1
|
McDonough E, Barroso M, Ginty F, Corr DT. Modeling intratumor heterogeneity in breast cancer. Biofabrication 2024; 17:012009. [PMID: 39642392 DOI: 10.1088/1758-5090/ad9b50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/06/2024] [Indexed: 12/08/2024]
Abstract
Reduced therapy response in breast cancer has been correlated with heterogeneity in biomarker composition, expression level, and spatial distribution of cancer cells within a patient tumor. Thus, there is a need for models to replicate cell-cell, cell-stromal, and cell-microenvironment interactions during cancer progression. Traditional two-dimensional (2D) cell culture models are convenient but cannot adequately represent tumor microenvironment histological organization,in vivo3D spatial/cellular context, and physiological relevance. Recently, three-dimensional (3D)in vitrotumor models have been shown to provide an improved platform for incorporating compositional and spatial heterogeneity and to better mimic the biological characteristics of patient tumors to assess drug response. Advances in 3D bioprinting have allowed the creation of more complex models with improved physiologic representation while controlling for reproducibility and accuracy. This review aims to summarize the advantages and challenges of current 3Din vitromodels for evaluating therapy response in breast cancer, with a particular emphasis on 3D bioprinting, and addresses several key issues for future model development as well as their application to other cancers.
Collapse
Affiliation(s)
- Elizabeth McDonough
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States of America
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States of America
- GE HealthCare Technology & Innovation Center, 1 Research Circle, Niskayuna, NY 12309, United States of America
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, United States of America
| | - Fiona Ginty
- GE HealthCare Technology & Innovation Center, 1 Research Circle, Niskayuna, NY 12309, United States of America
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States of America
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States of America
| |
Collapse
|
2
|
Mudugamuwa A, Roshan U, Hettiarachchi S, Cha H, Musharaf H, Kang X, Trinh QT, Xia HM, Nguyen N, Zhang J. Periodic Flows in Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404685. [PMID: 39246195 PMCID: PMC11636114 DOI: 10.1002/smll.202404685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Microfluidics, the science and technology of manipulating fluids in microscale channels, offers numerous advantages, such as low energy consumption, compact device size, precise control, fast reaction, and enhanced portability. These benefits have led to applications in biomedical assays, disease diagnostics, drug discovery, neuroscience, and so on. Fluid flow within microfluidic channels is typically in the laminar flow region, which is characterized by low Reynolds numbers but brings the challenge of efficient mixing of fluids. Periodic flows are time-dependent fluid flows, featuring repetitive patterns that can significantly improve fluid mixing and extend the effective length of microchannels for submicron and nanoparticle manipulation. Besides, periodic flow is crucial in organ-on-a-chip (OoC) for accurately modeling physiological processes, advancing disease understanding, drug development, and personalized medicine. Various techniques for generating periodic flows have been reported, including syringe pumps, peristalsis, and actuation based on electric, magnetic, acoustic, mechanical, pneumatic, and fluidic forces, yet comprehensive reviews on this topic remain limited. This paper aims to provide a comprehensive review of periodic flows in microfluidics, from fundamental mechanisms to generation techniques and applications. The challenges and future perspectives are also discussed to exploit the potential of periodic flows in microfluidics.
Collapse
Affiliation(s)
- Amith Mudugamuwa
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Uditha Roshan
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Samith Hettiarachchi
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Haotian Cha
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Hafiz Musharaf
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Xiaoyue Kang
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Quang Thang Trinh
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Huan Ming Xia
- School of Mechanical EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Nam‐Trung Nguyen
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
- School of Engineering and Built EnvironmentGriffith UniversityBrisbaneQLD4111Australia
| |
Collapse
|
3
|
Lin J, Chen S, Zhang C, Liao J, Chen Y, Deng S, Mao Z, Zhang T, Tian N, Song Y, Zeng T. Recent advances in microfluidic technology of arterial thrombosis investigations. Platelets 2024; 35:2316743. [PMID: 38390892 DOI: 10.1080/09537104.2024.2316743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Microfluidic technology has emerged as a powerful tool in studying arterial thrombosis, allowing researchers to construct artificial blood vessels and replicate the hemodynamics of blood flow. This technology has led to significant advancements in understanding thrombosis and platelet adhesion and aggregation. Microfluidic models have various types and functions, and by studying the fabrication methods and working principles of microfluidic chips, applicable methods can be selected according to specific needs. The rapid development of microfluidic integrated system and modular microfluidic system makes arterial thrombosis research more diversified and automated, but its standardization still needs to be solved urgently. One key advantage of microfluidic technology is the ability to precisely control fluid flow in microchannels and to analyze platelet behavior under different shear forces and flow rates. This allows researchers to study the physiological and pathological processes of blood flow, shedding light on the underlying mechanisms of arterial thrombosis. In conclusion, microfluidic technology has revolutionized the study of arterial thrombosis by enabling the construction of artificial blood vessels and accurately reproducing hemodynamics. In the future, microfluidics will place greater emphasis on versatility and automation, holding great promise for advancing antithrombotic therapeutic and prophylactic measures.
Collapse
Affiliation(s)
- Jingying Lin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Chengdu Shangjin Nanfu Hospital/Shangjin Branch of West China Hospital, Sichuan University, Chengdu, China
| | - Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chunying Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuemei Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shanying Deng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhigang Mao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tonghao Zhang
- Department of Statistics, University of Virginia, Charlottesville, USA
| | - Na Tian
- Anesthesiology Department, Qingdao Eighth People's Hospital, Qingdao, China
| | - Yali Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Ebrahimi A, Ak G, Özel C, İzgördü H, Ghorbanpoor H, Hassan S, Avci H, Metintaş M. Clinical Perspectives and Novel Preclinical Models of Malignant Pleural Mesothelioma: A Critical Review. ACS Pharmacol Transl Sci 2024; 7:3299-3333. [PMID: 39539262 PMCID: PMC11555512 DOI: 10.1021/acsptsci.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Pleural mesothelioma (PM), a rare malignant tumor explicitly associated with asbestos and erionite exposures, has become a global health problem due to limited treatment options and a poor prognosis, in which the median life expectancy varies depending on the method of treatment. However, the importance of early diagnosis is emphasized, and the practical methods have not matured yet. This study provides a critical overview of PM, addressing various aspects like epidemiology, etiology, diagnosis, treatment options, and the potential use of advanced technologies like microfluidic chip-based models for research and diagnosis. It initially begins with fundamentals of clinical aspects and then discusses the identification of disease-specific biomarkers in patients' serum or plasma samples, which could potentially be used for early diagnosis. A detailed investigation of the sophisticated preclinical models is highlighted. Recent three-dimensional (3D) model accomplishments, including microarchitecture modeling by transwell coculture, spheroids, organoids, 3D bioprinting constructs, and ex vivo tumor slices, are discussed comprehensively. On-chip models that imitate physiological processes, such as detection chips and therapeutic screening chips, are assessed as potential techniques. The review concludes with a critical and constructive discussion of the growing interest in the topic and its limitations and suggestions.
