1
|
Hasani R, Ehsani A, Hassanzadazar H, Aminzare M, Khezerlou A. Copper metal-organic framework for selective detection of florfenicol based on fluorescence sensing in chicken meat. Food Chem X 2024; 23:101598. [PMID: 39071929 PMCID: PMC11283086 DOI: 10.1016/j.fochx.2024.101598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Using a hydrothermal technique, a highly sensitive metal-organic Cu-MOFs sensor has been created to detect florfenicol (FFC) fluorescent in chicken meat. The sensor has demonstrated the ability to respond to the presence of FFC in an aqueous solution with accuracy and selectivity, as evidenced by an increase in fluorescence intensity. The interactions and adsorption mechanism based on hydrogen bonding, π- π, and n-π interactions demonstrate the high sensitivity and specificity of Cu-MOFs towards. FFC was detected quantitatively with a recovery of 96.48-98.79% in chicken meat samples. Within a broad linear range of 1-50 μM, the Cu-MOFs nanosensor exhibits a fast response time of 1 min, a low limit of detection (LOD) of 2.93 μM, and a limit of quantification (LOQ) of 8.80 μM. The potential applicability of the Cu-MOFs nanosensor for the detection of FFC in food matrices is confirmed by the results obtained with high-performance liquid chromatography (HPLC). Chemical compounds Copper (II) nitrate (PubChem CID: 18616); Terephthalic acid (PubChem CID: 7489); Polyvinyl pyrrolidone (PubChem CID: 486422059); N, N-dimethylformamide (PubChem CID: 6228); Ethyl alcohol (PubChem CID: 702); Hydrochloric acid (PubChem CID: 313); Sodium hydroxide (PubChem CID: 14798); Acetic acid (PubChem CID: 176); Trichloroacetic acid (PubChem CID: 6421); Florfenicol (PubChem CID: 114811).
Collapse
Affiliation(s)
- Roshanak Hasani
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Hassanzadazar
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Majid Aminzare
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arezou Khezerlou
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Mazaheri Y, Jafari M, Eghbaljoo H, Mirzaei G, Sadighara P, Zeinali T. A method validation of determination of melamine in marketed infant formula and milk powder of Iran. Sci Rep 2024; 14:19701. [PMID: 39181916 PMCID: PMC11344837 DOI: 10.1038/s41598-024-70745-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Melamine is a recognized food contaminant that can arise incidentally or intentionally in specific categories of food. This study aimed to validate the melamine detection and quantification in infant formula and milk powders and also analyzed 40 samples consist of infant formula and milk powders from commercially available food products, from different geographic regions of Iran. The approximate content of melamine in samples was measured by High-performance liquid chromatography-ultra violet (HPLC-UV) system. A calibration curve (R2 = 0.9925) was established for detection of melamine in the range of 0.1-1.2 μg mL-1. Limit of quantification and limit of detection were 1 μg mL-1 and 3 μg mL-1, respectively. The presence of melamine in infant formula and milk powdered was investigated and it was observed that the amount of melamine in samples of infant formulas and milk powders was 0.001-0.095 mg kg-1 and 0.001-0.004 mg kg-1, respectively. These values were found to be within the prescribed limits by the European Union and Codex Alimentarius Commission legislation. It is important to note that the consumption of these dairy products, which contain low content of melamine, does not pose any significant threat to consumer health. Furthermore, the results of the risk assessment confirmed this issue.
Collapse
Affiliation(s)
- Yeganeh Mazaheri
- Food Safety Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences and Health Services, Tehran, Iran
| | - Maryam Jafari
- Food Safety Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences and Health Services, Tehran, Iran
| | - Hadi Eghbaljoo
- Food Safety Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences and Health Services, Tehran, Iran
| | - Ghazal Mirzaei
- Food Safety Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences and Health Services, Tehran, Iran
| | - Parisa Sadighara
- Food Safety Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences and Health Services, Tehran, Iran.
