1
|
Hasan MR, Mughees M, Shaikh S, Choudhary F, Nizam A, Rizwan A, Ansari O, Iqbal Y, Pilloton R, Wajid S, Narang J. From Biosensors to Robotics: Pioneering Advances in Breast Cancer Management. SENSORS (BASEL, SWITZERLAND) 2024; 24:6149. [PMID: 39338894 PMCID: PMC11435941 DOI: 10.3390/s24186149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Breast cancer stands as the most prevalent form of cancer amongst females, constituting more than one-third of all cancer cases affecting women. It causes aberrant cell development, which can assault or spread to other sections of the body, perhaps leading to the patient's death. Based on research findings, timely detection can diminish the likelihood of mortality and enhance the quality of healthcare provided for the illness. However, current technologies can only identify cancer at an advanced stage. Consequently, there is a substantial demand for rapid and productive approaches to detecting breast cancer. Researchers are actively pursuing precise and timely methods for the diagnosis of breast cancer, aiming to achieve enhanced accuracy and early detection. Biosensor technology can allow for the speedy and accurate diagnosis of cancer-related cells, as well as a more sensitive and specialized technique for generating them. Additionally, numerous treatments for breast cancer are depicted such as herbal therapy, nanomaterial-based drug delivery, miRNA targeting, CRISPR technology, immunotherapy, and precision medicine. Early detection and efficient therapy are necessary to manage such a severe illness properly.
Collapse
Affiliation(s)
- Mohd. Rahil Hasan
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Mohd Mughees
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Shifa Shaikh
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Furqan Choudhary
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Anam Nizam
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Amber Rizwan
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Onaiza Ansari
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Yusra Iqbal
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Roberto Pilloton
- CNR-IC, Area della Ricerca di RM1, Via Salaria km 29.3, Monterotondo, I-00015 Rome, Italy
| | - Saima Wajid
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Jagriti Narang
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| |
Collapse
|
2
|
Khera HK, Mishra R. Nucleic Acid Based Testing (NABing): A Game Changer Technology for Public Health. Mol Biotechnol 2024; 66:2168-2200. [PMID: 37695473 DOI: 10.1007/s12033-023-00870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Timely and accurate detection of the causal agent of a disease is crucial to restrict suffering and save lives. Mere symptoms are often not enough to detect the root cause of the disease. Better diagnostics applied for screening at a population level and sensitive detection assays remain the crucial component of disease surveillance which may include clinical, plant, and environmental samples, including wastewater. The recent advances in genome sequencing, nucleic acid amplification, and detection methods have revolutionized nucleic acid-based testing (NABing) and screening assays. A typical NABing assay consists of three modules: isolation of the nucleic acid from the collected sample, identification of the target sequence, and final reading the target with the help of a signal, which may be in the form of color, fluorescence, etc. Here, we review current NABing assays covering the different aspects of all three modules. We also describe the frequently used target amplification or signal amplification procedures along with the variety of applications of this fast-evolving technology and challenges in implementation of NABing in the context of disease management especially in low-resource settings.
Collapse
Affiliation(s)
- Harvinder Kour Khera
- Tata Institute for Genetics and Society, New inStem Building NCBS Campus, GKVK Post, Bellary Road, Bengaluru, 560065, India.
| | - Rakesh Mishra
- Tata Institute for Genetics and Society, New inStem Building NCBS Campus, GKVK Post, Bellary Road, Bengaluru, 560065, India.
- CSIR-Centre for Cellular and Molecular Biology, Uppal Rd, IICT Colony, Habsiguda, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
3
|
Wang H, Wu X, Ma Q, Li J, Fu B, An J. Modular probe integrating with quantum dots based versatile platform for sensitive and label-free biomarker detection. Talanta 2024; 276:126228. [PMID: 38733934 DOI: 10.1016/j.talanta.2024.126228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Multiplexed analysis of biomarkers in a single sample tube is essential for accurate diagnosis and therapy of diseases. However, the existing detection platforms suffer from many drawbacks, such as low specificity, limited applicable sceneries, and complicated operation. Hence, it is highly important to develop a versatile biomarker detection platform that can be used for disease diagnosis and pathophysiological research. In this study, we provide a versatile method for detecting biomarkers using dual-loop probes and quantum dots (QDs). This approach utilizes a dual-loop probe that consists of a recognition module for identifying specific targets, a template recognition module for initiating subsequent chain replacement cycles, and a signal module for facilitating the fixation of QDs on the 96-well plate. The lower limit of detection for miRNA-21 is determined to be at the aM level. Furthermore, this design may be easily expanded to simultaneously detect several targets, such as miRNA and C-reactive protein. The experimental results demonstrated the successful construction of the versatile biomarkers detection platform, and indicated that the sensitive and versatile platform has significant potential in the areas of bio-sensing, clinical diagnostics, and environmental sample analysis.
