1
|
Vu TH, Yu BJ, Kim MI. Choline Oxidase-Incorporated ATRP-Based Cerium Nanogels as Nanozymes for Colorimetric Detection of Hydrogen Peroxide and Choline. BIOSENSORS 2024; 14:563. [PMID: 39727828 DOI: 10.3390/bios14120563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Choline is an important molecule in monitoring food safety and infant nutrition. Here, we report Ce nanogels synthesized by atom transfer radical polymerization (ATRP) employing Ce-coordinated acryloyl-lysine polymer brushes (Ce@SiO2 NGs) as highly efficient cascade nanozymes for colorimetric detection of choline. The synthesized Ce@SiO2 NGs demonstrated remarkable peroxidase-like activity with a porous exterior, which are essential to entrap choline oxidase (COx) to yield COx@Ce@SiO2 NGs and construct a cascade reaction system to detect choline. Immobilized COx catalyzed the oxidation of choline in food samples to produce H2O2, which subsequently induced the oxidation of chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) to produce blue color signals. This method enabled the selective and sensitive detection of target choline with a satisfactory linear range of 4-400 μM, which is sufficient to analyze foodborne choline. The practical utility of the COx@Ce@SiO2 NG-based assay was successfully validated to determine choline spiked in commercially available milk and infant formula with high accuracy and precision values. This approach provides a simple and affordable method of choline detection and has the potential to lead to more developments in ATRP-based nanozymes for diverse biosensing applications.
Collapse
Affiliation(s)
- Trung Hieu Vu
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea
| | - Byung Jo Yu
- Low-Carbon Transition R&D Department, Research Institute of Sustainable Development Technology, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea
| |
Collapse
|
2
|
Adimule V, Dv S, Sharma K, Manhas N, Bathula C. Development of Highest Value of the Measured Efficiency of Mesoporous Petal Shaped Europium (III) Doped Cobalt Tetroxide@Cupric Oxide Hybrid Nanomaterials for Enhanced Room Temperature Photoluminescence and Fluorescence Decay Properties. J Fluoresc 2024; 34:2707-2723. [PMID: 37897516 DOI: 10.1007/s10895-023-03471-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023]
Abstract
In our work, a novel series of europium (III) (Eu3+) (5, 10 and 15 wt %) doped cobalt tetroxide@cupric oxide (Co3O4@CuO) nanomaterials (NMs) were synthesized by facile coprecipitation method. The synthesized NMs were characterized by XRD (X-ray diffraction), FT-IR (Fourier transform infrared), UV (ultraviolet)-visible absorption spectra, XPS (X-ray photoelectron), BET (Brunauer-Emmett-Teller) analytical methods. Crystal structure studies revealed the formation of polycrystalline nature with monoclinic and cubic phase. The morphology studies of Eu3+x:Co3O4@CuO (x = 5, 10 and 15 wt %) showed petal shape nanoparticles (NPs) with agglomeration. Redshift in optical absorption spectra appeared with a significant impact on the optical band gap as Eu3+ concentration increases on Co3O4@CuO bimetallic oxide NMs. The chemical composition and valence state of the elements confirmed from XPS studies detected the presence of Eu, Cu, Co, O and C elements. An increase in the pore size and surface area resulted as the Eu3+ concentration increased on Co3O4@CuO NMs. However, room temperature photoluminescence (RTPL) spectra of Co3O4@CuO bimetallic oxide NMs at two different excitations (λ excitation = 280 nm, 320 nm) showed sharp, strong emission intensities located at near ultraviolet (NUV) region and weak emissions detected at far ultraviolet (FUV) regions of the RTPL spectrum. Further, visible range emission intensities were displayed by Eu3+:Co3O4@CuO (5, 10 and 15 wt %) NMs when exited at 280 nm. The characteristic white light emission peaks in the visible range of the RTPL spectra showed intense blue, green and orange colours. Emission intensity increases with an increase in Eu3+ concentration on Co3O4@CuO bimetallic oxide NMs. The fluorescence (FL) decay spectra of Eu3+ 10wt% and 15 wt%: Co3O4@CuO NMs showed a decay lifetime of 2.54 and 2.31 ns (ns) attributed to the dynamic, ultrafast excitation energy transfer between Eu3+ (dopant) and Co3O4@CuO (host) NMs. It is proposed that enhanced RTPL emission intensity and FL decay behavior of Eu3+x:Co3O4@CuO NMs closely related to the change in the optical band gap, variation in the crystallite size, formation of more number of oxygen vacancies in the crystal structure of hybrid nanomaterials.