| | - Tayebeh Zeinali
- Department of Public Health, School of Health, Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
3
|
Algethami FK, Marwani HM, Raza N, Asiri AM, Rahman MM. Non-enzymatic electrochemical detection of melamine in dairy products by using CuO decorated carbon nanotubes nanocomposites. Food Chem 2024; 445:138792. [PMID: 38387321 DOI: 10.1016/j.foodchem.2024.138792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Melamine, a typical nitrogen enriched organic compound exhibiting great potential in the industrial sector, is exploited as an adulterant to inflate protein levels in dairy products, can pose serious threats to humans and therefore necessitates its swift detection and precise quantification at its first exposure. In this investigation, sensitive and reliable sensor probes were fabricated using CuO nanoparticles and its nanocomposites (NCs) with carbon nanotubes (CNTs), carbon black (CB), and graphene oxide (GO) to promptly quantify melamine in dairy products. The optical, morphological, and structural characteristics of the CuO-CNT NCs were achieved using diverse instrumental techniques including UV-visible spectroscopy, transmission electron microscopy, X- ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy and etc. The fabrication of glassy carbon electrodes (GCE) was accomplished by coating CuO-CNT NCs through a binder (5 % nafion). These sensor probes demonstrated outstanding electrochemical sensor performance with CuO-CNT NCs/Nafion/GCE sensor probe in terms of very low limit of detection (0.27 nM), good linearity range (0.05-0.5 nM), and relatively high sensitivity (93.924 µA µM-1 m-2) for melamine under optimized experimental conditions. Furthermore, the performance of CuO-CNT NCs/Nafion/GCE coated sensor probes was practically validated for the selective melamine detection in the real sample analysis of commercially available milk brands, which revealed significant figures of merit in a very short response time of 10 s. From the results, it was concluded that the current study might be helpful in the development of an efficient commercial sensor based on ultra-sensitive transition metal oxides in the field of health care monitoring, food stuffs in a broader scale as well as food applications.
Collapse
Affiliation(s)
- Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Hadi M Marwani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Nadeem Raza
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Department of Chemistry, Government Alamdar Hussain Islamia Degree College Multan, Pakistan
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohammed M Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
4
|
Wei Y, Li W, Han Y, Xiong Y, Kuang Y, Zhang J. CdTe based water-soluble fluorescent probe for rapid detection of zilpaterol in swine urine and pork. Food Chem 2024; 445:138668. [PMID: 38367555 DOI: 10.1016/j.foodchem.2024.138668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Zilpaterol hydrochloride (zilpaterol) is used in animal feed as it can increase the lean meat mass. However, consuming zilpaterol-containing animal products may damage human health. Therefore, rapid detection of zilpaterol is attracting increasing research attention. This study aimed to developed a fast, accurate, and ultrasensitive fluorescence immunoassay based on CdTe quantum dots (QDs). A CdTe QD fluorescence sensor was synthesized from thioglycolic acid using a simple hydrothermal method. The morphology and structure of the CdTe QDs were characterized using transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy. The detection limits of our method in swine urine and pork samples were 0.5 μg/L and 1.2 μg/kg, respectively. A wide linear range of 0.1-10000 μg/L (R2 = 0.996) was achieved. Both within-run precision (CVw) and between-run precision (CVb) were ≤ 10 %. The method was then successfully applied for the analysis of zilpaterol contents in swine urine and pork samples.
Collapse
Affiliation(s)
- Yihua Wei
- Institute for Quality & Safety and standards of Agricultural products rearch, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang 330200, China
| | - Weihong Li
- Institute for Quality & Safety and standards of Agricultural products rearch, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang 330200, China
| | - Yan Han
- Institute for Quality & Safety and standards of Agricultural products rearch, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang 330200, China
| | - Yan Xiong
- Institute for Quality & Safety and standards of Agricultural products rearch, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang 330200, China
| | - Yuanying Kuang
- Institute for Quality & Safety and standards of Agricultural products rearch, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang 330200, China
| | - Jinyan Zhang
- Institute for Quality & Safety and standards of Agricultural products rearch, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang 330200, China.
| |
Collapse
|
5
|
Abedi-Firoozjah R, Alizadeh-Sani M, Zare L, Rostami O, Azimi Salim S, Assadpour E, Azizi-Lalabadi M, Zhang F, Lin X, Jafari SM. State-of-the-art nanosensors and kits for the detection of antibiotic residues in milk and dairy products. Adv Colloid Interface Sci 2024; 328:103164. [PMID: 38703455 DOI: 10.1016/j.cis.2024.103164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Antibiotic resistance is increasingly seen as a future concern, but antibiotics are still commonly used in animals, leading to their accumulation in humans through the food chain and posing health risks. The development of nanomaterials has opened up possibilities for creating new sensing strategies to detect antibiotic residues, resulting in the emergence of innovative nanobiosensors with different benefits like rapidity, simplicity, accuracy, sensitivity, specificity, and precision. Therefore, this comprehensive review provides pertinent and current insights into nanomaterials-based electrochemical/optical sensors for the detection of antibitic residues (ANBr) across milk and dairy products. Here, we first discuss the commonly used ANBs in real products, the significance of ANBr, and also their binding/biological properties. Then, we provide an overview of the role of using different nanomaterials on the development of advanced nanobiosensors like fluorescence-based, colorimetric, surface-enhanced Raman scattering, surface plasmon resonance, and several important electrochemical nanobiosensors relying on different kinds of electrodes. The enhancement of ANB electrochemical behavior for detection is also outlined, along with a concise overview of the utilization of (bio)recognition units. Ultimately, this paper offers a perspective on the future concepts of this research field and commercialized nanomaterial-based sensors to help upgrade the sensing techniques for ANBr in dairy products.