Collapse
Affiliation(s)
- Huajun Wang
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Xueda Wu
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Qianli Ma
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Jiayang Li
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Bingbing Fu
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Jinghui An
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China.
| |
Collapse
|
4
|
Upadhyay S, Kumar A, Srivastava M, Srivastava A, Dwivedi A, Singh RK, Srivastava SK. Recent advancements of smartphone-based sensing technology for diagnosis, food safety analysis, and environmental monitoring. Talanta 2024; 275:126080. [PMID: 38615454 DOI: 10.1016/j.talanta.2024.126080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
The emergence of computationally powerful smartphones, relatively affordable high-resolution camera, drones, and robotic sensors have ushered in a new age of advanced sensible monitoring tools. The present review article investigates the burgeoning smartphone-based sensing paradigms, including surface plasmon resonance (SPR) biosensors, electrochemical biosensors, colorimetric biosensors, and other innovations for modern healthcare. Despite the significant advancements, there are still scarcity of commercially available smart biosensors and hence need to accelerate the rates of technology transfer, application, and user acceptability. The application/necessity of smartphone-based biosensors for Point of Care (POC) testing, such as prognosis, self-diagnosis, monitoring, and treatment selection, have brought remarkable innovations which eventually eliminate sample transportation, sample processing time, and result in rapid findings. Additionally, it articulates recent advances in various smartphone-based multiplexed bio sensors as affordable and portable sensing platforms for point-of-care devices, together with statistics for point-of-care health monitoring and their prospective commercial viability.
Collapse
Affiliation(s)
- Satyam Upadhyay
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anil Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Monika Srivastava
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Amit Srivastava
- Department of Physics TDPG College, VBS Purvanchal University, Jaunpur, 222001, India
| | - Arpita Dwivedi
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajesh Kumar Singh
- School of Physical and Material Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra, 176215, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Wasilewski T, Kamysz W, Gębicki J. AI-Assisted Detection of Biomarkers by Sensors and Biosensors for Early Diagnosis and Monitoring. BIOSENSORS 2024; 14:356. [PMID: 39056632 PMCID: PMC11274923 DOI: 10.3390/bios14070356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
The steady progress in consumer electronics, together with improvement in microflow techniques, nanotechnology, and data processing, has led to implementation of cost-effective, user-friendly portable devices, which play the role of not only gadgets but also diagnostic tools. Moreover, numerous smart devices monitor patients' health, and some of them are applied in point-of-care (PoC) tests as a reliable source of evaluation of a patient's condition. Current diagnostic practices are still based on laboratory tests, preceded by the collection of biological samples, which are then tested in clinical conditions by trained personnel with specialistic equipment. In practice, collecting passive/active physiological and behavioral data from patients in real time and feeding them to artificial intelligence (AI) models can significantly improve the decision process regarding diagnosis and treatment procedures via the omission of conventional sampling and diagnostic procedures while also excluding the role of pathologists. A combination of conventional and novel methods of digital and traditional biomarker detection with portable, autonomous, and miniaturized devices can revolutionize medical diagnostics in the coming years. This article focuses on a comparison of traditional clinical practices with modern diagnostic techniques based on AI and machine learning (ML). The presented technologies will bypass laboratories and start being commercialized, which should lead to improvement or substitution of current diagnostic tools. Their application in PoC settings or as a consumer technology accessible to every patient appears to be a real possibility. Research in this field is expected to intensify in the coming years. Technological advancements in sensors and biosensors are anticipated to enable the continuous real-time analysis of various omics fields, fostering early disease detection and intervention strategies. The integration of AI with digital health platforms would enable predictive analysis and personalized healthcare, emphasizing the importance of interdisciplinary collaboration in related scientific fields.
