1
|
Suriyanarayanan S, Kandregula GR, Ramanujam K, Nicholls IA. Sustainable synthesis of hierarchically grown chloramphenicol‐imprinted poly(caffeic acid) nanostructured films. J Appl Polym Sci 2023. [DOI: 10.1002/app.53560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Subramanian Suriyanarayanan
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry Linnaeus University Kalmar Sweden
| | - Ganapathi Rao Kandregula
- Clean Energy Laboratory, Department of Chemistry Indian Institute of Technology Madras Chennai India
| | - Kothandaraman Ramanujam
- Clean Energy Laboratory, Department of Chemistry Indian Institute of Technology Madras Chennai India
| | - Ian A. Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry Linnaeus University Kalmar Sweden
| |
Collapse
|
2
|
Tan N, Chen C, Ji K, Liao S, Liu Y, Hu L, He L, Ding Z. Preparation and Properties of Hollow Magnetic Liquid Crystal Molecularly Imprinted Polymers as Silybin Sustained‐release Carriers. ChemistrySelect 2021. [DOI: 10.1002/slct.202101786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ni Tan
- School of Chemistry and Chemical Engineering University of South China 28 Hengqi Road Hengyang Hunan 421001 China
| | - Can Chen
- School of Chemistry and Chemical Engineering University of South China 28 Hengqi Road Hengyang Hunan 421001 China
| | - Kang Ji
- School of Chemistry and Chemical Engineering University of South China 28 Hengqi Road Hengyang Hunan 421001 China
| | - Sen Liao
- School of Chemistry and Chemical Engineering University of South China 28 Hengqi Road Hengyang Hunan 421001 China
| | - Yaqing Liu
- School of Chemistry and Chemical Engineering University of South China 28 Hengqi Road Hengyang Hunan 421001 China
| | - Lin Hu
- School of Chemistry and Chemical Engineering University of South China 28 Hengqi Road Hengyang Hunan 421001 China
| | - Leqing He
- School of Chemistry and Chemical Engineering University of South China 28 Hengqi Road Hengyang Hunan 421001 China
| | - Zui Ding
- School of Chemistry and Chemical Engineering University of South China 28 Hengqi Road Hengyang Hunan 421001 China
| |
Collapse
|
3
|
Zhang LP, Wei ZH, He SN, Huang YP, Liu ZS. Preparation, characterization, and application of soluble liquid crystalline molecularly imprinted polymer in electrochemical sensor. Anal Bioanal Chem 2020; 412:7321-7332. [PMID: 32785773 DOI: 10.1007/s00216-020-02866-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 11/28/2022]
Abstract
A novel soluble molecularly imprinted polymer (SMIP) without chemical cross-linker was successfully synthesized. The quinine (QN), which the structure was similar to the template, was chosen as the immobile template to improve the affinity of MIP. 4-Methyl phenyl dicyclohexyl ethylene (MPDE) was used as the liquid crystal (LC) monomer to increase the rigid of the composite. The cooperative effect of QN and MPDE was demonstrated by comparing with the conventional MIP, which synthesized without QN and MPDE. The polymerization conditions of SMIP including the ratio of MAA to MPDE, template to functional monomer, and HQN to QN were also optimized. Moreover, the characterizations of the SMIP were investigated by the transmission electron microscopy (TEM), field emission scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and nitrogen adsorption. In binding behavior, the SMIP presented the maximum adsorption capacity (0.37 ± 0.06 mmol/g) and imprinting factor (3.44 ± 0.25). And above all, the obtained polymer exhibited the solubility in the organic solution. In addition, the proposed SMIP as the electrochemical sensor exhibited a significant conductivity and sensitivity with the detection limit of 0.33 μM for HQN, the recoveries for the sample analysis varied from 97.4 to 100.8%, and the intra-day precision and inter-day precision were within 5.5% and 12.5%, respectively. It turned out that the SMIP had demonstrated more excellent potential than the traditional insoluble MIP in the development of the membrane-based electrochemical sensors.Graphical abstract.
