Breast Cancer Detection Applications. BIOSENSORS 2023; 14:15. [PMID: 38248392 PMCID: PMC10813458 DOI: 10.3390/bios14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Fiber-optic biosensors have garnered significant attention and witnessed rapid development in recent years owing to their remarkable attributes such as high sensitivity, immunity to electromagnetic interference, and real-time monitoring. They have emerged as a potential tool in the realm of biomarker detection for low-concentration and small molecules. In this paper, a portable and cost-effective optical fiber biosensor based on surface plasmon resonance for the early detection of breast cancer is demonstrated. By utilizing the aptamer human epidermal growth factor receptor 2 (HER2) as a specific biomarker for breast cancer, the presence of the HER2 protein can be detected through an antigen-antibody binding technique. The detection method was accomplished by modifying a layer of HER2 aptamer on the flat surface of a gold-coated D-shaped polymer optical fiber (core/cladding diameter 120/490 μm), of which the residual thickness after side-polishing was about 245 μm, the thickness of the coated gold layer was 50 nm, and the initial wavelength in pure water was around 1200 nm. For low-concentration detection of the HER2 protein, the device exhibited a wavelength shift of ~1.37 nm with a concentration of 1 μg/mL (e.g., 5.5 nM), which corresponded to a limit of detection of ~5.28 nM. Notably, the response time of the biosensor was measured to be as fast as 5 s. The proposed biosensor exhibits the potential for early detection of HER2 protein in initial cancer serum and offers a pathway to early prevention of breast cancer.
Collapse
Affiliation(s)
- Xun Wu
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ying Wang
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
| | - Jiaxiong Zhang
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yunfang Zhang
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xing Rao
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chen Chen
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Han Liu
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yubin Deng
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Changrui Liao
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
| | - Mateusz Jakub Smietana
- Division of Microsystem & Electronic Materials Technology, Institute of Microelectronics & Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
| | - George Yuhui Chen
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
| | - Liwei Liu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
| |
Collapse
|
3
|
Chen X, Xiao L, Li X, Yi D, Zhang J, Yuan H, Ning Z, Hong X, Chen Y. Tapered Fiber Bioprobe Based on U-Shaped Fiber Transmission for Immunoassay. BIOSENSORS 2023; 13:940. [PMID: 37887133 PMCID: PMC10605819 DOI: 10.3390/bios13100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
In this paper, a tapered fiber bioprobe based on Mach-Zehnder interference (MZI) is proposed. To retain the highly sensitive straight-tapered fiber MZI sensing structure, we designed a U-shaped transmission fiber structure for the collection of optical sensing signals to achieve a miniature-insert-probe design. The spectrum responses from the conventional straight-tapered fiber MZI sensor and our proposed sensor were compared and analyzed, and experimental results showed that our proposed sensor not only has the same sensing capability as the straight-tapered fiber sensor, but also has the advantages of being flexible, convenient, and less liquid-consuming, which are attributed to the inserted probe design. The tapered fiber bioprobe obtained a sensitivity of 1611.27 nm/RIU in the refractive index detection range of 1.3326-1.3414. Finally, immunoassays for different concentrations of human immunoglobulin G were achieved with the tapered fiber bioprobe through surface functionalization, and the detection limit was 45 ng/mL. Our tapered fiber bioprobe has the insert-probe advantages of simpleness, convenience, and fast operation. Simultaneously, it is low-cost, highly sensitive, and has a low detection limit, which means it has potential applications in immunoassays and early medical diagnosis.
Collapse
Affiliation(s)
- Xinghong Chen
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (X.C.); (L.X.); (X.L.); (D.Y.); (J.Z.); (H.Y.); (Z.N.); (X.H.)
- Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
| | - Lei Xiao
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (X.C.); (L.X.); (X.L.); (D.Y.); (J.Z.); (H.Y.); (Z.N.); (X.H.)
- Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen 518060, China
- Shenzhen Tian’an Zhiyuan Sensor Technology Co., Ltd., Shenzhen 518060, China
| | - Xuejin Li
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (X.C.); (L.X.); (X.L.); (D.Y.); (J.Z.); (H.Y.); (Z.N.); (X.H.)
- Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
- School of Science, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Duo Yi
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (X.C.); (L.X.); (X.L.); (D.Y.); (J.Z.); (H.Y.); (Z.N.); (X.H.)
- Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
| | - Jinghan Zhang
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (X.C.); (L.X.); (X.L.); (D.Y.); (J.Z.); (H.Y.); (Z.N.); (X.H.)
- Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
- School of Science, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Hao Yuan
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (X.C.); (L.X.); (X.L.); (D.Y.); (J.Z.); (H.Y.); (Z.N.); (X.H.)
- Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
| | - Zhiyao Ning
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (X.C.); (L.X.); (X.L.); (D.Y.); (J.Z.); (H.Y.); (Z.N.); (X.H.)
- Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
| | - Xueming Hong
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (X.C.); (L.X.); (X.L.); (D.Y.); (J.Z.); (H.Y.); (Z.N.); (X.H.)
- Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
| | - Yuzhi Chen
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (X.C.); (L.X.); (X.L.); (D.Y.); (J.Z.); (H.Y.); (Z.N.); (X.H.)
- Shenzhen Engineering Laboratory for Optical Fiber Sensors and Networks, Shenzhen 518060, China
- Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060, China
| |
Collapse
|
4
|
Zhang X, Xu Y, Zhu XS, Shi YW. Long-range surface plasmon resonance-based hollow fiber temperature sensor with ultrahigh sensitivity and tunable detection range. OPTICS EXPRESS 2023; 31:26398-26409. [PMID: 37710502 DOI: 10.1364/oe.492341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/21/2023] [Indexed: 09/16/2023]
Abstract
A dielectric/Ag-coated hollow fiber (HF) temperature sensor based on long-range surface plasmon resonance (LRSPR) is proposed and experimentally demonstrated. The structural parameters, including the dielectric material and layer thicknesses, are optimized through comprehensive theoretical analysis to achieve the best performance. By filling it with a high refractive index (RI) thermosensitive liquid, the GK570/Ag-coated HF temperature sensor with optimal structural parameters is fabricated. Due to the high sensitivity of the LRSPR sensor and the optimized design, the fabricated sensor achieves a temperature sensitivity of 3.6∼20.5 nm/°C, which is almost the highest among the optical fiber temperature sensors based on surface plasmon resonance reported experimentally. Moreover, the detection range of the proposed sensor can be easily tuned up to 170°C by varying the RI of the filled thermosensitive liquid, and the sensor performance remains stable. Considering that most temperature sensors using polydimethylsiloxane have a fixed detection range, this is an outstanding advantage that could expand the application field of the optical fiber temperature sensor.
Collapse
|
5
|
Kashyap R, Boro PR, Yasmin R, Nath J, Sonowal D, Doley R, Mondal B. Multiple protein-patterned surface plasmon resonance biochip for the detection of human immunoglobulin-G. JOURNAL OF BIOPHOTONICS 2023; 16:e202200263. [PMID: 36683194 DOI: 10.1002/jbio.202200263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/18/2022] [Accepted: 01/02/2023] [Indexed: 05/17/2023]
Abstract
A portable surface plasmon resonance (SPR) measurement prototype integrated with a multiple protein-patterned SPR biochip is introduced for label-free and selective detection of human immunoglobulin-G (H-IgG). The polyclonal anti-H-IgG antibodies derived from goat, rabbit, and mouse were immobilized through polydimethylsiloxane (PDMS) microchannels to fabricate the patterned SPR biochip. The PDMS surface was functionalized using 3-aminopropyltrimethoxysilane and bonded to carbodiimide-activated gold substrates to construct irreversibly bonded hydrophilic microfluidic chip at room temperature. For SPR measurement, a custom-made system is developed with a high angular scanning accuracy of 0.005° and a wide scanning range of 30°-80° that avoids the conventional requirement of expensive goniometric stages and detector arrays. The SPR biochip immobilized with 750 μg/mL goat anti-H-IgG demonstrated detection of H-IgG with a detection limits of 15 μg/mL, and linear response through a wide concentration range (15-225 μg/mL) of high coefficient of determination (R2 = 0.99661). The selectivity of the sensor was investigated by exposing them to two different non-specific targets (bovine serum albumin and polyvalent antivenom). The results indicate negligible sensor response towards nonspecific targets (0.25° for 30 μg/mL bovine serum albumin (BSA) and 0.25° for 30 μg/mL polyvalent antivenom) in comparison to H-IgG (1.5° for 30 μg/mL).