Collapse
Affiliation(s)
- Aliakbar Ebrahimi
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Güntülü Ak
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
| | - Ceren Özel
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Stem Cell, Institute of Health Sciences, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Hüseyin İzgördü
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
| | - Hamed Ghorbanpoor
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Biomedical Engineering, Eskişehir
Osmangazi University, Eskişehir 26040, Turkey
| | - Shabir Hassan
- Department
of Biological Sciences, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Huseyin Avci
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Stem Cell, Institute of Health Sciences, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Metallurgical and Materials Engineering, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Translational
Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Muzaffer Metintaş
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
- Translational
Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| |
Collapse
|
5
|
Lencioni G, Gregori A, Toledo B, Rebelo R, Immordino B, Amrutkar M, Xavier CPR, Kocijančič A, Pandey DP, Perán M, Castaño JP, Walsh N, Giovannetti E. Unravelling the complexities of resistance mechanism in pancreatic cancer: Insights from in vitro and ex-vivo model systems. Semin Cancer Biol 2024; 106-107:217-233. [PMID: 39299411 DOI: 10.1016/j.semcancer.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis and rising global deaths. Late diagnosis, due to absent early symptoms and biomarkers, limits treatment mainly to chemotherapy, which soon encounters resistance. PDAC treatment innovation is hampered by its complex and heterogeneous resistant nature, including mutations in key genes and a stromal-rich, immunosuppressive tumour microenvironment. Recent studies on PDAC resistance stress the need for suitable in vitro and ex vivo models to replicate its complex molecular and microenvironmental landscape. This review summarises advances in these models, which can aid in combating chemoresistance and serve as platforms for discovering new therapeutics. Immortalised cell lines offer homogeneity, unlimited proliferation, and reproducibility, but while many gemcitabine-resistant PDAC cell lines exist, fewer models are available for resistance to other drugs. Organoids from PDAC patients show promise in mimicking tumour heterogeneity and chemosensitivity. Bioreactors, co-culture systems and organotypic slices, incorporating stromal and immune cells, are being developed to understand tumour-stroma interactions and the tumour microenvironment's role in drug resistance. Lastly, another innovative approach is three-dimensional bioprinting, which creates tissue-like structures resembling PDAC architecture, allowing for drug screening. These advanced models can guide researchers in selecting optimal in vitro tests, potentially improving therapeutic strategies and patient outcomes.
Collapse
Affiliation(s)
- Giulia Lencioni
- Fondazione Pisana per La Scienza, San Giuliano Terme, Italy; Department of Biology, University of Pisa, Pisa, Italy
| | - Alessandro Gregori
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Belén Toledo
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén E-23071, Spain
| | - Rita Rebelo
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto 4200-135, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto 4200-135, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Benoît Immordino
- Fondazione Pisana per La Scienza, San Giuliano Terme, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Manoj Amrutkar
- Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Cristina P R Xavier
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto 4200-135, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto 4200-135, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, Portugal
| | - Anja Kocijančič
- Centre for Embryology and Healthy Development, Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Deo Prakash Pandey
- Centre for Embryology and Healthy Development, Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén E-23071, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Naomi Walsh
- Life Sciences Institute, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Elisa Giovannetti
- Fondazione Pisana per La Scienza, San Giuliano Terme, Italy; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Chhabra R. Molecular and modular intricacies of precision oncology. Front Immunol 2024; 15:1476494. [PMID: 39507541 PMCID: PMC11537923 DOI: 10.3389/fimmu.2024.1476494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Precision medicine is revolutionizing the world in combating different disease modalities, including cancer. The concept of personalized treatments is not new, but modeling it into a reality has faced various limitations. The last decade has seen significant improvements in incorporating several novel tools, scientific innovations and governmental support in precision oncology. However, the socio-economic factors and risk-benefit analyses are important considerations. This mini review includes a summary of some commendable milestones, which are not just a series of successes, but also a cautious outlook to the challenges and practical implications of the advancing techno-medical era.
Collapse
Affiliation(s)
- Ravneet Chhabra
- Business Department, Biocytogen Boston Corporation, Waltham, MA, United States
| |
Collapse
|
7
|
Xu H, Wen J, Yang J, Zhou S, Li Y, Xu K, Li W, Li S. Tumor-microenvironment-on-a-chip: the construction and application. Cell Commun Signal 2024; 22:515. [PMID: 39438954 PMCID: PMC11515741 DOI: 10.1186/s12964-024-01884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Currently, despite the vast amounts of time and money invested in cancer treatment, cancer remains one of the primary threats to human life. The primary factor contributing to the low treatment efficacy is cancer heterogeneity. The unclear molecular mechanisms underlying tumorigenesis, coupled with the complexity of human physiology, and the inability of animal models to accurately replicate the human tumor microenvironment, pose significant hurdles in the development of novel cancer therapies. Tumor-microenvironment-on-chip (TMOC) represents a research platform that integrates three-dimensional cell culture with microfluidic systems, simulating the essential components and physiological traits of the in vivo tumor microenvironment. It offers a dynamic setting within the chip system to study tumor progression, potentially heralding a breakthrough in cancer research. In this review, we will summarize the current advancements in this platform, encompassing various types of TMOCs and their applications in different types of cancer. From our perspective, the TMOC platform necessitates enhanced integration with tissue engineering techniques and microphysiological environments before it can evolve into a more refined preclinical model for cancer research.
Collapse
Affiliation(s)
- Hanzheng Xu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiangtao Wen
- Linfen People's Hospital, The Seventh Clinical School of Shanxi Medical University, Shanxi, 041000, China
| | - Jiahua Yang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Shufen Zhou
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yijie Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China.
| | - Wei Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Sen Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
8
|
Nejati B, Shahhosseini R, Hajiabbasi M, Ardabili NS, Baktash KB, Alivirdiloo V, Moradi S, Rad MF, Rahimi F, Farani MR, Ghazi F, Mobed A, Alipourfard I. Cancer-on-chip: a breakthrough organ-on-a-chip technology in cancer cell modeling. Med Biol Eng Comput 2024:10.1007/s11517-024-03199-5. [PMID: 39400856 DOI: 10.1007/s11517-024-03199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Cancer remains one of the leading causes of death worldwide. The unclear molecular mechanisms and complex in vivo microenvironment of tumors make it difficult to clarify the nature of cancer and develop effective treatments. Therefore, the development of new methods to effectively treat cancer is urgently needed and of great importance. Organ-on-a-chip (OoC) systems could be the breakthrough technology sought by the pharmaceutical industry to address ever-increasing research and development costs. The past decade has seen significant advances in the spatial modeling of cancer therapeutics related to OoC technology, improving physiological exposition criteria. This article aims to summarize the latest achievements and research results of cancer cell treatment simulated in a 3D microenvironment using OoC technology. To this end, we will first discuss the OoC system in detail and then demonstrate the latest findings of the cancer cell treatment study by Ooc and how this technique can potentially optimize better modeling of the tumor. The prospects of OoC systems in the treatment of cancer cells and their advantages and limitations are also among the other points discussed in this study.