Collapse
Affiliation(s)
- Li-Ping Zhang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Ze-Hui Wei
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Su-Na He
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yan-Ping Huang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Zhao-Sheng Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
4
|
Nicholls IA, Wiklander JG. Towards Peptide and Protein Recognition by Antibody Mimicking Synthetic Polymers – Background, State of the Art, and Future Outlook. Aust J Chem 2020. [DOI: 10.1071/ch20020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antibody–peptide/protein interactions are instrumental for many processes in the pharmaceutical and biotechnology industries and as tools for biomedical and biochemical research. The recent development of molecularly imprinted polymer nanoparticles displaying antibody-like recognition of peptides and proteins offers the possibility for substituting antibodies with these robust materials for applications where the structural integrity and function of antibodies is compromised by temperature, pH, solvent, etc. The background to the development of this class of antibody-mimicking material and the state-of-the-art in their synthesis and application is presented in this review.
Collapse
|
5
|
Semenova D, Silina YE. The Role of Nanoanalytics in the Development of Organic-Inorganic Nanohybrids-Seeing Nanomaterials as They Are. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1673. [PMID: 31771202 PMCID: PMC6955912 DOI: 10.3390/nano9121673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022]
Abstract
The functional properties of organic-inorganic (O-I) hybrids can be easily tuned by combining system components and parameters, making this class of novel nanomaterials a crucial element in various application fields. Unfortunately, the manufacturing of organic-inorganic nanohybrids still suffers from mechanical instability and insufficient synthesis reproducibility. The control of the composition and structure of nanosurfaces themselves is a specific analytical challenge and plays an important role in the future reproducibility of hybrid nanomaterials surface properties and response. Therefore, appropriate and sufficient analytical methodologies and technical guidance for control of their synthesis, characterization and standardization of the final product quality at the nanoscale level should be established. In this review, we summarize and compare the analytical merit of the modern analytical methods, viz. Fourier transform infrared spectroscopy (FTIR), RAMAN spectroscopy, surface plasmon resonance (SPR) and several mass spectrometry (MS)-based techniques, that is, inductively coupled plasma mass spectrometry (ICP-MS), single particle ICP-MS (sp-ICP-MS), laser ablation coupled ICP-MS (LA-ICP-MS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), liquid chromatography mass spectrometry (LC-MS) utilized for characterization of O-I nanohybrids. Special attention is given to laser desorption ionization mass spectrometry (LDI-MS) as a reliable nanoanalytical platform for characterization of O-I hybrid nanomaterials, their quality, design verification and validation.
Collapse
Affiliation(s)
- Daria Semenova
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark;
| | - Yuliya E. Silina
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
6
|
Güngör Ö, Özcan İ, Ali Erdoğan M, Ateş B, Köytepe S. Differential Pulse Voltammetric (DPV) Determination of the Local Anesthetic Bupivacaine using Polyimide Membrane-Based Electrodes. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1646752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Öznur Güngör
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| | - İmren Özcan
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| | - Mehmet Ali Erdoğan
- Department of Anaesthesiology and Reanimation, School of Medicine, Inonu University, Malatya, Turkey
| | - Burhan Ateş
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| | - Süleyman Köytepe
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| |
Collapse
|
7
|
Ma Y, Li X, Li W, Liu Z. Glycan-Imprinted Magnetic Nanoparticle-Based SELEX for Efficient Screening of Glycoprotein-Binding Aptamers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40918-40926. [PMID: 30379519 DOI: 10.1021/acsami.8b14441] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nucleic acid aptamers, as useful alternatives of antibodies, have found a large range of promising applications such as affinity separation and bioassays. The screening of aptamers is critical for their applications. Aptamers are often screened by an in vitro methodology called SELEX (systematic evolution of ligands by exponential enrichment). Although numerous SELEX methods have been established to facilitate the selection, new efficient selection methods are still much needed. Molecularly imprinted polymers, which are antibody alternatives at the material level and competitors of aptamers, have not been used as a platform for aptamer selection yet so far. In this study, a glycan-imprinted magnetic nanoparticles (MNPs)-based SELEX was developed to efficiently screen aptamers against glycoproteins. Glycan-imprinted MNPs were used as an affinity interface to bind target glycoprotein, and then the target glycoprotein-bound MNPs were used as an affinity substrate for aptamer selection. The glycan-imprinted MNPs were synthesized by a state-of-the-art imprinting approach called boronate affinity controllable oriented surface imprinting. The glycan-imprinted MNPs exhibited high affinity and specificity and therefore allowed preferential binding toward target glycoproteins while excluding unwanted species. Two representative glycoproteins, including RNase B and transferrin, were employed as target glycoproteins, and aptamers with high affinity and specificity toward the two target glycoproteins were screened out in 3 rounds. This method exhibited some merits, such as high affinity, fast speed, and avoiding negative screening. Therefore, the glycan-imprinted MNP-based SELEX approach holds great values for the efficient screening of high-performance aptamers.