Collapse
Affiliation(s)
- Ritayan Kashyap
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| | - Pearleshwari Rani Boro
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| | - Rafika Yasmin
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Jugabrat Nath
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| | - Durlav Sonowal
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Biplob Mondal
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
6
|
Thawany P, Khanna A, Tiwari UK, Deep A. L-cysteine/MoS 2 modified robust surface plasmon resonance optical fiber sensor for sensing of Ferritin and IgG. Sci Rep 2023; 13:5297. [PMID: 37002282 PMCID: PMC10064954 DOI: 10.1038/s41598-023-31152-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
L-cysteine conjugated molybdenum disulphide (MoS2) nanosheets have been covalently attached to a gold coated surface plasmon resonance (SPR) optical fiber to prepare a robust and stable sensor. Owing to the multifunctionality of the deposited nanosheet conjugate, the antibodies are also covalently conjugated in the subsequent step to realize the design of a SPR optical fiber biosensor for the two important bioanalytes namely, Ferritin and Immunoglobin G (IgG). The different stages of the biosensor preparation have been characterized and verified with microscopic and spectroscopic techniques. A uniform and stable deposition of the L-cysteine/MoS2 nanosheets has allowed the biosensor to be reused for multiple times. Unlike the peeling-off of the MoS2 coatings from the gold layer reported previously in the case of physically adsorbed nanomaterial, the herein adopted strategy addresses this critical concern. It has also been possible to use the single SPR fiber for both Ferritin and IgG bioassay experiments by regenerating the sensor and immobilizing two different antibodies in separate steps. For ferritin, the biosensor has delivered a linear sensor response (SPR wavelength shifts) in the concentration range of 50-400 ng/mL, while IgG has been successfully sensed from 50 to 250 µg/mL. The limit of detection for Ferritin and IgG analysis have been estimated to be 12 ng/mL and 7.2 µg/mL, respectively. The biosensors have also been verified for their specificity for the targeted molecule only. A uniform and stable deposition of the nanomaterial conjugate, reproducibility, regeneration capacity, a good sensitivity, and the specificity can be highlighted as some of key features of the L-cysteine/MoS2 optical fiber biosensor. The system can be advocated as a useful biosensor setup for the sensitive biosensing of Ferritin and IgG.
Collapse
Affiliation(s)
- Priyanka Thawany
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh, 160030, India
| | - Ashima Khanna
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh, 160030, India
| | - Umesh K Tiwari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh, 160030, India.
| | - Akash Deep
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh, 160030, India.
- Institute of Nano Science and Technology, Sector-81, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
7
|
Arcadio F, Seggio M, Zeni L, Bossi AM, Cennamo N. Estradiol Detection for Aquaculture Exploiting Plasmonic Spoon-Shaped Biosensors. BIOSENSORS 2023; 13:bios13040432. [PMID: 37185507 PMCID: PMC10136336 DOI: 10.3390/bios13040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
In this work, a surface plasmon resonance (SPR) biosensor based on a spoon-shaped waveguide combined with an estrogen receptor (ERα) was developed and characterized for the detection and the quantification of estradiol in real water samples. The fabrication process for realizing the SPR platform required a single step consisting of metal deposition on the surface of a polystyrene spoon-shaped waveguide featuring a built-in measuring cell. The biosensor was achieved by functionalizing the bowl sensitive surface with a specific estrogen receptor (ERα) that was able to bind the estradiol. In a first phase, the biosensor tests were performed in a phosphate buffer solution obtaining a limit of detection (LOD) equal to 0.1 pM. Then, in order to evaluate the biosensor's response in different real matrices related to aquaculture, its performances were examined in seawater and freshwater. The experimental results support the possibility of using the ERα-based biosensor for the screening of estradiol in both matrices.