Collapse
Affiliation(s)
- Babak Nejati
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | - Vahid Alivirdiloo
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Sadegh Moradi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Fatemeh Rahimi
- Division of Clinical Laboratory, Zahra Mardani Azar Children Training Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhood Ghazi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mobed
- Department of Community Medicine, Faculty of Medicine, Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
9
|
Szewczyk K, Jiang L, Khawaja H, Miranti CK, Zohar Y. Microfluidic Applications in Prostate Cancer Research. MICROMACHINES 2024; 15:1195. [PMID: 39459070 PMCID: PMC11509716 DOI: 10.3390/mi15101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Prostate cancer is a disease in which cells in the prostate, a gland in the male reproductive system below the bladder, grow out of control and, among men, it is the second-most frequently diagnosed cancer (other than skin cancer). In recent years, prostate cancer death rate has stabilized and, currently, it is the second-most frequent cause of cancer death in men (after lung cancer). Most deaths occur due to metastasis, as cancer cells from the original tumor establish secondary tumors in distant organs. For a long time, classical cell cultures and animal models have been utilized in basic and applied scientific research, including clinical applications for many diseases, such as prostate cancer, since no better alternatives were available. Although helpful in dissecting cellular mechanisms, these models are poor predictors of physiological behavior mainly because of the lack of appropriate microenvironments. Microfluidics has emerged in the last two decades as a technology that could lead to a paradigm shift in life sciences and, in particular, controlling cancer. Microfluidic systems, such as organ-on-chips, have been assembled to mimic the critical functions of human organs. These microphysiological systems enable the long-term maintenance of cellular co-cultures in vitro to reconstitute in vivo tissue-level microenvironments, bridging the gap between traditional cell cultures and animal models. Several reviews on microfluidics for prostate cancer studies have been published focusing on technology advancement and disease progression. As metastatic castration-resistant prostate cancer remains a clinically challenging late-stage cancer, with no curative treatments, we expanded this review to cover recent microfluidic applications related to prostate cancer research. The review includes discussions of the roles of microfluidics in modeling the human prostate, prostate cancer initiation and development, as well as prostate cancer detection and therapy, highlighting potentially major contributions of microfluidics in the continuous march toward eradicating prostate cancer.
Collapse
Affiliation(s)
- Kailie Szewczyk
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Hunain Khawaja
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA;
| | - Cindy K. Miranti
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
10
|
Yuan S, Yuan H, Hay DC, Hu H, Wang C. Revolutionizing Drug Discovery: The Impact of Distinct Designs and Biosensor Integration in Microfluidics-Based Organ-on-a-Chip Technology. BIOSENSORS 2024; 14:425. [PMID: 39329800 PMCID: PMC11430660 DOI: 10.3390/bios14090425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
Traditional drug development is a long and expensive process with high rates of failure. This has prompted the pharmaceutical industry to seek more efficient drug development frameworks, driving the emergence of organ-on-a-chip (OOC) based on microfluidic technologies. Unlike traditional animal experiments, OOC systems provide a more accurate simulation of human organ microenvironments and physiological responses, therefore offering a cost-effective and efficient platform for biomedical research, particularly in the development of new medicines. Additionally, OOC systems enable quick and real-time analysis, high-throughput experimentation, and automation. These advantages have shown significant promise in enhancing the drug development process. The success of an OOC system hinges on the integration of specific designs, manufacturing techniques, and biosensors to meet the need for integrated multiparameter datasets. This review focuses on the manufacturing, design, sensing systems, and applications of OOC systems, highlighting their design and sensing capabilities, as well as the technical challenges they currently face.
Collapse
Affiliation(s)
- Sheng Yuan
- Centre of Biomedical Systems and Informatics, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), School of Medicine, International Campus, Zhejiang University, Haining 314400, China
| | - Huipu Yuan
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - David C. Hay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK;
| | - Huan Hu
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC Institute), International Campus, Zhejiang University, Haining 314400, China
| | - Chaochen Wang
- Centre of Biomedical Systems and Informatics, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), School of Medicine, International Campus, Zhejiang University, Haining 314400, China
- Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
| |
Collapse
|
11
|
Golfinopoulou R, Hatziagapiou K, Mavrikou S, Kintzios S. Unveiling Colorectal Cancer Biomarkers: Harnessing Biosensor Technology for Volatile Organic Compound Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:4712. [PMID: 39066110 PMCID: PMC11281049 DOI: 10.3390/s24144712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Conventional screening options for colorectal cancer (CRC) detection are mainly direct visualization and invasive methods including colonoscopy and flexible sigmoidoscopy, which must be performed in a clinical setting and may be linked to adverse effects for some patients. Non-invasive CRC diagnostic tests such as computed tomography colonography and stool tests are either too costly or less reliable than invasive ones. On the other hand, volatile organic compounds (VOCs) are potentially ideal non-invasive biomarkers for CRC detection and monitoring. The present review is a comprehensive presentation of the current state-of-the-art VOC-based CRC diagnostics, with a specific focus on recent advancements in biosensor design and application. Among them, breath-based chromatography pattern analysis and sampling techniques are overviewed, along with nanoparticle-based optical and electrochemical biosensor approaches. Limitations of the currently available technologies are also discussed with an outlook for improvement in combination with big data analytics and advanced instrumentation, as well as expanding the scope and specificity of CRC-related volatile biomarkers.
Collapse
Affiliation(s)
- Rebecca Golfinopoulou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece;
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Thivon 1, 11527 Athens, Greece;
| | - Sophie Mavrikou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece;
- CeBTec, 40 Vatatzi, 11472 Athens, Greece
| | - Spyridon Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece;
- CeBTec, 40 Vatatzi, 11472 Athens, Greece
| |
Collapse
|
12
|
Chen D, Zheng L, Xie Y, Zhang C, Liu S, Jiang C, Zhou W, Luo T. Design and numerical study of a bidirectional acoustic microfluidic pump enabled by microcantilever arrays. Electrophoresis 2024; 45:1130-1141. [PMID: 37590395 DOI: 10.1002/elps.202300146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Microfluidics offers a versatile and promising platform for various applications in biomedical and other fields, boasting cost-effectiveness, rapid analysis time, and a compact equipment footprint. However, achieving controlled and versatile microfluidic motion within implantable devices presents a significant challenge. In this study, we propose a novel bidirectional micro-pump design that leverages two sharp-edge microcantilever arrays, driven by ultrasound, to enable selective flow direction by manipulating the ultrasound frequency. Through systematic numerical simulation, we demonstrate the feasibility of this design and further optimize its performance through comprehensive parametric analysis. This work provides valuable guidance for the practical development of sharp-edge-based acoustic micro-pumps, particularly for potential implantable applications such as controlled drug release and in vivo sampling for advanced diagnostics.
Collapse
Affiliation(s)
- Dongyang Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, P. R. China
- The State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, P. R. China
| | - Lican Zheng
- School of Aerospace Engineering, Xiamen University, Xiamen, P. R. China
| | - Yu Xie
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, P. R. China
| | - Chen Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, P. R. China
| | - Sirui Liu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, P. R. China
| | - Chongjie Jiang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, P. R. China
| | - Wei Zhou
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, P. R. China
| | - Tao Luo
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, P. R. China
- The State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
13
|
Abusamra SM, Barber R, Sharafeldin M, Edwards CM, Davis JJ. The integrated on-chip isolation and detection of circulating tumour cells. SENSORS & DIAGNOSTICS 2024; 3:562-584. [PMID: 38646187 PMCID: PMC11025039 DOI: 10.1039/d3sd00302g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024]
Abstract
Circulating tumour cells (CTCs) are cancer cells shed from a primary tumour which intravasate into the blood stream and have the potential to extravasate into distant tissues, seeding metastatic lesions. As such, they can offer important insight into cancer progression with their presence generally associated with a poor prognosis. The detection and enumeration of CTCs is, therefore, critical to guiding clinical decisions during treatment and providing information on disease state. CTC isolation has been investigated using a plethora of methodologies, of which immunomagnetic capture and microfluidic size-based filtration are the most impactful to date. However, the isolation and detection of CTCs from whole blood comes with many technical barriers, such as those presented by the phenotypic heterogeneity of cell surface markers, with morphological similarity to healthy blood cells, and their low relative abundance (∼1 CTC/1 billion blood cells). At present, the majority of reported methods dissociate CTC isolation from detection, a workflow which undoubtedly contributes to loss from an already sparse population. This review focuses on developments wherein isolation and detection have been integrated into a single-step, microfluidic configuration, reducing CTC loss, increasing throughput, and enabling an on-chip CTC analysis with minimal operator intervention. Particular attention is given to immune-affinity, microfluidic CTC isolation, coupled to optical, physical, and electrochemical CTC detection (quantitative or otherwise).