Collapse
Affiliation(s)
- Tomasz Wasilewski
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| |
Collapse
|
6
|
Wang M, Wang L, Hou A, Hong M, Li C, Yue Q. Portable sensing methods based on carbon dots for food analysis. J Food Sci 2024; 89:3935-3949. [PMID: 38865253 DOI: 10.1111/1750-3841.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
Food analysis is significantly important in monitoring food quality and safety for human health. Traditional methods for food detection mainly rely on benchtop instruments and require a certain amount of analysis time, which promotes the development of portable sensors. Portable sensing methods own many advantages over traditional techniques such as flexibility and accessibility in diverse environments, real-time monitoring, cost-effectiveness, and rapid deployment. This review focuses on the portable approaches based on carbon dots (CDs) for food analysis. CDs are zero-dimensional carbon-based material with a size of less than 10 nm. In the manner of sensing, CDs exhibit rich functional groups, low biotoxicity, good biocompatibility, and excellent optical properties. Furthermore, there are many methods for the synthesis of CDs using various precursor materials. The incorporation of CDs into food science and engineering for enhancing food safety control and risk assessment shows promising prospects.
Collapse
Affiliation(s)
- Min Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Lijun Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Aiying Hou
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
7
|
Hatami-Fard G, Anastasova-Ivanova S. Advancements in Cerebrospinal Fluid Biosensors: Bridging the Gap from Early Diagnosis to the Detection of Rare Diseases. SENSORS (BASEL, SWITZERLAND) 2024; 24:3294. [PMID: 38894085 PMCID: PMC11174891 DOI: 10.3390/s24113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Cerebrospinal fluid (CSF) is a body fluid that can be used for the diagnosis of various diseases. However, CSF collection requires an invasive and painful procedure called a lumbar puncture (LP). This procedure is applied to any patient with a known risk of central nervous system (CNS) damage or neurodegenerative disease, regardless of their age range. Hence, this can be a very painful procedure, especially in infants and elderly patients. On the other hand, the detection of disease biomarkers in CSF makes diagnoses as accurate as possible. This review aims to explore novel electrochemical biosensing platforms that have impacted biomedical science. Biosensors have emerged as techniques to accelerate the detection of known biomarkers in body fluids such as CSF. Biosensors can be designed and modified in various ways and shapes according to their ultimate applications to detect and quantify biomarkers of interest. This process can also significantly influence the detection and diagnosis of CSF. Hence, it is important to understand the role of this technology in the rapidly progressing field of biomedical science.
Collapse
Affiliation(s)
- Ghazal Hatami-Fard
- The Hamlyn Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
8
|
Mahapatra S, Kumari R, Chandra P. Printed circuit boards: system automation and alternative matrix for biosensing. Trends Biotechnol 2024; 42:591-611. [PMID: 38052681 DOI: 10.1016/j.tibtech.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Circuit integration has revolutionized the diagnostic sector by improving the sensing ability and rapidity of biosensors. Bioelectronics has led to the development of point-of-care (PoC) devices, offering superior performance compared with conventional biosensing systems. These devices have lower production costs, are smaller, and have greater reproducibility, enabling the construction of compact sensing modules. Flexible upgrades to the fabrication pattern of the printed circuit board (PCB) remains the most reliable and consistent means so far, offering portability, wearability, a lower detection limit, and smart output integration to these devices. This review summarizes the advances in PCB technology for biosensing devices for introducing automation and their emerging application as an alternative matrix material for detecting various analytes.
Collapse
Affiliation(s)
- Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
9
|
Ferreira R, Silva AP, Nunes-Pereira J. Current On-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review. ACS Sens 2024; 9:1104-1133. [PMID: 38394033 PMCID: PMC10964246 DOI: 10.1021/acssensors.3c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Due to an ever-increasing amount of the population focusing more on their personal health, thanks to rising living standards, there is a pressing need to improve personal healthcare devices. These devices presently require laborious, time-consuming, and convoluted procedures that heavily rely on cumbersome equipment, causing discomfort and pain for the patients during invasive methods such as sample-gathering, blood sampling, and other traditional benchtop techniques. The solution lies in the development of new flexible sensors with temperature, humidity, strain, pressure, and sweat detection and monitoring capabilities, mimicking some of the sensory capabilities of the skin. In this review, a comprehensive presentation of the themes regarding flexible sensors, chosen materials, manufacturing processes, and trends was made. It was concluded that carbon-based composite materials, along with graphene and its derivates, have garnered significant interest due to their electromechanical stability, extraordinary electrical conductivity, high specific surface area, variety, and relatively low cost.