Collapse
Affiliation(s)
- Vinayak Adimule
- Department of Chemistry, Angadi Institute of Technology and Management (AITM), Savagaon Road, Belagavi, 590009, Karnataka, India.
| | - Sunitha Dv
- Department of Physics, School of Applied Sciences, REVA University, Bangalore, 560064, Karnataka, India
| | - Kalpana Sharma
- Department of Physics, M S Ramaiah Institute of Technology, MSR Nagar, Bangalore, 560054, Karnataka, India
| | - Nidhi Manhas
- Chemistry Discipline, School of Sciences, Indira Gandhi National Open University (IGNOU), Maidan Garhi, 110068, New Delhi, India
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| |
Collapse
|
3
|
d’Alessandro N, Coccia F, Vitali LA, Rastelli G, Cinosi A, Mascitti A, Tonucci L. Cu-ZnO Embedded in a Polydopamine Shell for the Generation of Antibacterial Surgical Face Masks. Molecules 2024; 29:4512. [PMID: 39339506 PMCID: PMC11434467 DOI: 10.3390/molecules29184512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
A new easy protocol to functionalize the middle layer of commercial surgical face masks (FMs) with Zn and Cu oxides is proposed in order to obtain antibacterial personal protective equipment. Zinc and copper oxides were synthesized embedded in a polydopamine (PDA) shell as potential antibacterial agents; they were analyzed by XRD and TEM, revealing, in all the cases, the formation of metal oxide nanoparticles (NPs). PDA is a natural polymer appreciated for its simple and rapid synthesis, biocompatibility, and high functionalization; it is used in this work as an organic matrix that, in addition to stabilizing NPs, also acts as a diluent in the functionalization step, decreasing the metal loading on the polypropylene (PP) surface. The functionalized middle layers of the FMs were characterized by SEM, XRD, FTIR, and TXRF and tested in their bacterial-growth-inhibiting effect against Klebsiella pneumoniae and Staphylococcus aureus. Among all functionalizing agents, Cu2O-doped-ZnO NPs enclosed in PDA shell, prepared by an ultrasound-assisted method, showed the best antibacterial effect, even at low metal loading, without changing the hydrophobicity of the FM. This approach offers a sustainable solution by prolonging FM lifespan and reducing material waste.
Collapse
Affiliation(s)
- Nicola d’Alessandro
- Department of Engineering and Geology, “G. d’Annunzio” University of Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy; (N.d.); (A.M.)
- TEMA Research Center, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- UdA-TechLab Research Center, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesca Coccia
- Department of Socio-Economic, Managerial and Statistical Studies, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Luca Agostino Vitali
- School of Pharmacy, University of Camerino via Gentile III da Varano, 62032 Camerino, Italy;
| | - Giorgia Rastelli
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy;
| | - Amedeo Cinosi
- G.N.R. s.r.l., Via Torino 7, 28010 Agrate Conturbia, Italy;
| | - Andrea Mascitti
- Department of Engineering and Geology, “G. d’Annunzio” University of Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy; (N.d.); (A.M.)
| | - Lucia Tonucci
- TEMA Research Center, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Department of Socio-Economic, Managerial and Statistical Studies, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|
4
|
Feng K, Wang G, Wang S, Ma J, Wu H, Ma M, Zhang Y. Breaking the pH Limitation of Nanozymes: Mechanisms, Methods, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401619. [PMID: 38615261 DOI: 10.1002/adma.202401619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Although nanozymes have drawn great attention over the past decade, the activities of peroxidase-like, oxidase-like, and catalase-like nanozymes are often pH dependent with elusive mechanism, which largely restricts their application. Therefore, a systematical discussion on the pH-related catalytic mechanisms of nanozymes together with the methods to overcome this limitation is in need. In this review, various nanozymes exhibiting pH-dependent catalytic activities are collected and the root causes for their pH dependence are comprehensively analyzed. Subsequently, regulatory concepts including catalytic environment reconstruction and direct catalytic activity improvement to break this pH restriction are summarized. Moreover, applications of pH-independent nanozymes in sensing, disease therapy, and pollutant degradation are overviewed. Finally, current challenges and future opportunities on the development of pH-independent nanozymes are suggested. It is anticipated that this review will promote the further design of pH-independent nanozymes and broaden their application range with higher efficiency.