Collapse
Affiliation(s)
- Sophia M Abusamra
- Nuffield Department of Surgical Sciences, University of Oxford Oxford OX3 9DU UK
| | - Robert Barber
- Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| | | | - Claire M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford Oxford OX3 9DU UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Systems, University of Oxford Oxford UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| |
Collapse
|
14
|
Yan Q, Liu J, Liu Y, Wen Z, Jin D, Wang F, Gao L. Tumor-associated macrophage-derived exosomal miR21-5p promotes tumor angiogenesis by regulating YAP1/HIF-1α axis in head and neck squamous cell carcinoma. Cell Mol Life Sci 2024; 81:179. [PMID: 38602536 PMCID: PMC11009780 DOI: 10.1007/s00018-024-05210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Extracellular vesicles (EVs) have recently received increasing attention as essential mediators of communication between tumor cells and their microenvironments. Tumor-associated macrophages (TAMs) play a proangiogenic role in various tumors, especially head and neck squamous cell carcinoma (HNSCC), and angiogenesis is closely related to tumor growth and metastasis. This research focused on exploring the mechanisms by which EVs derived from TAMs modulate tumor angiogenesis in HNSCC. Our results indicated that TAMs infiltration correlated positively with microvascular density in HNSCC. Then we collected and identified EVs from TAMs. In the microfluidic chip, TAMs derived EVs significantly enhanced the angiogenic potential of pHUVECs and successfully induced the formation of perfusable blood vessels. qPCR and immunofluorescence analyses revealed that EVs from TAMs transferred miR-21-5p to endothelial cells (ECs). And targeting miR-21-5p of TAMs could effectively inhibit TAM-EVs induced angiogenesis. Western blot and tube formation assays showed that miR-21-5p from TAM-EVs downregulated LATS1 and VHL levels but upregulated YAP1 and HIF-1α levels, and the inhibitors of YAP1 and HIF-1α could both reduce the miR-21-5p enhanced angiogenesis in HUVECs. The in vivo experiments further proved that miR-21-5p carried by TAM-EVs promoted the process of tumor angiogenesis via YAP1/HIF-1α axis in HNSCC. Conclusively, TAM-derived EVs transferred miR-21-5p to ECs to target the mRNA of LATS1 and VHL, which inhibited YAP1 phosphorylation and subsequently enhanced YAP1-mediated HIF-1α transcription and reduced VHL-mediated HIF-1α ubiquitination, contributing to angiogenesis in HNSCC. These findings present a novel regulatory mechanism of tumor angiogenesis, and miR-21-5p/YAP1/HIF-1α might be a potential therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Quan Yan
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
- Dalian Key Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, People's Republic of China
| | - Jing Liu
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
- Dalian Key Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, People's Republic of China
| | - Yiding Liu
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
- Dalian Key Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, People's Republic of China
| | - Zhihao Wen
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
- Dalian Key Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, People's Republic of China
| | - Dong Jin
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
- Dalian Key Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, People's Republic of China
| | - Fu Wang
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China.
- Dalian Key Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, People's Republic of China.
- The Affiliated Stomatological Hospital of Dalian Medical University, Dalian, People's Republic of China.
| | - Lu Gao
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China.
- Dalian Key Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, People's Republic of China.
- The Affiliated Stomatological Hospital of Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
15
|
Ravi K, Manoharan TJM, Wang KC, Pockaj B, Nikkhah M. Engineered 3D ex vivo models to recapitulate the complex stromal and immune interactions within the tumor microenvironment. Biomaterials 2024; 305:122428. [PMID: 38147743 PMCID: PMC11098715 DOI: 10.1016/j.biomaterials.2023.122428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
Cancer thrives in a complex environment where interactions between cellular and acellular components, surrounding the tumor, play a crucial role in disease development and progression. Despite significant progress in cancer research, the mechanism driving tumor growth and therapeutic outcomes remains elusive. Two-dimensional (2D) cell culture assays and in vivo animal models are commonly used in cancer research and therapeutic testing. However, these models suffer from numerous shortcomings including lack of key features of the tumor microenvironment (TME) & cellular composition, cost, and ethical clearance. To that end, there is an increased interest in incorporating and elucidating the influence of TME on cancer progression. Advancements in 3D-engineered ex vivo models, leveraging biomaterials and microengineering technologies, have provided an unprecedented ability to reconstruct native-like bioengineered cancer models to study the heterotypic interactions of TME with a spatiotemporal organization. These bioengineered cancer models have shown excellent capabilities to bridge the gap between oversimplified 2D systems and animal models. In this review article, we primarily provide an overview of the immune and stromal cellular components of the TME and then discuss the latest state-of-the-art 3D-engineered ex vivo platforms aiming to recapitulate the complex TME features. The engineered TME model, discussed herein, are categorized into three main sections according to the cellular interactions within TME: (i) Tumor-Stromal interactions, (ii) Tumor-Immune interactions, and (iii) Complex TME interactions. Finally, we will conclude the article with a perspective on how these models can be instrumental for cancer translational studies and therapeutic testing.
Collapse
Affiliation(s)
- Kalpana Ravi
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | | | - Kuei-Chun Wang
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | | | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA; Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
16
|
Ferreira T, Azevedo T, Silva J, Faustino-Rocha AI, Oliveira PA. Current views on in vivo models for breast cancer research and related drug development. Expert Opin Drug Discov 2024; 19:189-207. [PMID: 38095187 DOI: 10.1080/17460441.2023.2293152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Animal models play a crucial role in breast cancer research, in particular mice and rats, who develop mammary tumors that closely resemble their human counterparts. These models allow the study of mechanisms behind breast carcinogenesis, as well as the efficacy and safety of new, and potentially more effective and advantageous therapeutic approaches. Understanding the advantages and disadvantages of each model is crucial to select the most appropriate one for the research purpose. AREA COVERED This review provides a concise overview of the animal models available for breast cancer research, discussing the advantages and disadvantages of each one for searching new and more effective approaches to treatments for this type of cancer. EXPERT OPINION Rodent models provide valuable information on the genetic alterations of the disease, the tumor microenvironment, and allow the evaluation of the efficacy of chemotherapeutic agents. However, in vivo models have limitations, and one of them is the fact that they do not fully mimic human diseases. Choosing the most suitable model for the study purpose is crucial for the development of new therapeutic agents that provide better care for breast cancer patients.
Collapse
Affiliation(s)
- Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Tiago Azevedo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Jessica Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana I Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, Évora, Portugal
- Department of Zootechnics, School of Sciences and Technology, Comprehensive Health Research Center, Évora, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Clinical Academic Center of Trás-Os-Montes and Alto Douro, University of Trás-Os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
17
|
Pierfelice TV, D'Amico E, Petrini M, Romano M, D'Arcangelo C, Sbordone L, Barone A, Plebani R, Iezzi G. A Systematic Review on Organ-on-a-Chip in PDMS or Hydrogel in Dentistry: An Update of the Literature. Gels 2024; 10:102. [PMID: 38391432 PMCID: PMC10887950 DOI: 10.3390/gels10020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Organs-on-a-chip (OoCs) are microfluidic devices constituted by PDMS or hydrogel in which different layers of cells are separated by a semipermeable membrane. This technology can set many parameters, like fluid shear stress, chemical concentration gradient, tissue-organ interface, and cell interaction. The use of these devices in medical research permits the investigation of cell patterning, tissue-material interface, and organ-organ interaction, mimicking the complex structures and microenvironment of human and animal bodies. This technology allows us to reconstitute in vitro complex conditions that recapitulate in vivo environments. One of the main advantages of these systems is that they represent a very realistic model that, in many cases, can replace animal experimentation, eliminating costs and related ethical issues. Organ-on-a-chip can also contain bacteria or cancer cells. This technology could be beneficial in dentistry for testing novel antibacterial substances and biomaterials, performing studies on inflammatory disease, or planning preclinical studies. A significant number of publications and reviews have been published on this topic. Still, to our knowledge, they mainly focus on the materials used for fabrication and the different patterns of the chip applied to the experimentations. This review presents the most recent applications of organ-on-a-chip models in dentistry, starting from the reconstituted dental tissues to their clinical applications and future perspectives.