Collapse
Affiliation(s)
- Yanyan Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Xinglin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Wei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
8
|
Hierarchical polymeric architectures through molecular imprinting in liquid crystalline environments. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Parisi OI, Scrivano L, Candamano S, Ruffo M, Vattimo AF, Spanedda MV, Puoci F. Molecularly Imprinted Microrods via Mesophase Polymerization. Molecules 2017; 23:E63. [PMID: 29283366 PMCID: PMC6017483 DOI: 10.3390/molecules23010063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 11/17/2022] Open
Abstract
The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs) with a rod-like geometry via "mesophase polymerization". The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS), water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs) were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.
Collapse
Affiliation(s)
- Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Luca Scrivano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Sebastiano Candamano
- Department of Environmental and Chemical Engineering, University of Calabria, 87036 Rende (CS), Italy.
| | - Mariarosa Ruffo
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Anna Francesca Vattimo
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | | | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy.
| |
Collapse
|
10
|
Preparation of molecularly imprinted polymers specific to glycoproteins, glycans and monosaccharides via boronate affinity controllable–oriented surface imprinting. Nat Protoc 2017; 12:964-987. [DOI: 10.1038/nprot.2017.015] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Grinyte R, Barroso J, Möller M, Saa L, Pavlov V. Microbead QD-ELISA: Microbead ELISA Using Biocatalytic Formation of Quantum Dots for Ultra High Sensitive Optical and Electrochemical Detection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29252-29260. [PMID: 27753498 DOI: 10.1021/acsami.6b08362] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electrochemical detection strategies employing semiconductor quantum dots (QDs) open up new opportunities for highly sensitive detection of biological targets. We designed a new assay based on microbead linked enzymatic generation of CdS QDs (Microbead QD-ELISA) and employed it in optical and electrochemical affinity assays for the cancer biomarker superoxide dismutase 2 (SOD2). Biotinylated antibodies against SOD2 were immobilized on the surface of polyvinyl chloride microbeads bearing streptavidin. In order to prevent any non-specific adsorption the microbeads were further blocked with bovine serum albumin. The analyte, SOD2 was captured on microbeads and labeled with alkaline phosphatase-conjugated antibody linked with mouse antibody against SOD2. Hydrolysis of para-nitrophenylphosphate by immobilized alkaline phosphatase triggered the rapid formation of phosphate-stabilized CdS QDs on the surface of microbeads. The resulting semiconductor nanoparticles were detected by fluorescence spectroscopy, microscopy, and square-wave voltammetry (SWV). The electrochemical assay based on the detection with square-wave voltammograms of Cd2+ ions originating from immobilized CdS QDs showed linearity up to 45 ng mL-1, and the limit of SOD2 detection equal to 0.44 ng mL-1 (1.96 × 10-11 M). This detection limit is lower by 2 orders of magnitude in comparison with that of other previously published assays for superoxide dismutase. The electrochemical assay was validated with HepG2 (Human hepatocellular carcinoma) cell lysate containing SOD2.
Collapse
Affiliation(s)
- Ruta Grinyte
- CIC biomaGUNE , Paseo de Miramón 182, Donostia-San Sebastián 20009, Spain
| | - Javier Barroso
- CIC biomaGUNE , Paseo de Miramón 182, Donostia-San Sebastián 20009, Spain
| | - Marco Möller
- CIC biomaGUNE , Paseo de Miramón 182, Donostia-San Sebastián 20009, Spain
| | - Laura Saa
- CIC biomaGUNE , Paseo de Miramón 182, Donostia-San Sebastián 20009, Spain
| | - Valeri Pavlov
- CIC biomaGUNE , Paseo de Miramón 182, Donostia-San Sebastián 20009, Spain
| |
Collapse
|