Collapse
Affiliation(s)
- Reza Abedi-Firoozjah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmood Alizadeh-Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Zare
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Rostami
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shamimeh Azimi Salim
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maryam Azizi-Lalabadi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran..
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
6
|
Alizadeh Sani M, Khezerlou A, McClements DJ. Zeolitic imidazolate frameworks (ZIFs): Advanced nanostructured materials to enhance the functional performance of food packaging materials. Adv Colloid Interface Sci 2024; 327:103153. [PMID: 38604082 DOI: 10.1016/j.cis.2024.103153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/01/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
Zeolite imidazole framework (ZIF) materials are a class of metallic organic framework (MOF) materials that have several potential applications in the food and other industries. They consist of metal ions or clusters of metal ions coordinated with imidazole-based organic linkers, creating a three-dimensional solid structure with well-defined pores and channels. ZIFs possess several important features, including high porosity, tunable pore sizes, high surface areas, adjustable surface chemistries, and good stabilities. These characteristics make them highly versatile materials that can be used in a variety of applications, including smart and active food packaging. Based on their controllable compositions, dimensions, and pore sizes, the properties of ZIFs can be tailored for a diverse range of applications, including energy storage, sensing, separation, encapsulation, and catalysis. In this article, we focus on recent progress and potential applications of ZIFs in food packaging materials. Previous studies have shown that ZIFs can significantly improve the optical, mechanical, barrier, thermal, sustainability, and preservative properties of packaging materials. Moreover, ZIFs can be used as carriers to encapsulate, protect, and control the release of bioactive agents in packaging materials. ZIFs are capable of selectively adsorbing and releasing molecules based on their size, shape, and surface properties. These unique characteristics make them particularly suitable for smart or active food packaging applications. By selectively removing gases (such as oxygen, carbon dioxide, water, or ethylene) ZIFs can improve the shelf life and quality of packaged foods. In addition, they can be employed to control the growth of spoilage microorganisms and minimize oxidation reactions, thereby enhancing the freshness and extending the shelf life of foods. They may also be used to create sensors capable of detecting and indicating food spoilage. For instance, ZIFs that change color or release specific compounds when spoilage products are present can provide visual or chemical indications of food deterioration. This feature is especially valuable in ensuring the safety and quality of packaged food, as it enables consumers and retailers to easily identify spoiled products. ZIFs can be functionalized using various additives, including antioxidants, antimicrobials, pigments, and flavors, which can improve the preservative and sensory properties of packaged foods. Moreover, ZIF-based packaging materials offer sustainability benefits. Unlike traditional plastic packaging, ZIFs are biodegradable and can easily be disposed of without causing harm to the environment, thereby reducing the adverse effects of plastic waste materials. The application of ZIFs in smart/active food packaging offers exciting possibilities for enhancing the shelf life, quality, and safety of foods. With further research and development, ZIF-based packaging could become a sustainable alternative to plastic-based packaging in the food industry. An important aim of this review article is to stimulate further research on the development and application of ZIFs within food packaging materials.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
7
|
Akhavan-Mahdavi S, Mirbagheri MS, Assadpour E, Sani MA, Zhang F, Jafari SM. Electrospun nanofiber-based sensors for the detection of chemical and biological contaminants/hazards in the food industries. Adv Colloid Interface Sci 2024; 325:103111. [PMID: 38367336 DOI: 10.1016/j.cis.2024.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Food contamination reveals a major health risk globally and presents a significant challenge for the food industry. It can stem from biological contaminants like pathogens, parasites, and viruses, or chemical contaminants such as heavy metals, pesticides, drugs, and hormones. There is also the possibility of naturally occurring hazardous chemicals. Consequently, the development of sensing platforms has become crucial to accurately and rapidly identify contaminants and hazards in food products. Electrospun nanofibers (NFs) offer a promising solution due to their unique three-dimensional architecture, large specific surface area, and ease of preparation. Moreover, NFs exhibit excellent biocompatibility, degradability, and adaptability, making monitoring more convenient and environmentally friendly. These characteristics also significantly reduce the detection process of contaminants. NF-based sensors have the ability to detect a wide range of biological, chemicals, and physical hazards. Recent research on NFs-based sensors for the detection of various food contaminants/hazards, such as pathogens, pesticide/drugs residues, toxins, allergens, and heavy metals, is presented in this review.