Collapse
Affiliation(s)
- Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Emira D'Amico
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Mario Romano
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Camillo D'Arcangelo
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Ludovico Sbordone
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Antonio Barone
- Department of Surgical, Medical, Molecular Pathologies and of the Critical Needs, School of Dentistry, University of Pisa, 56126 Pisa, Italy
- Complex Unit of Stomatology and Oral Surgery, University Hospital of Pisa, 56126 Pisa, Italy
| | - Roberto Plebani
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
18
|
Farooq A, Wood CD, Ladbury JE, Evans SD. On-chip Raman spectroscopy of live single cells for the staging of oesophageal adenocarcinoma progression. Sci Rep 2024; 14:1761. [PMID: 38242991 PMCID: PMC10799027 DOI: 10.1038/s41598-024-52079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
The absence of early diagnosis contributes to oesophageal cancer being the sixth most common cause of global cancer-associated deaths, with a 5-year survival rate of < 20%. Barrett's oesophagus is the main pre-cancerous condition to adenocarcinoma development, characterised by the morphological transition of oesophageal squamous epithelium to metaplastic columnar epithelium. Early tracking and treatment of oesophageal adenocarcinoma could dramatically improve with diagnosis and monitoring of patients with Barrett's Oesophagus. Current diagnostic methods involve invasive techniques such as endoscopies and, with only a few identified biomarkers of disease progression, the detection of oesophageal adenocarcinoma is costly and challenging. In this work, single-cell Raman spectroscopy was combined with microfluidic techniques to characterise the development of oesophageal adenocarcinoma through the progression of healthy epithelial, Barrett's oesophagus and oesophageal adenocarcinoma cell lines. Principal component analysis and linear discriminant analysis were used to classify the different stages of cancer progression. with the ability to differentiate between healthy and cancerous cells with an accuracy of 97%. Whilst the approach could also separate the dysplastic stages from healthy or cancer with high accuracy-the intra-class separation was approximately 68%. Overall, these results highlight the potential for rapid and reliable diagnostic/prognostic screening of Barrett's Oesophagus patients.
Collapse
Affiliation(s)
- Alisha Farooq
- School of Physics and Astronomy, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Christopher D Wood
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds, UK.
| |
Collapse
|
19
|
He C, Lu F, Liu Y, Lei Y, Wang X, Tang N. Emergent trends in organ-on-a-chip applications for investigating metastasis within tumor microenvironment: A comprehensive bibliometric analysis. Heliyon 2024; 10:e23504. [PMID: 38187238 PMCID: PMC10770560 DOI: 10.1016/j.heliyon.2023.e23504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/29/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Background With the burgeoning advancements in disease modeling, drug development, and precision medicine, organ-on-a-chip has risen to the forefront of biomedical research. Specifically in tumor research, this technology has exhibited exceptional potential in elucidating the dynamics of metastasis within the tumor microenvironment. Recognizing the significance of this field, our study aims to provide a comprehensive bibliometric analysis of global scientific contributions related to organ-on-a-chip. Methods Publications pertaining to organ-on-a-chip from 2014 to 2023 were retrieved at the Web of Science Core Collection database. Rigorous analyses of 2305 articles were conducted using tools including VOSviewer, CiteSpace, and R-bibliometrix. Results Over the 10-year span, global publications exhibited a consistent uptrend, anticipating continued growth. The United States and China were identified as dominant contributors, characterized by strong collaborative networks and substantial research investments. Predominant institutions encompass Harvard University, MIT, and the Chinese Academy of Sciences. Leading figures in the domain, such as Dr. Donald Ingber and Dr. Yu Shrike Zhang, emerge as pivotal collaboration prospects. Lab on a Chip, Micromachines, and Frontiers in Bioengineering and Biotechnology were the principal publishing journals. Pertinent keywords encompassed Microfluidic, Microphysiological System, Tissue Engineering, Organoid, In Vitro, Drug Screening, Hydrogel, Tumor Microenvironment, and Bioprinting. Emerging research avenues were identified as "Tumor Microenvironment and Metastasis," "Application of organ-on-a-chip in drug discovery and testing" and "Advancements in personalized medicine applications". Conclusion The organ-on-a-chip domain has demonstrated a transformative impact on understanding disease mechanisms and drug interactions, particularly within the tumor microenvironment. This bibliometric analysis underscores the ever-increasing importance of this field, guiding researchers and clinicians towards potential collaborative avenues and research directions.
Collapse
Affiliation(s)
- Chunrong He
- Department of Orthopaedics, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Fangfang Lu
- Department of Ophthalmology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yi Liu
- Department of Orthopaedics, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yuanhu Lei
- Department of Orthopaedics, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Xiaoxu Wang
- Department of Orthopaedics, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Ning Tang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Syahruddin MH, Anggraeni R, Ana ID. A microfluidic organ-on-a-chip: into the next decade of bone tissue engineering applied in dentistry. Future Sci OA 2023; 9:FSO902. [PMID: 37753360 PMCID: PMC10518836 DOI: 10.2144/fsoa-2023-0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
A comprehensive understanding of the complex physiological and pathological processes associated with alveolar bones, their responses to different therapeutics strategies, and cell interactions with biomaterial becomes necessary in precisely treating patients with severe progressive periodontitis, as a bone-related issue in dentistry. However, existing monolayer cell culture or pre-clinical models have been unable to mimic the complex physiological, pathological and regeneration processes in the bone microenvironment in response to different therapeutic strategies. In this point, 'organ-on-a-chip' (OOAC) technology, specifically 'alveolar-bone-on-a-chip', is expected to resolve the problems by better imitating infection site microenvironment and microphysiology within the oral tissues. The OOAC technology is assessed in this study toward better approaches in disease modeling and better therapeutics strategy for bone tissue engineering applied in dentistry.
Collapse
Affiliation(s)
- Muhammad Hidayat Syahruddin
- Postgraduate Student, Dental Science Doctoral Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Rahmi Anggraeni
- Research Center for Preclinical & Clinical Medicine, National Research & Innovation Agency of the Republic of Indonesia, Cibinong Science Center, Bogor, 16915, Indonesia
- Research Collaboration Center for Biomedical Scaffolds, National Research & Innovation Agency (BRIN) – Universitas Gadjah Mada (UGM), Yogyakarta, 55281, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Research Collaboration Center for Biomedical Scaffolds, National Research & Innovation Agency (BRIN) – Universitas Gadjah Mada (UGM), Yogyakarta, 55281, Indonesia
| |
Collapse
|
21
|
Chernyavska M, Masoudnia M, Valerius T, Verdurmen WPR. Organ-on-a-chip models for development of cancer immunotherapies. Cancer Immunol Immunother 2023; 72:3971-3983. [PMID: 37923890 PMCID: PMC10700206 DOI: 10.1007/s00262-023-03572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Cancer immunotherapy has emerged as a promising approach in the treatment of diverse cancer types. However, the development of novel immunotherapeutic agents faces persistent challenges due to poor translation from preclinical to clinical stages. To address these challenges, the integration of microfluidic models in research efforts has recently gained traction, bridging the gap between in vitro and in vivo systems. This approach enables modeling of the complex human tumor microenvironment and interrogation of cancer-immune interactions. In this review, we analyze the current and potential applications of microfluidic tumor models in cancer immunotherapy development. We will first highlight current trends in the immunooncology landscape. Subsequently, we will discuss recent examples of microfluidic models applied to investigate mechanisms of immune-cancer interactions and for developing and screening cancer immunotherapies in vitro. First steps toward their validation for predicting human in vivo outcomes are discussed. Finally, promising opportunities that microfluidic tumor models offer are highlighted considering their advantages and current limitations, and we suggest possible next steps toward their implementation and integration into the immunooncology drug development process.