Collapse
Affiliation(s)
- Kaizheng Feng
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Guancheng Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Shi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Jingyuan Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Haoan Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Ming Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| |
Collapse
|
5
|
Chen S, Zheng Y, Gong J, Mo S, Ren Y, Xu J, Lu M. Core-shell structured lignin-stabilized silver nanoprisms for colorimetric detection of sulfur ions. Int J Biol Macromol 2024; 260:129626. [PMID: 38266862 DOI: 10.1016/j.ijbiomac.2024.129626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Widespread occurrence of sulfides in domestic and industrial wastewater contributes to environmental pollution and poses risks to human health. Therefore, the development of highly selective, sensitive, and rapid sulfur ion (S2-) detection probes in aquatic ecosystems is of paramount importance. In this study, lignin-stabilized silver nanoprisms (EHL@AgNPRs) were prepared using the seed growth and self-assembly methods. Based on this, a novel, high-performance, and environmentally friendly S2- colorimetric detection method was proposed. Lignin is believed to coat the surface of AgNPRs through cation-π and electrostatic interactions, acting as an excellent dispersant and stabilizer to prevent aggregation and shape deformation. This allows AgNPRs to maintain localized surface plasmon resonance (LSPR) characteristics and superior colorimetric sensing sensitivity towards S2- even after 30 d. The EHL@AgNPRs exhibited remarkable selectivity towards S2- with a minimum detection limit of 41.3 nM. The conjugation of lignin with AgNPRs offers a highly promising approach for the rapid detection of S2- in natural aquatic environments and for the valorization of lignin.
Collapse
Affiliation(s)
- Shiyang Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530000, People's Republic of China
| | - Yao Zheng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530000, People's Republic of China
| | - Jianyu Gong
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530000, People's Republic of China
| | - Shuhua Mo
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530000, People's Republic of China
| | - Yuechen Ren
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530000, People's Republic of China
| | - Junran Xu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530000, People's Republic of China
| | - Minsheng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530000, People's Republic of China.
| |
Collapse
|
6
|
Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307337. [PMID: 37724878 DOI: 10.1002/adma.202307337] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.
Collapse
Affiliation(s)
- Jingqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Peng Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huayuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shiwei Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
7
|
Wang J, Wu R, Liu Z, Qi L, Xu H, Yang H, Li Y, Liu L, Feng G, Zhang L. Core-Shell Structured Nanozyme with PDA-Mediated Enhanced Antioxidant Efficiency to Treat Early Intervertebral Disc Degeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5103-5119. [PMID: 38233333 DOI: 10.1021/acsami.3c15938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Early intervention during intervertebral disc degeneration (IDD) plays a vital role in inhibiting its deterioration and activating the regenerative process. Aiming at the high oxidative stress (OS) in the IDD microenvironment, a core-shell structured nanozyme composed of Co-doped NiO nanoparticle (CNO) as the core encapsulated with a polydopamine (PDA) shell, named PDA@CNO, was constructed, hoping to regulate the pathological environment. The results indicated that the coexistence of abundant Ni3+/Ni2+and Co3+/Co2+redox couples in CNO provided rich catalytic sites; meanwhile, the quinone and catechol groups in the PDA shell could enable the proton-coupled electron transfer, thus endowing the PDA@CNO nanozyme with multiple antioxidative enzyme-like activities to scavenge •O2-, H2O2, and •OH efficiently. Under OS conditions in vitro, PDA@CNO could effectively reduce the intracellular ROS in nucleus pulposus (NP) into friendly H2O and O2, to protect NP cells from stagnant proliferation, abnormal metabolism (senescence, mitochondria dysfunction, and impaired redox homeostasis), and inflammation, thereby reconstructing the extracellular matrix (ECM) homeostasis. The in vivo local injection experiments further proved the desirable therapeutic effects of the PDA@CNO nanozyme in a rat IDD model, suggesting great potential in prohibiting IDD from deterioration.
Collapse
Affiliation(s)
- Jing Wang
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Ruibang Wu
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Zheng Liu
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Lin Qi
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Huilun Xu
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Hao Yang
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yubao Li
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Limin Liu
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Ganjun Feng
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Chen GY, Chai TQ, Wang JL, Yang FQ. Recent advances in the colorimetric and fluorescence analysis of bioactive small-molecule compounds based on the enzyme-like activity of nanomaterials. J Pharm Biomed Anal 2023; 236:115695. [PMID: 37672902 DOI: 10.1016/j.jpba.2023.115695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Nanomaterials with enzyme-like activity have been widely used in the construction of colorimetric and fluorescence sensors due to their advantages of cost-effectiveness, high stability, good biocompatibility, and ease of modification. Furthermore, the colorimetric and fluorescence sensors, which are effective approaches for detecting bioactive small-molecule compounds, have been extensively explored due to their simple operation and high sensitivity. Recent significant researches have focused on designing various sensors based on nanozymes with peroxidase- and oxidase-like activity for the colorimetric and fluorescence analysis of different analytes. In this review, recent developments (from 2018 to present) in the colorimetric and fluorescent analysis of bioactive small-molecule compounds based on the enzyme-like activity of nanomaterials were summarized. In addition, the challenges and design strategies in developing colorimetric and fluorescent assays with high performance and specific sensing were discussed.