Collapse
Affiliation(s)
- Rodrigo
G. Ferreira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Abílio P. Silva
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - João Nunes-Pereira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
10
|
Chou HD, Chang YC, Wu PY, Kang EYC, Chen YH, Liu L, Chen KJ, Hwang YS, Chao AN, Wu WC, Lai CC. Retinal vascular arcade angle as a biomarker for visual improvement after epiretinal membrane surgery. Eye (Lond) 2024; 38:778-785. [PMID: 37865724 PMCID: PMC10920802 DOI: 10.1038/s41433-023-02776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/23/2023] Open
Abstract
OBJECTIVES To investigate the changes in the temporal vascular angles after epiretinal membrane (ERM) surgery and utilize the angles to predict visual outcomes. METHODS A total of 168 eyes from 84 patients with unilateral ERM who underwent vitrectomy were enrolled from a single institution. The angles of temporal venous (anglevein) and arterial arcades (angleartery) were measured on fundus photographs. The relationships between the angles and the best-corrected visual acuity (BCVA) were explored and multivariable logistic models and receiver operating characteristic (ROC) curves were analyzed to identify the factors that predicted visual outcomes. RESULTS At baseline, both angleartery and anglevein were narrower in the eyes with ERM than the fellow eyes (p < 0.001 and 0.007) but had no correlation with the baseline BCVA (p = 0.754 and 0.804). Postoperatively, the angleartery and anglevein significantly widened (both p < 0.001) and a greater BCVA improvement was associated with a greater widening of the angleartery (p = 0.029) and anglevein (p = 0.050). Multivariable logistic analyses found a narrower baseline angleartery compared to the fellow eye had a higher chance for BCVA improvement ≧ 2 lines (Odds ratio = 0.97; 95% CI, 0.94-0.99; p = 0.016). ROC curve showed the baseline difference in the angleartery between bilateral eyes predicted BCVA improvement ≧ 2 lines (area under the curve = 0.74; p = 0.035), and a 0.73 sensitivity and 0.80 specificity with a cut-off value of -27.19 degrees. CONCLUSIONS The retinal vascular angles widened after ERM surgery and the fundus photograph-derived angles may serve as a highly-accessible biomarker to predict postoperative visual outcomes.
Collapse
Affiliation(s)
- Hung-Da Chou
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chieh Chang
- Department of Medical Education, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
| | - Po-Yi Wu
- Department of Medical Education, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsing Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Laura Liu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Jen Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yih-Shiou Hwang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - An-Ning Chao
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Chun Lai
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan.
| |
Collapse
|
11
|
Xue J, Mao K, Cao H, Feng R, Chen Z, Du W, Zhang H. Portable sensors equipped with smartphones for organophosphorus pesticides detection. Food Chem 2024; 434:137456. [PMID: 37716150 DOI: 10.1016/j.foodchem.2023.137456] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
Organophosphorus pesticides (OPs) play an important role in agricultural production and the accurate detection of OP residues is essential to ensure food safety. Portable sensors are expected to be a potential device due to their high detection efficiency, easy-to-use processes and low cost. Due to the widespread popularity and powerful capabilities of smartphones, smartphone-based sensing systems have rapidly developed into ideal tools for portable detection, however, a systematic review on the detection of OPs is still lacking. Therefore, a comprehensive overview of sensors equipped with smartphones for OP detection in recent year is provided; this overview includes their sensing signals (colorimetric, fluorescent, chemiluminescent and electrochemical signals), detection mechanism, analysis applications, advantages/disadvantages and perspectives. Moreover, the progress of sensors equipped with smartphones for the detection of OPs in food is thoroughly summarized. This review contributes to food safety and the development of efficient and reliable methods for smartphone-based OPs detection.
Collapse
Affiliation(s)
- Jiaqi Xue
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rida Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhuo Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
12
|
Zhang H, Zhang Y. Rational Design of Flexible Mechanical Force Sensors for Healthcare and Diagnosis. MATERIALS (BASEL, SWITZERLAND) 2023; 17:123. [PMID: 38203977 PMCID: PMC10780056 DOI: 10.3390/ma17010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Over the past decade, there has been a significant surge in interest in flexible mechanical force sensing devices and systems. Tremendous efforts have been devoted to the development of flexible mechanical force sensors for daily healthcare and medical diagnosis, driven by the increasing demand for wearable/portable devices in long-term healthcare and precision medicine. In this review, we summarize recent advances in diverse categories of flexible mechanical force sensors, covering piezoresistive, capacitive, piezoelectric, triboelectric, magnetoelastic, and other force sensors. This review focuses on their working principles, design strategies and applications in healthcare and diagnosis, with an emphasis on the interplay among the sensor architecture, performance, and application scenario. Finally, we provide perspectives on the remaining challenges and opportunities in this field, with particular discussions on problem-driven force sensor designs, as well as developments of novel sensor architectures and intelligent mechanical force sensing systems.