Collapse
Affiliation(s)
- M Chernyavska
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - M Masoudnia
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - T Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
| | - W P R Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Yu Y, Zhou T, Cao L. Use and application of organ-on-a-chip platforms in cancer research. J Cell Commun Signal 2023:10.1007/s12079-023-00790-7. [PMID: 38032444 DOI: 10.1007/s12079-023-00790-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Tumors are a major cause of death worldwide, and much effort has been made to develop appropriate anti-tumor therapies. Existing in vitro and in vivo tumor models cannot reflect the critical features of cancer. The development of organ-on-a-chip models has enabled the integration of organoids, microfluidics, tissue engineering, biomaterials research, and microfabrication, offering conditions that mimic tumor physiology. Three-dimensional in vitro human tumor models that have been established as organ-on-a-chip models contain multiple cell types and a structure that is similar to the primary tumor. These models can be applied to various foci of oncology research. Moreover, the high-throughput features of microfluidic organ-on-a-chip models offer new opportunities for achieving large-scale drug screening and developing more personalized treatments. In this review of the literature, we explore the development of organ-on-a-chip technology and discuss its use as an innovative tool in basic and clinical applications and summarize its advancement of cancer research.
Collapse
Affiliation(s)
- Yifan Yu
- Department of Hepatobiliary and Transplant Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - TingTing Zhou
- The College of Basic Medical Science, Health Sciences Institute, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Liu Cao
- The College of Basic Medical Science, Health Sciences Institute, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
23
|
Beniwal SS, Lamo P, Kaushik A, Lorenzo-Villegas DL, Liu Y, MohanaSundaram A. Current Status and Emerging Trends in Colorectal Cancer Screening and Diagnostics. BIOSENSORS 2023; 13:926. [PMID: 37887119 PMCID: PMC10605407 DOI: 10.3390/bios13100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023]
Abstract
Colorectal cancer (CRC) is a prevalent and potentially fatal disease categorized based on its high incidences and mortality rates, which raised the need for effective diagnostic strategies for the early detection and management of CRC. While there are several conventional cancer diagnostics available, they have certain limitations that hinder their effectiveness. Significant research efforts are currently being dedicated to elucidating novel methodologies that aim at comprehending the intricate molecular mechanism that underlies CRC. Recently, microfluidic diagnostics have emerged as a pivotal solution, offering non-invasive approaches to real-time monitoring of disease progression and treatment response. Microfluidic devices enable the integration of multiple sample preparation steps into a single platform, which speeds up processing and improves sensitivity. Such advancements in diagnostic technologies hold immense promise for revolutionizing the field of CRC diagnosis and enabling efficient detection and monitoring strategies. This article elucidates several of the latest developments in microfluidic technology for CRC diagnostics. In addition to the advancements in microfluidic technology for CRC diagnostics, the integration of artificial intelligence (AI) holds great promise for further enhancing diagnostic capabilities. Advancements in microfluidic systems and AI-driven approaches can revolutionize colorectal cancer diagnostics, offering accurate, efficient, and personalized strategies to improve patient outcomes and transform cancer management.
Collapse
Affiliation(s)
| | - Paula Lamo
- Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, 26006 Logroño, Spain
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
| | | | - Yuguang Liu
- Departments of Physiology and Biomedical Engineering, Immunology and Surgery, Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
24
|
Landon‐Brace N, Li NT, McGuigan AP. Exploring New Dimensions of Tumor Heterogeneity: The Application of Single Cell Analysis to Organoid-Based 3D In Vitro Models. Adv Healthc Mater 2023; 12:e2300903. [PMID: 37589373 PMCID: PMC11468421 DOI: 10.1002/adhm.202300903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Indexed: 08/18/2023]
Abstract
Modeling the heterogeneity of the tumor microenvironment (TME) in vitro is essential to investigating fundamental cancer biology and developing novel treatment strategies that holistically address the factors affecting tumor progression and therapeutic response. Thus, the development of new tools for both in vitro modeling, such as patient-derived organoids (PDOs) and complex 3D in vitro models, and single cell omics analysis, such as single-cell RNA-sequencing, represents a new frontier for investigating tumor heterogeneity. Specifically, the integration of PDO-based 3D in vitro models and single cell analysis offers a unique opportunity to explore the intersecting effects of interpatient, microenvironmental, and tumor cell heterogeneity on cell phenotypes in the TME. In this review, the current use of PDOs in complex 3D in vitro models of the TME is discussed and the emerging directions in the development of these models are highlighted. Next, work that has successfully applied single cell analysis to PDO-based models is examined and important experimental considerations are identified for this approach. Finally, open questions are highlighted that may be amenable to exploration using the integration of PDO-based models and single cell analysis. Ultimately, such investigations may facilitate the identification of novel therapeutic targets for cancer that address the significant influence of tumor-TME interactions.
Collapse
Affiliation(s)
- Natalie Landon‐Brace
- Institute of Biomedical EngineeringUniversity of Toronto200 College StreetTorontoM5S3E5Canada
| | - Nancy T. Li
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StTorontoM5S3E5Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied ChemistryInstitute of Biomedical EngineeringUniversity of Toronto200 College StTorontoM5S3E5Canada
| |
Collapse
|
25
|
Gugulothu S, Asthana S, Homer-Vanniasinkam S, Chatterjee K. Trends in Photopolymerizable Bioinks for 3D Bioprinting of Tumor Models. JACS AU 2023; 3:2086-2106. [PMID: 37654587 PMCID: PMC10466332 DOI: 10.1021/jacsau.3c00281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023]
Abstract
Three-dimensional (3D) bioprinting technologies involving photopolymerizable bioinks (PBs) have attracted enormous attention in recent times owing to their ability to recreate complex structures with high resolution, mechanical stability, and favorable printing conditions that are suited for encapsulating cells. 3D bioprinted tissue constructs involving PBs can offer better insights into the tumor microenvironment and offer platforms for drug screening to advance cancer research. These bioinks enable the incorporation of physiologically relevant cell densities, tissue-mimetic stiffness, and vascularized channels and biochemical gradients in the 3D tumor models, unlike conventional two-dimensional (2D) cultures or other 3D scaffold fabrication technologies. In this perspective, we present the emerging techniques of 3D bioprinting using PBs in the context of cancer research, with a specific focus on the efforts to recapitulate the complexity of the tumor microenvironment. We describe printing approaches and various PB formulations compatible with these techniques along with recent attempts to bioprint 3D tumor models for studying migration and metastasis, cell-cell interactions, cell-extracellular matrix interactions, and drug screening relevant to cancer. We discuss the limitations and identify unexplored opportunities in this field for clinical and commercial translation of these emerging technologies.