Collapse
Affiliation(s)
- Sahar Akhavan-Mahdavi
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mahnaz Sadat Mirbagheri
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
8
|
Tavassoli M, Khezerlou A, Sani MA, Hashemi M, Firoozy S, Ehsani A, Khodaiyan F, Adibi S, Noori SMA, McClements DJ. Methylcellulose/chitosan nanofiber-based composites doped with lactoferrin-loaded Ag-MOF nanoparticles for the preservation of fresh apple. Int J Biol Macromol 2024; 259:129182. [PMID: 38176499 DOI: 10.1016/j.ijbiomac.2023.129182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/14/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Increasing demand for high-quality fresh fruits and vegetables has led to the development of innovative active packaging materials that exhibit controlled release of antimicrobial/antioxidant agents. In this study, composite biopolymer films consisting of methylcellulose (MC) and chitosan nanofibers (ChNF) were fabricated, which contained lactoferrin (LAC)-loaded silver-metal organic framework (Ag-MOF) nanoparticles. The results indicated that the nanoparticles were uniformly distributed throughout the biopolymer films, which led to improvements in tensile strength (56.1 ± 3.2 MPa), thermal stability, water solubility, swelling index, water vapor barrier properties (from 2.2 ± 2.1 to 1.9 ± 1.9 × 10-11 g. m/m2. s. Pa), and UV-shielding effects. The Ag-MOF-LAC2% films also exhibited strong and long-lasting antibacterial activity against E. coli (19.8 ± 5.2 mm) and S. aureus (20.1 ± 3.2 mm), which was attributed to the slow release of antimicrobial LAC from the films. The composite films were shown to maintain the fresh appearance of apples for at least seven days, which was attributed to their antimicrobial and antioxidant activities. Consequently, these composite films have the potential in the assembly of innovative active packaging materials for protecting fresh fruits and vegetables. However, further work is required to ensure their safety and economic viability.
Collapse
Affiliation(s)
- Milad Tavassoli
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmood Alizadeh Sani
- Student's Scientific Research Center, Department of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Solmaz Firoozy
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab Rashid, Tabriz, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj, Iran
| | - Shiva Adibi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Mohammad Ali Noori
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | | |
Collapse
|
9
|
Khezerlou A, Tavassoli M, Alizadeh Sani M, Ghasempour Z, Ehsani A, Khalilzadeh B. Rapid and sensitive detection of tetracycline residue in food samples using Cr(III)-MOF fluorescent sensor. Food Chem X 2023; 20:100883. [PMID: 38144784 PMCID: PMC10740053 DOI: 10.1016/j.fochx.2023.100883] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 12/26/2023] Open
Abstract
As tetracycline antibiotics were used in the poultry sector, their residue in edible animal products may adversely affect food safety and human health. The development of selective and sensitive tetracycline sensors has garnered a lot of interest due to the complexity of food samples. Therefore, a fluorescent sensing probe based on chromium(III)-metal-organic framework was developed for the rapid detection of tetracycline. After the addition of tetracycline, blue emission at λem 410 nm was effectively quenched by the interaction between TC and Cr(III)-metal-organic framework material. Under optimized conditions (sensor concentration: 30 mg/L and pH: 10.0), the sensing probe showed a fast response time (1 min), and low detection limit (0.78 ng/mL) with a linear range (5-45 ng/mL). Interestingly, the Cr(III)-metal-organic framework was successfully applied to quantity tetracycline residue in chicken meat and egg samples with recoveries of 95.17-06.93%. To deduce, our work can provide a new strategy for the direct detection of tetracycline in food samples.