Collapse
Affiliation(s)
- Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Tong-Qing Chai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Jia-Li Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
9
|
Mohammadpour Z, Askari E, Shokati F, Hoseini HS, Kamankesh M, Zare Y, Rhee KY. Synthesis of Fe-Doped Peroxidase Mimetic Nanozymes from Natural Hemoglobin for Colorimetric Biosensing and In Vitro Anticancer Effects. BIOSENSORS 2023; 13:583. [PMID: 37366948 DOI: 10.3390/bios13060583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Despite their efficiency and specificity, the instability of natural enzymes in harsh conditions has inspired researchers to replace them with nanomaterials. In the present study, extracted hemoglobin from blood biowastes was hydrothermally converted to catalytically active carbon nanoparticles (BDNPs). Their application as nanozymes for the colorimetric biosensing of H2O2 and glucose and selective cancer cell-killing ability was demonstrated. Particles that were prepared at 100 °C (BDNP-100) showed the highest peroxidase mimetic activity, with Michaelis-Menten constants (Km) of 11.8 mM and 0.121 mM and maximum reaction rates (Vmax) of 8.56 × 10-8 mol L-1 s-1 and 0.538 × 10-8 mol L-1 s-1, for H2O2 and TMB, respectively. The cascade catalytic reactions, catalyzed by glucose oxidase and BDNP-100, served as the basis for the sensitive and selective colorimetric glucose determination. A linear range of 50-700 µM, a response time of 4 min, a limit of detection (3σ/N) of 40 µM, and a limit of quantification (10σ/N) of 134 µM was achieved. In addition, the reactive oxygen species (ROS)-generating ability of BDNP-100 was employed for evaluating its potential in cancer therapy. Human breast cancer cells (MCF-7), in the forms of monolayer cell cultures and 3D spheroids, were studied by MTT, apoptosis, and ROS assays. The in vitro cellular experiments showed dose-dependent cytotoxicity of BDNP-100 toward MCF-7 cells in the presence of 50 µM of exogenous H2O2. However, no obvious damage was induced to normal cells in the same experimental conditions, verifying the selective cancer cell-killing ability of BDNP-100.
Collapse
Affiliation(s)
- Zahra Mohammadpour
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Esfandyar Askari
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Farhad Shokati
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Hosna Sadat Hoseini
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mojtaba Kamankesh
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Yasser Zare
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
10
|
Wang M, Zhu P, Liu S, Chen Y, Liang D, Liu Y, Chen W, Du L, Wu C. Application of Nanozymes in Environmental Monitoring, Management, and Protection. BIOSENSORS 2023; 13:314. [PMID: 36979526 PMCID: PMC10046694 DOI: 10.3390/bios13030314] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Nanozymes are nanomaterials with enzyme-like activity, possessing the unique properties of nanomaterials and natural enzyme-like catalytic functions. Nanozymes are catalytically active, stable, tunable, recyclable, and versatile. Therefore, increasing attention has been paid in the fields of environmental science and life sciences. In this review, we focused on the most recent applications of nanozymes for environmental monitoring, environmental management, and environmental protection. We firstly introduce the tuning catalytic activity of nanozymes according to some crucial factors such as size and shape, composition and doping, and surface coating. Then, the application of nanozymes in environmental fields are introduced in detail. Nanozymes can not only be used to detect inorganic ions, molecules, organics, and foodborne pathogenic bacteria but are also involved in the degradation of phenolic compounds, dyes, and antibiotics. The capability of nanozymes was also reported for assisting air purification, constructing biofuel cells, and application in marine antibacterial fouling removal. Finally, the current challenges and future trends of nanozymes toward environmental fields are proposed and discussed.
Collapse
Affiliation(s)
- Miaomiao Wang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Ping Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Shuge Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Yating Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Dongxin Liang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yage Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Wei Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| |
Collapse
|