Collapse
Affiliation(s)
- Sriram
Bharath Gugulothu
- Department
of Materials Engineering Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sonal Asthana
- Department
of Materials Engineering Indian Institute of Science, Bangalore, Karnataka 560012, India
- Department
of Hepatobiliary and Multi-Organ Transplantation Surgery, Aster CMI Hospital, Bangalore 560024, India
| | - Shervanthi Homer-Vanniasinkam
- Department
of Materials Engineering Indian Institute of Science, Bangalore, Karnataka 560012, India
- Department
of Mechanical Engineering and Division of Surgery, University College, London WC1E 7JE, U.K.
| | - Kaushik Chatterjee
- Department
of Materials Engineering Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
26
|
Cauli E, Polidoro MA, Marzorati S, Bernardi C, Rasponi M, Lleo A. Cancer-on-chip: a 3D model for the study of the tumor microenvironment. J Biol Eng 2023; 17:53. [PMID: 37592292 PMCID: PMC10436436 DOI: 10.1186/s13036-023-00372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
The approval of anticancer therapeutic strategies is still slowed down by the lack of models able to faithfully reproduce in vivo cancer physiology. On one hand, the conventional in vitro models fail to recapitulate the organ and tissue structures, the fluid flows, and the mechanical stimuli characterizing the human body compartments. On the other hand, in vivo animal models cannot reproduce the typical human tumor microenvironment, essential to study cancer behavior and progression. This study reviews the cancer-on-chips as one of the most promising tools to model and investigate the tumor microenvironment and metastasis. We also described how cancer-on-chip devices have been developed and implemented to study the most common primary cancers and their metastatic sites. Pros and cons of this technology are then discussed highlighting the future challenges to close the gap between the pre-clinical and clinical studies and accelerate the approval of new anticancer therapies in humans.
Collapse
Affiliation(s)
- Elisa Cauli
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy.
- Accelera Srl, Nerviano, Milan, Italy.
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Simona Marzorati
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
27
|
Wu C, Sun J, Yin B. Research on Integrated 3D Printing of Microfluidic Chips. MICROMACHINES 2023; 14:1302. [PMID: 37512613 PMCID: PMC10383598 DOI: 10.3390/mi14071302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023]
Abstract
Microfluidic chips have the advantages of miniaturization, integration, and portability, and are widely used in the early diagnosis of major diseases, personalized medical treatment, environmental detection, health quarantine, and other fields. The existing microfluidic chip manufacturing process is difficult to operate because of complex three-dimensional channels, complicated manufacturing steps, limited printing materials, the difficulty of operating the bonding process, and the need to purchase expensive new equipment. In this paper, an integrated molding method for microfluidic chips that integrates 3D printing and polymer dissolution technology is proposed. First, the channel mold of poly(vinyl alcohol) (PVA) or high impact polystyrene (HIPS) is dissolved to complete the manufacturing of the microfluidic chip channel. The integrated 3D-forming method of microfluidic chips proposed in this paper can manufacture microchannels inside the microfluidic chip, avoid the bonding process, and eliminate the need for rapid alignment of microchannels, material modification, and other operations, thus improving the stability of the process. Finally, by comparing the microchannels made by PVA and HIPS, it is concluded that the quality of the microchannels made by HIPS is obviously better than that made by PVA. This paper provides a new idea for the fabrication of microfluidic chips and the application of HIPS.
Collapse
Affiliation(s)
- Chuang Wu
- School of mechanical engineering, Yangzhou University, No. 196 West Huang Road, Yangzhou 225127, China
- Nantong Fuleda Vehicle Accessory Component Co., Ltd., Nantong 226005, China
- Jiangsu Tongshun Power Technology Co., Ltd., Nantong 226302, China
| | - Jiju Sun
- School of mechanical engineering, Yangzhou University, No. 196 West Huang Road, Yangzhou 225127, China
| | - Binfeng Yin
- School of mechanical engineering, Yangzhou University, No. 196 West Huang Road, Yangzhou 225127, China
| |
Collapse
|
28
|
Sunildutt N, Parihar P, Chethikkattuveli Salih AR, Lee SH, Choi KH. Revolutionizing drug development: harnessing the potential of organ-on-chip technology for disease modeling and drug discovery. Front Pharmacol 2023; 14:1139229. [PMID: 37180709 PMCID: PMC10166826 DOI: 10.3389/fphar.2023.1139229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
The inefficiency of existing animal models to precisely predict human pharmacological effects is the root reason for drug development failure. Microphysiological system/organ-on-a-chip technology (organ-on-a-chip platform) is a microfluidic device cultured with human living cells under specific organ shear stress which can faithfully replicate human organ-body level pathophysiology. This emerging organ-on-chip platform can be a remarkable alternative for animal models with a broad range of purposes in drug testing and precision medicine. Here, we review the parameters employed in using organ on chip platform as a plot mimic diseases, genetic disorders, drug toxicity effects in different organs, biomarker identification, and drug discoveries. Additionally, we address the current challenges of the organ-on-chip platform that should be overcome to be accepted by drug regulatory agencies and pharmaceutical industries. Moreover, we highlight the future direction of the organ-on-chip platform parameters for enhancing and accelerating drug discoveries and personalized medicine.
Collapse
Affiliation(s)
- Naina Sunildutt
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | - Pratibha Parihar
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | | | - Sang Ho Lee
- College of Pharmacy, Jeju National University, Jeju, Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
29
|
Zhang L, Liao W, Chen S, Chen Y, Cheng P, Lu X, Ma Y. Towards a New 3Rs Era in the construction of 3D cell culture models simulating tumor microenvironment. Front Oncol 2023; 13:1146477. [PMID: 37077835 PMCID: PMC10106600 DOI: 10.3389/fonc.2023.1146477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Three-dimensional cell culture technology (3DCC) sits between two-dimensional cell culture (2DCC) and animal models and is widely used in oncology research. Compared to 2DCC, 3DCC allows cells to grow in a three-dimensional space, better simulating the in vivo growth environment of tumors, including hypoxia, nutrient concentration gradients, micro angiogenesis mimicism, and the interaction between tumor cells and the tumor microenvironment matrix. 3DCC has unparalleled advantages when compared to animal models, being more controllable, operable, and convenient. This review summarizes the comparison between 2DCC and 3DCC, as well as recent advances in different methods to obtain 3D models and their respective advantages and disadvantages.
Collapse
Affiliation(s)
- Long Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiqi Liao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shimin Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yukun Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pengrui Cheng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinjun Lu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Xiang N, Ni Z. Microfluidics for Biomedical Applications. BIOSENSORS 2023; 13:bios13020161. [PMID: 36831927 PMCID: PMC9953641 DOI: 10.3390/bios13020161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 06/12/2023]
Abstract
Microfluidics refers to a technique for controlling and analyzing the fluids or micro-/nano-bioparticles in microscale channels or structures [...].