Collapse
Affiliation(s)
- Hang Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Ramalingam M, Jaisankar A, Cheng L, Krishnan S, Lan L, Hassan A, Sasmazel HT, Kaji H, Deigner HP, Pedraz JL, Kim HW, Shi Z, Marrazza G. Impact of nanotechnology on conventional and artificial intelligence-based biosensing strategies for the detection of viruses. DISCOVER NANO 2023; 18:58. [PMID: 37032711 PMCID: PMC10066940 DOI: 10.1186/s11671-023-03842-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Recent years have witnessed the emergence of several viruses and other pathogens. Some of these infectious diseases have spread globally, resulting in pandemics. Although biosensors of various types have been utilized for virus detection, their limited sensitivity remains an issue. Therefore, the development of better diagnostic tools that facilitate the more efficient detection of viruses and other pathogens has become important. Nanotechnology has been recognized as a powerful tool for the detection of viruses, and it is expected to change the landscape of virus detection and analysis. Recently, nanomaterials have gained enormous attention for their value in improving biosensor performance owing to their high surface-to-volume ratio and quantum size effects. This article reviews the impact of nanotechnology on the design, development, and performance of sensors for the detection of viruses. Special attention has been paid to nanoscale materials, various types of nanobiosensors, the internet of medical things, and artificial intelligence-based viral diagnostic techniques.
Collapse
Affiliation(s)
- Murugan Ramalingam
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116 Republic of Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116 Republic of Korea
- BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116 Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116 South Korea
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey
| | - Abinaya Jaisankar
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014 India
| | - Lijia Cheng
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Sasirekha Krishnan
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014 India
| | - Liang Lan
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Anwarul Hassan
- Department of Mechanical and Industrial Engineering, Biomedical Research Center, Qatar University, 2713, Doha, Qatar
| | - Hilal Turkoglu Sasmazel
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey
| | - Hirokazu Kaji
- Department of Biomechanics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062 Japan
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, 28029 Madrid, Spain
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116 Republic of Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116 Republic of Korea
- BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116 Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116 South Korea
| | - Zheng Shi
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Giovanna Marrazza
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
14
|
Shamsaei D, Hsieh SA, Ocaña-Rios I, Ryan SJ, Anderson JL. Smartphone as a fluorescence detector for high-performance liquid chromatography. Anal Chim Acta 2023; 1280:341863. [PMID: 37858553 DOI: 10.1016/j.aca.2023.341863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Fluorescence detection is employed in high-performance liquid chromatography (HPLC) due to its high specificity and sensitivity. However, it is often limited by expensive components and bulkiness. Recently, advances in technology and electronics have led to the development of smartphones that can serve as portable recording, analysis, and monitoring tools. Smartphone-based detection provides advantages of cost effectiveness, rapid signal/data processing, and the display of results on a handhold monitor. The combination of smartphone-based detection with HPLC can offer unique features that are beneficial in overcoming limitations of commercial fluorescence detectors. (90) RESULTS: A miniaturized and low-cost HPLC fluorescence detector based on a smartphone is introduced for the detection of six fluorescent molecules. The smartphone is able to capture emitted fluorescence in video format while MATLAB code is used for data processing to provide chromatograms based on different detection channels. A custom designed double-channel flow cell was utilized to enable simultaneous detection of fluorescent compounds with different excitation wavelengths. The detector consists of a lab-made flow cell, monochromatic LEDs as the light source, 3D printed housing and connector box, fiber optic cables, and a smartphone. The effects of flow cell geometry, channel width and light slit diameter, as well as a comparison of different flow cell manufacturing techniques, are studied and discussed. The validated system was successfully applied to samples from diverse water sources, yielding spiking recoveries within the range of 91.7% and 109.7%. (141) SIGNIFICANCE: This study introduces the first smartphone-based fluorescence detector for HPLC with cost-effective and customizable flow cells, allowing for the simultaneous detection of fluorescent compounds with different excitation wavelengths and offering a potential solution for the analysis of co-eluting compounds. Beyond its user-friendly interface and low-cost, smartphone detection in HPLC provides tremendous opportunities in further miniaturizing chromatographic instrumentation while offering high sensitivity and can be expanded to other mechanisms of detection. (70).