Collapse
Affiliation(s)
- Francesco Arcadio
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Mimimorena Seggio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| |
Collapse
|
8
|
Xia G, Gao L, Feng ZW, Zhang L, Shi WJ, Li YD. Combination of an optical waveguide platform and ultra-thin spectrometer that enables increased surface plasmon resonance sensor compactness. OPTICS EXPRESS 2022; 30:39679-39690. [PMID: 36298914 DOI: 10.1364/oe.473946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
A novel integrated surface plasmon resonance (SPR) sensor that combines an optical waveguide platform and an ultra-thin spectrometer is proposed. The core of the proposed method is a special-shaped optical waveguide structure that employs a wedge-shaped incident surface, which changes the position of the total reflection of the incident light on the sagittal plane without affecting the direction of propagation on the tangential plane. The parameters of the sensing module with the integrated SPR sensor and spectrometer module were designed and optimized to achieve higher performance in a compact optical waveguide platform. An experimental system was built based on the theoretical model, and the spectral sensitivity of the system was analyzed before sample detection, and the results showed that the spectral resolution in the working range could reach 9.9 nm. The refractive index sensitivity of this novel SPR sensor was 3186 nm/RIU with good stability by detecting different concentrations of sodium chloride samples. This new structure does not require an external spectrometer, thereby enabling an increase in the compactness of the SPR sensing system. The proposed method can provide a novel idea for the miniaturization of SPR sensors.
Collapse
|
9
|
Cennamo N, Arcadio F, Seggio M, Maniglio D, Zeni L, Bossi AM. Spoon-shaped polymer waveguides to excite multiple plasmonic phenomena: A multisensor based on antibody and molecularly imprinted nanoparticles to detect albumin concentrations over eight orders of magnitude. Biosens Bioelectron 2022; 217:114707. [PMID: 36116224 DOI: 10.1016/j.bios.2022.114707] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/13/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
A polymeric multimode waveguide, characterized by a pioneering spoon-shaped geometry, was herein proposed for the first time to devise Surface Plasmon Resonance (SPR) biochemical sensors. The plasmon excitation was enabled by layering a gold nanofilm of ∼60 nm onto the spoon-waveguide. As a consequence of the waveguide's extra-ordinary geometry, two distinct sensing regions were identified: a planar one, located on the spoon's neck, and a concave one on the bowl, with angled surfaces. The bulk sensitivity (Sn) is correlated both to the way the light was launched in/collected from the sensor (parallel or orthogonal to the main axis of the waveguide) and to the sensing area interrogated (planar-neck or angled-bowl), indicating that the sensor's performance can be conveniently tuned, depending on the chosen measuring configuration. The SPR sensor's characterization showed Sn equal to 750 nm/RIU for the neck and to 950 nm/RIU for the bowl. To further inspect the peculiar sensing-features and assess the application niches, the spoon-shaped waveguide was functionalized with two kinds of receptors, both specific for human serum albumin (HSA): an antibody on the bowl region (high Sn); molecularly imprinted nanoparticles (nanoMIPs) on the neck region (low Sn). The experimental results showed a limit of detection (LOD) for the immune-sensor of 280 pM and an LOD for the nanoMIP-sensor of 4.16 fM. The overall response of the HSA multi-sensor encompassed eight orders of magnitude, suggesting that the spoon-shaped waveguide's provides multi-scale detection and holds potential to devise multi-analyte sensing platforms.
Collapse
Affiliation(s)
- Nunzio Cennamo
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031, Aversa, Italy
| | - Francesco Arcadio
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031, Aversa, Italy
| | - Mimimorena Seggio
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134, Verona, Italy
| | - Devid Maniglio
- University of Trento, Department of Industrial Engineering, Via Sommarive 9, 38123, Trento, Italy
| | - Luigi Zeni
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031, Aversa, Italy
| | - Alessandra Maria Bossi
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|