Collapse
Affiliation(s)
- Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Tavassoli
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Ghasempour
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz 51666-14711, Iran
| |
Collapse
|
10
|
Yang Q, Deng X, Niu B, Lin H, Jing J, Chen Q. Qualitative and semi-quantitative analysis of melamine in liquid milk based on surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123143. [PMID: 37478706 DOI: 10.1016/j.saa.2023.123143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Melamine is one of the common limited contaminations in dairy products. The traditional detection method has a long period and complicated pretreatment process. The rapid detection method is the better method to solve the screening of limited contaminations. In this paper, taking melamine as the research object, the surface enhanced Raman spectrum of melamine in liquid milk were collected by portable Raman spectrometer, and melamine was qualitatively identified and semi-quantitatively analyzed by Raman characteristic peak and Raman intensity, and a simple and efficient rapid screening method for limited contaminations was developed. The limit of detection is 0.25 mg/kg. The probability of detection is 100% at 2.5 mg/kg, which is the same between the two laboratories, indicating that the semi-quantitative method has good repeatability. The method of melamine proposed in this study can meet the rapid screening requirements of limited contaminations at the maximum residue limit, and has a good application prospect.
Collapse
Affiliation(s)
- Qiaoling Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xiaojun Deng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Jing Jing
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
11
|
Khezerlou A, Tavassoli M, Alizadeh-Sani M, Hashemi M, Ehsani A, Bangar SP. Multifunctional food packaging materials: Lactoferrin loaded Cr-MOF in films-based gelatin/κ-carrageenan for food packaging applications. Int J Biol Macromol 2023; 251:126334. [PMID: 37586631 DOI: 10.1016/j.ijbiomac.2023.126334] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/17/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
In this study, antimicrobial biocomposite films based on gelatin-κ-carrageenan (Gκ) with 1, 2 and 4 % lactoferrin (L) loaded chromium-based metal-organic frameworks (L@Cr-MOFs) nanoparticles were synthesized by casting methods. The addition of L loaded Cr-MOFs into Gκ based films increased elongation at break from 2.19 to 14.92 % and decreased the tensile strength from 65.1 to 31.22 MPa. L@Cr-MOFs addition reduced swelling index (from 105 to 70.8 %), water solubility (from 61.3 to 34.63 %) and water vapor permeability (from 2.46 to 2.19 × 10-11 g. m/m2. s). When the additional amount was 4 wt%, the Gκ/L@Cr-MOFs films showed antibacterial effects against Escherichia coli and Staphylococcus aureus with the inhibition zone of 19.7 mm and 20.2 mm, respectively. In addition, strawberries preservation trial shown that the Gκ/L@Cr-MOFs films delayed the growth of spoilage molds on the surface of fruits. This research indicated that Gκ/L@Cr-MOFs are promising active packaging materials for the preservation of perishable fruits.
Collapse
Affiliation(s)
- Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Tavassoli
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmood Alizadeh-Sani
- Student's Scientific Research Center, Department of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, South Carolina, 29634, USA.
| |
Collapse
|
12
|
Abedini A, Salimi M, Mazaheri Y, Sadighara P, Alizadeh Sani M, Assadpour E, Jafari SM. Assessment of cheese frauds, and relevant detection methods: A systematic review. Food Chem X 2023; 19:100825. [PMID: 37780280 PMCID: PMC10534187 DOI: 10.1016/j.fochx.2023.100825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 10/03/2023] Open
Abstract
Dairy products are widely consumed in the world due to their nutritional and functional characteristics. This group of food products are consumed by all age groups due to their health-giving properties. One of these products is cheese which has a high price compared to other dairy products. Because of this, it can be prone to fraud all over the world. Fraud in food products threatens the world's food safety and can cause serious damage to human health. There are many concerns among food authorities in the world about the fraud of food products. FDA, WHO, and the European Commission provide different legislations and definitions for fraud. The purpose of this review is to identify the most susceptible cheese type for fraud and effective methods for evaluating fraud in all types of cheeses. For this, we examined the Web of Science, Scopus, PubMed, and ScienceDirect databases. Mozzarella cheese had the largest share among all cheeses in terms of adulteration due to its many uses. Also, the methods used to evaluate different types of cheese frauds were PCR, Spectrometry, stable isotope, image analysis, electrophoretic, ELISA, sensors, sensory analysis, near-infrared and NMR. The methods that were most used in detecting fraud were PCR and spectrometry methods. Also, the least used method was sensory evaluation.
Collapse
Affiliation(s)
- Amirhossein Abedini
- Students Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahla Salimi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yeganeh Mazaheri
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|