Collapse
Affiliation(s)
- Danial Shamsaei
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Shu-An Hsieh
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Iran Ocaña-Rios
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Saxon J Ryan
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
15
|
Omidfar K, Riahi F, Kashanian S. Lateral Flow Assay: A Summary of Recent Progress for Improving Assay Performance. BIOSENSORS 2023; 13:837. [PMID: 37754072 PMCID: PMC10526804 DOI: 10.3390/bios13090837] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
Lateral flow tests are one of the most important types of paper-based point-of-care (POCT) diagnostic tools. It shows great potential as an implement for improving the rapid screening and management of infections in global pandemics or other potential health disorders by using minimally expert staff in locations where no sophisticated laboratory services are accessible. They can detect different types of biomarkers in various biological samples and provide the results in a little time at a low price. An important challenge regarding conventional LFAs is increasing their sensitivity and specificity. There are two main approaches to increase sensitivity and specificity, including assay improvement and target enrichment. Assay improvement comprises the assay optimization and signal amplification techniques. In this study, a summarize of various sensitivity and specificity enhancement strategies with an objective evaluation are presented, such as detection element immobilization, capillary flow rate adjusting, label evolution, sample extraction and enrichment, etc. and also the key findings in improving the LFA performance and solving their limitations are discussed along with numerous examples.
Collapse
Affiliation(s)
- Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular—Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
| | - Fatemeh Riahi
- Biosensor Research Center, Endocrinology and Metabolism Molecular—Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran 1458889694, Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Razi University, Kermanshah 6714414971, Iran
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran
| |
Collapse
|
16
|
Fei J, Yang W, Dai Y, Xu W, Fan H, Zheng Y, Zhang J, Zhu W, Hong J, Zhou X. A biosensor based on Fe 3O 4@MXene-Au nanocomposites with high peroxidase-like activity for colorimetric and smartphone-based detection of glucose. Mikrochim Acta 2023; 190:336. [PMID: 37515610 DOI: 10.1007/s00604-023-05900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
A novel magnetic nanozyme Fe3O4@MXene-Au nanocomposite, which possessed higher peroxidase-like activity than that of Fe3O4 nanoparticles and Fe3O4@MXene nanocomposites, was developed. The outstanding magnetic properties of the nanozyme endowed it with the ability of simple and rapid separation, achieving great recyclability. Based on Fe3O4@MXene-Au nanocomposites and glucose oxidase (Glu Ox), a highly selective colorimetric biosensor for glucose detection was developed. Fe3O4@MXene-Au nanocomposites can catalyze H2O2 produced from glucose catalyzed by glucose oxidase to ·OH and oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (oxTMB) with a significant absorbance at 652 nm. The linear range of glucose was 0-1.4 mM under optimal conditions, with a limit of detection (LOD) of 0.11 mM. Glucose in human whole blood was successfully detected with satisfactory recoveries. Furthermore, a facile agarose hydrogel detection platform was designed. With smartphone software, glucose detection can be realized by the agarose hydrogel platform, demonstrating the potential in on-site and visual detection of glucose.
Collapse
Affiliation(s)
- Jianwen Fei
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Wei Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yin Dai
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Wei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Huizhu Fan
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yani Zheng
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jun Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Junli Hong
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
17
|
Bazyar H. On the Application of Microfluidic-Based Technologies in Forensics: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:5856. [PMID: 37447704 PMCID: PMC10346202 DOI: 10.3390/s23135856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Microfluidic technology is a powerful tool to enable the rapid, accurate, and on-site analysis of forensically relevant evidence on a crime scene. This review paper provides a summary on the application of this technology in various forensic investigation fields spanning from forensic serology and human identification to discriminating and analyzing diverse classes of drugs and explosives. Each aspect is further explained by providing a short summary on general forensic workflow and investigations for body fluid identification as well as through the analysis of drugs and explosives. Microfluidic technology, including fabrication methodologies, materials, and working modules, are touched upon. Finally, the current shortcomings on the implementation of the microfluidic technology in the forensic field are discussed along with the future perspectives.