Collapse
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Zhonghua Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
31
|
Review on Bortezomib Resistance in Multiple Myeloma and Potential Role of Emerging Technologies. Pharmaceuticals (Basel) 2023; 16:ph16010111. [PMID: 36678608 PMCID: PMC9864669 DOI: 10.3390/ph16010111] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Multiple myeloma is a hematological cancer type. For its treatment, Bortezomib has been widely used. However, drug resistance to this effective chemotherapeutic has been developed for various reasons. 2D cell cultures and animal models have failed to understand the MM disease and Bortezomib resistance. It is therefore essential to utilize new technologies to reveal a complete molecular profile of the disease. In this review, we in-depth examined the possible molecular mechanisms that cause Bortezomib resistance and specifically addressed MM and Bortezomib resistance. Moreover, we also included the use of nanoparticles, 3D culture methods, microfluidics, and organ-on-chip devices in multiple myeloma. We also discussed whether the emerging technology offers the necessary tools to understand and prevent Bortezomib resistance in multiple myeloma. Despite the ongoing research activities on MM, the related studies cannot provide a complete summary of MM. Nanoparticle and 3D culturing have been frequently used to understand MM disease and Bortezomib resistance. However, the number of microfluidic devices for this application is insufficient. By combining siRNA/miRNA technologies with microfluidic devices, a complete molecular genetic profile of MM disease could be revealed. Microfluidic chips should be used clinically in personal therapy and point-of-care applications. At least with Bortezomib microneedles, it could be ensured that MM patients can go through the treatment process more painlessly. This way, MM can be switched to the curable cancer type list, and Bortezomib can be targeted for its treatment with fewer side effects.
Collapse
|
32
|
Jeong S, Na Y, Nam HM, Sung GY. Skin-on-a-chip strategies for human hair follicle regeneration. Exp Dermatol 2023; 32:13-23. [PMID: 36308297 DOI: 10.1111/exd.14699] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 01/06/2023]
Abstract
The number of hair loss patients increases every year, and hair loss treatment has several limitations, so research on hair is attracting attention recently. However, most current hair follicle research models are limited by their inability to replicate several key functions of the hair follicle microenvironment. To complement this, an in vitro culture system similar to the in vivo environment must be constructed. It is necessary to develop a hair-on-a-chip that implements a fully functional hair follicle model by reproducing the main characteristics of hair follicle morphogenesis and cycle. In this review, we summarize the gradation of hair follicle morphogenesis and the roles and mechanisms of molecular signals involved in the hair follicle cycle. In addition, we discuss research results of various in vitro organoid products and organ-on-a-chip-based hair follicle tissue chips for the treatment of alopecia and present future research and development directions.
Collapse
Affiliation(s)
- Subin Jeong
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, South Korea.,Integrative Materials Research Institute, Hallym University, Chuncheon, South Korea
| | - Yoojin Na
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, South Korea.,Integrative Materials Research Institute, Hallym University, Chuncheon, South Korea
| | - Hyeon-Min Nam
- Integrative Materials Research Institute, Hallym University, Chuncheon, South Korea.,Major in Materials Science and Engineering, Hallym University, Chuncheon, South Korea
| | - Gun Yong Sung
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, South Korea.,Integrative Materials Research Institute, Hallym University, Chuncheon, South Korea.,Major in Materials Science and Engineering, Hallym University, Chuncheon, South Korea
| |
Collapse
|
33
|
Ozcelik A, Abas BI, Erdogan O, Cevik E, Cevik O. On-Chip Organoid Formation to Study CXCR4/CXCL-12 Chemokine Microenvironment Responses for Renal Cancer Drug Testing. BIOSENSORS 2022; 12:1177. [PMID: 36551144 PMCID: PMC9775535 DOI: 10.3390/bios12121177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Organoid models have gained importance in recent years in determining the toxic effects of drugs in cancer studies. Organoid designs with the same standardized size and cellular structures are desired for drug tests. The field of microfluidics offers numerous advantages to enable well-controlled and contamination-free biomedical research. In this study, simple and low-cost microfluidic devices were designed and fabricated to develop an organoid model for drug testing for renal cancers. Caki human renal cancer cells and mesenchymal stem cells isolated from human umbilical cord were placed into alginate hydrogels. The microfluidic system was implemented to form size-controllable organoids within alginate hydrogels. Alginate capsules of uniform sizes formed in the microfluidic system were kept in cell culture for 21 days, and their organoid development was studied with calcein staining. Cisplatin was used as a standard chemotherapeutic, and organoid sphere structures were examined as a function of time with an MTT assay. HIF-1α, CXCR4 and CXCL-12 chemokine protein, and CXCR4 and CXCL-12 gene levels were tested in organoids and cisplatin responses. In conclusion, it was found that the standard renal cancer organoids made on a lab-on-a-chip system can be used to measure drug effects and tumor microenvironment responses.
Collapse
Affiliation(s)
- Adem Ozcelik
- Department of Mechanical Engineering, Aydın Adnan Menderes University, Aydin 09010, Turkey
| | - Burcin Irem Abas
- Department of Biochemistry, School of Medicine, Aydin Adnan Menderes University, Aydin 09010, Turkey
| | - Omer Erdogan
- Department of Biochemistry, School of Medicine, Aydin Adnan Menderes University, Aydin 09010, Turkey
| | - Evrim Cevik
- Department of Machinery and Metal Technologies, Kocarli Vocational School, Aydin Adnan Menderes University, Aydin 09010, Turkey
| | - Ozge Cevik
- Department of Biochemistry, School of Medicine, Aydin Adnan Menderes University, Aydin 09010, Turkey
| |
Collapse
|
34
|
Liu X, Su Q, Zhang X, Yang W, Ning J, Jia K, Xin J, Li H, Yu L, Liao Y, Zhang D. Recent Advances of Organ-on-a-Chip in Cancer Modeling Research. BIOSENSORS 2022; 12:bios12111045. [PMID: 36421163 PMCID: PMC9688857 DOI: 10.3390/bios12111045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 05/27/2023]
Abstract
Although many studies have focused on oncology and therapeutics in cancer, cancer remains one of the leading causes of death worldwide. Due to the unclear molecular mechanism and complex in vivo microenvironment of tumors, it is challenging to reveal the nature of cancer and develop effective therapeutics. Therefore, the development of new methods to explore the role of heterogeneous TME in individual patients' cancer drug response is urgently needed and critical for the effective therapeutic management of cancer. The organ-on-chip (OoC) platform, which integrates the technology of 3D cell culture, tissue engineering, and microfluidics, is emerging as a new method to simulate the critical structures of the in vivo tumor microenvironment and functional characteristics. It overcomes the failure of traditional 2D/3D cell culture models and preclinical animal models to completely replicate the complex TME of human tumors. As a brand-new technology, OoC is of great significance for the realization of personalized treatment and the development of new drugs. This review discusses the recent advances of OoC in cancer biology studies. It focuses on the design principles of OoC devices and associated applications in cancer modeling. The challenges for the future development of this field are also summarized in this review. This review displays the broad applications of OoC technique and has reference value for oncology development.
Collapse
Affiliation(s)
- Xingxing Liu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Qiuping Su
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Xiaoyu Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Wenjian Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Junhua Ning
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Kangle Jia
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Jinlan Xin
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Huanling Li
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Longfei Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Yuheng Liao
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
35
|
Niculescu AG, Mihaiescu DE, Grumezescu AM. A Review of Microfluidic Experimental Designs for Nanoparticle Synthesis. Int J Mol Sci 2022; 23:8293. [PMID: 35955420 PMCID: PMC9368202 DOI: 10.3390/ijms23158293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Microfluidics is defined as emerging science and technology based on precisely manipulating fluids through miniaturized devices with micro-scale channels and chambers. Such microfluidic systems can be used for numerous applications, including reactions, separations, or detection of various compounds. Therefore, due to their potential as microreactors, a particular research focus was noted in exploring various microchannel configurations for on-chip chemical syntheses of materials with tailored properties. Given the significant number of studies in the field, this paper aims to review the recently developed microfluidic devices based on their geometry particularities, starting from a brief presentation of nanoparticle synthesis and mixing within microchannels, further moving to a more detailed discussion of different chip configurations with potential use in nanomaterial fabrication.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|