Collapse
Affiliation(s)
- Hanieh Bazyar
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
18
|
Wu X, Zhao H, Zhou E, Zou Y, Xiao S, Ma S, You R, Li P. Two-Dimensional Transition Metal Dichalcogenide Tunnel Field-Effect Transistors for Biosensing Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23583-23592. [PMID: 37020349 DOI: 10.1021/acsami.3c00257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Field-effect transistor (FET) biosensors based on two-dimensional (2D) materials have drawn significant attention due to their outstanding sensitivity. However, the Boltzmann distribution of electrons imposes a physical limit on the subthreshold swing (SS), and a 2D-material biosensor with sub-60 mV/dec SS has not been realized, which hinders further increase of the sensitivity of 2D-material FET biosensors. Here, we report tunnel FETs (TFETs) based on a SnSe2/WSe2 heterostructure and observe the tunneling effect of a 2D material in aqueous solution for the first time with an ultralow SS of 29 mV/dec. A bilayer dielectric (Al2O3/HfO2) and graphene contacts, which significantly reduce the leakage current in solution and contact resistance, respectively, are crucial to the realization of the tunneling effect in solution. Then, we propose a novel biosensing method by using tunneling current as the sensing signal. The TFETs show an extremely high pH sensitivity of 895/pH due to ultralow SS, surpassing the sensitivity of FET biosensors based on a single 2D material (WSe2) by 8-fold. Specific detection of glucose is realized, and the biosensors show a superb sensitivity (3158 A/A for 5 mM), wide sensing range (from 10-9 to 10-3 M), low detection limit (10-9 M), and rapid response rate (11 s). The sensors also exhibit the ability of monitoring glucose in complex biofluid (sweat). This work provides a platform for ultrasensitive biosensing. The discovery of the tunneling effect of 2D materials in aqueous solution may stimulate further fundamental research and potential applications.
Collapse
Affiliation(s)
- Xian Wu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Haojie Zhao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Enze Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Yixuan Zou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Shanpeng Xiao
- China Mobile Research Institute, Beijing 100053, China
| | - Shuai Ma
- China Mobile Research Institute, Beijing 100053, China
| | - Rui You
- Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science & Technology University, Beijing 100192, China
| | - Peng Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| |
Collapse
|
19
|
Kabiraz MP, Majumdar PR, Mahmud MC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023; 9:e15482. [PMID: 37151686 PMCID: PMC10161726 DOI: 10.1016/j.heliyon.2023.e15482] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne pathogens are a major public health concern and have a significant economic impact globally. From harvesting to consumption stages, food is generally contaminated by viruses, parasites, and bacteria, which causes foodborne diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS), typhoid, acute, gastroenteritis, diarrhea, and thrombotic thrombocytopenic purpura (TTP). Hence, early detection of foodborne pathogenic microbes is essential to ensure a safe food supply and to prevent foodborne diseases. The identification of foodborne pathogens is associated with conventional (e.g., culture-based, biochemical test-based, immunological-based, and nucleic acid-based methods) and advances (e.g., hybridization-based, array-based, spectroscopy-based, and biosensor-based process) techniques. For industrial food applications, detection methods could meet parameters such as accuracy level, efficiency, quickness, specificity, sensitivity, and non-labor intensive. This review provides an overview of conventional and advanced techniques used to detect foodborne pathogens over the years. Therefore, the scientific community, policymakers, and food and agriculture industries can choose an appropriate method for better results.
Collapse
Affiliation(s)
- Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Priyanka Rani Majumdar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - M.M. Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, VIC, 3125, Australia
| | - Shuva Bhowmik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author. Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand.
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author.
| |
Collapse
|
20
|
Issaka E, Wariboko MA, Johnson NAN, Aniagyei OND. Advanced visual sensing techniques for on-site detection of pesticide residue in water environments. Heliyon 2023; 9:e13986. [PMID: 36915503 PMCID: PMC10006482 DOI: 10.1016/j.heliyon.2023.e13986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Pesticide usage has increased to fulfil agricultural demand. Pesticides such as organophosphorus pesticides (OPPs) are ubiquitous in world food production. Their widespread usage has unavoidable detrimental consequences for humans, wildlife, water, and soil environments. Hence, the development of more convenient and efficient pesticide residue (PR) detection methods is of paramount importance. Visual detecting approaches have acquired a lot of interest among different sensing systems due to inherent advantages in terms of simplicity, speed, sensitivity, and eco-friendliness. Furthermore, various detections have been proven to enable real-life PR surveillance in environment water. Fluorometric (FL), colourimetric (CL), and enzyme-inhibition (EI) techniques have emerged as viable options. These sensing technologies do not need complex operating processes or specialist equipment, and the simple colour change allows for visual monitoring of the sensing result. Visual sensing techniques for on-site detection of PR in water environments are discussed in this paper. This paper further reviews prior research on the integration of CL, FL, and EI-based techniques with nanoparticles (NPs), quantum dots (QDs), and metal-organic frameworks (MOFs). Smartphone detection technologies for PRs are also reviewed. Finally, conventional methods and nanoparticle (NPs) based strategies for the detection of PRs are compared.
Collapse
Affiliation(s)
- Eliasu Issaka
- School of Environmental Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mary Adumo Wariboko
- School of Medicine, Faculty of Dermatology and Venereology, Jiangsu University, Zhenjiang 212013, PR China
| | | | | |
Collapse
|
21
|
Psotta C, Chaturvedi V, Gonzalez-Martinez JF, Sotres J, Falk M. Portable Prussian Blue-Based Sensor for Bacterial Detection in Urine. SENSORS (BASEL, SWITZERLAND) 2022; 23:388. [PMID: 36616986 PMCID: PMC9823789 DOI: 10.3390/s23010388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Bacterial infections can affect the skin, lungs, blood, and brain, and are among the leading causes of mortality globally. Early infection detection is critical in diagnosis and treatment but is a time- and work-consuming process taking several days, creating a hitherto unmet need to develop simple, rapid, and accurate methods for bacterial detection at the point of care. The most frequent type of bacterial infection is infection of the urinary tract. Here, we present a wireless-enabled, portable, potentiometric sensor for E. coli. E. coli was chosen as a model bacterium since it is the most common cause of urinary tract infections. The sensing principle is based on reduction of Prussian blue by the metabolic activity of the bacteria, detected by monitoring the potential of the sensor, transferring the sensor signal via Bluetooth, and recording the output on a laptop or a mobile phone. In sensing of bacteria in an artificial urine medium, E. coli was detected in ~4 h (237 ± 19 min; n = 4) and in less than 0.5 h (21 ± 7 min, n = 3) using initial E. coli concentrations of ~103 and 105 cells mL-1, respectively, which is under or on the limit for classification of a urinary tract infection. Detection of E. coli was also demonstrated in authentic urine samples with bacteria concentration as low as 104 cells mL-1, with a similar response recorded between urine samples collected from different volunteers as well as from morning and afternoon urine samples.
Collapse
Affiliation(s)
- Carolin Psotta
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
- Aptusens AB, 29394 Kyrkhult, Sweden
| | - Vivek Chaturvedi
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
- Biofilms-Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Juan F. Gonzalez-Martinez
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
- Biofilms-Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Javier Sotres
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
- Biofilms-Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Magnus Falk
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
- Biofilms-Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| |
Collapse
|
22
|
Tarara M, Tzanavaras PD, Tsogas GZ. Development of a Paper-Based Analytical Method for the Colorimetric Determination of Calcium in Saliva Samples. SENSORS (BASEL, SWITZERLAND) 2022; 23:s23010198. [PMID: 36616795 PMCID: PMC9824073 DOI: 10.3390/s23010198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/12/2023]
Abstract
A novel, rapid, and facile method for the colorimetric determination of calcium using micro-analytical paper-based devices (μ-PADs) was developed. The proposed analytical method utilizes the color differences developing, after the addition of calcium, on the surface of the devices because of the complexation reaction of calcium with Methylthymol Blue (MTB) at room temperature, in alkaline pH. The devices were manufactured with chromatographic paper, using wax barriers, and the analytical protocol was easily implemented without the need of any experimental apparatus except for a simple imaging device. The user must regulate the pH, add the solutions on the paper, and measure the color intensity of the formed Ca(II)-MTB complex with a flatbed scanner. The experimental conditions for optimum color development, the possible interfering substances, and the reliability of the paper devices in different preserving conditions were optimized, with satisfactory results. The method exhibited acceptable detection limits (2.9 mg L-1) with sufficiently good precision, which varied from 4.2% (intra-day) to 6.4% (inter-day). Saliva samples from healthy volunteers were successfully analyzed, and the calcium levels were calculated in the range of 30.71 to 84.15 mg L-1.
Collapse
|
23
|
Sengupta J, Hussain CM. Decadal Journey of CNT-Based Analytical Biosensing Platforms in the Detection of Human Viruses. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4132. [PMID: 36500755 PMCID: PMC9738197 DOI: 10.3390/nano12234132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
It has been proven that viral infections pose a serious hazard to humans and also affect social health, including morbidity and mental suffering, as illustrated by the COVID-19 pandemic. The early detection and isolation of virally infected people are, thus, required to control the spread of viruses. Due to the outstanding and unparalleled properties of nanomaterials, numerous biosensors were developed for the early detection of viral diseases via sensitive, minimally invasive, and simple procedures. To that aim, viral detection technologies based on carbon nanotubes (CNTs) are being developed as viable alternatives to existing diagnostic approaches. This article summarizes the advancements in CNT-based biosensors since the last decade in the detection of different human viruses, namely, SARS-CoV-2, dengue, influenza, human immunodeficiency virus (HIV), and hepatitis. Finally, the shortcomings and benefits of CNT-based biosensors for the detection of viruses are outlined and discussed.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|