1
|
Qu K, Morioka K, Nakamura K, Yamamoto S, Hemmi A, Shoji A, Nakajima H. Development of a C-reactive protein quantification method based on flow rate measurement of an ink solution pushed out by oxygen gas generated by catalase reaction. Mikrochim Acta 2023; 191:24. [PMID: 38091091 DOI: 10.1007/s00604-023-06108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023]
Abstract
A novel determination method for protein biomarkers based on on-chip flow rate measurement was developed using a microchip with organic photodiodes (OPDs). This quantitative method is based on the flow rate measurement of an ink solution pushed out by oxygen gas generated through catalase reaction. The amount of oxygen gas generated in the sample reservoir is dependent on the concentration of the analyte; therefore, the flow rate of the ink solution is also dependent on the concentration of the analyte. The concentration of the analyte can thus be estimated by measurement of the ink solution flow rate. The ink solution flow rate was estimated by measuring the migration time of the ink solution between two points using two OPDs placed below the microchannel. The principle of this method was demonstrated by the measurement of catalase using the microchip. In addition, the developed method was applied to the determination of C-reactive protein (CRP), a biomarker of inflammation, based on a catalase-linked immunosorbent assay (C-LISA). The limit of detection for CRP was 0.20 µg/mL. The method was also applied to the determination of CRP in human serum, and the quantitative values obtained by this method were in excellent agreement with those obtained by the conventional enzyme-linked immunosorbent assay (ELISA) method. The developed method does not require a photodetector with high sensitivity and is thus capable of downsizing; therefore, this will be useful for on-site analyses such as point-of-care testing and field measurements.
Collapse
Affiliation(s)
- Kuizhi Qu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Kazuhiro Morioka
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Konoka Nakamura
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shoji Yamamoto
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Akihide Hemmi
- Mebius Advanced Technology Ltd., 3-31-6-105 Nishiogi-Kita, Suginami-Ku, Tokyo, 167-0042, Japan
| | - Atsushi Shoji
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hizuru Nakajima
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
2
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
3
|
Amoresi RAC, Roza NAV, Mazon T. Applying CeO2 nanorods in flexible electrochemical immunosensor to detect C-reactive protein. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
4
|
Self-assembly strategy to reduce non-specific adsorption for the development of high sensitivity quantitative immunoassay. Anal Chim Acta 2022; 1229:340367. [PMID: 36156225 DOI: 10.1016/j.aca.2022.340367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022]
Abstract
The development of functionalized surfaces with low non-specific adsorption is important for their biomedical applications. To inhibit non-specific adsorption on glass substrate, we designed a novel optical biochip by modifying a layer of dense negatively charged film (SO32-) on its substrate surface via self-assembly. Compared with the untreated glass substrate, it reduced the adsorption by about 300-fold or 400-fold by poly (styrene sulfonic acid) sodium salt (PSS), or meso-tetra (4-sulfonatophenyl) porphine dihydrochloride (TSPP) on individually the modified glass substrate. Considering the effect of fluorescence resonance energy transfer (FRET) between TSPP and the QDs in solution by mixing, a strategy of 2-layer of TSPP followed by 4-layer of PSS was designed to modify the glass for preparing biochips. Under the optimized conditions, the biochip on functionalized glass substrate co-treated with TSPP and PSS realized the sensitive quantitative detection of C-reactive protein (CRP) based on a quantum dot fluorescence immunosorbent assay (QD-FLISA). The limit of detection (LOD) for CRP achieved 0.69 ng/mL with the range of 1-1,000 ng/mL using TSPP and PSS co-treated glass substrate surface, which was respectively about 1.9-fold and 7.5-fold more sensitive to the PSS-modified biochip and the TSPP-modified biochip. This work demonstrated an effective and convenient strategy to obtain biochips with low non-specific adsorption properties on functionalized surfaces, thus providing a new approach for creating ultra-high sensitivity microchannels or microarrays on glass substrates.
Collapse
|
5
|
Lv Y, Wang P, Li J, Li N, Xu D, Wu R, Shen H, Li LS. Establishment of a Ca(II) ion-quantum dots fluorescence signal amplification sensor for high-sensitivity biomarker detection. Anal Chim Acta 2022; 1237:340534. [DOI: 10.1016/j.aca.2022.340534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/05/2022] [Accepted: 10/16/2022] [Indexed: 11/01/2022]
|
6
|
Sheen HJ, Panigrahi B, Kuo TR, Hsu WC, Chung PS, Xie QZ, Lin CY, Chang YS, Lin CT, Fan YJ. Electrochemical biosensor with electrokinetics-assisted molecular trapping for enhancing C-reactive protein detection. Biosens Bioelectron 2022; 210:114338. [PMID: 35550939 DOI: 10.1016/j.bios.2022.114338] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 11/15/2022]
Abstract
C-Reactive protein (CRP) is an essential biomarker relevant to various disease prognoses. Current biosensors require a significant amount of time for detecting CRP. To address this issue, this work proposes electrokinetic flow-assisted molecule trapping integrated with an impedance biosensor, where a driving signal in terms of a gated sine wave is provided to circularly arranged electrodes which detect proteins. To verify the biosensor's efficacy, protein aggregation on the electrode surface was evaluated through a fluorescence analysis and measurement of the electrochemical impedance spectrum (EIS). The fluorescence analysis with avidin showed that target samples largely accumulated on the electrode surface upon provision of the driving signal. The EIS measurement of CRP accumulation on the electrode surface further confirmed a significant electrokinetic phenomenon at the electrode/electrolyte interface. Even at the low CRP concentration of 10 pg/ml, the proposed device's sensitivity and reliability were as high as 3.92 pg/ml with a signal-to noise ratio (SNR) of ≥3, respectively. In addition, the protein detection time (without considering the preparation time) was minimized to as low as 90 s with the proposed device. This device's advantage is its minimal time consumption, and simple drop-analysis process flow; hence, it was used for monitoring clinical serum samples.
Collapse
Affiliation(s)
- Horn-Jiunn Sheen
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Bivas Panigrahi
- Department of Refrigeration, Air Conditioning and Energy Engineering, National Chin-Yi University of Science and Technology, Taiping Dist., Taichung City, 41170, Taiwan.
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, International Ph.D. Program in Biomedical Engineering, Taipei Medical University, 250 Wuxing St., Taipei, 11031, Taiwan
| | - Wei-Chen Hsu
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Pei-Shan Chung
- Department of Bioengineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Qiu-Zhe Xie
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Ching-Yu Lin
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Shuang Ho Hospital, 291 Zhongzheng Rd, Zhonghe District, New Taipei City 23561, Taiwan, Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan
| | - Chih-Ting Lin
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering, International PhD Program in Biomedical Engineering, International PhD Program for Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing St., Taipei, 11031, Taiwan.
| |
Collapse
|
7
|
Barbi W, Kumar S, Sinha S, Askari M, Priya S, Kumar SJ. Reliability of C-reactive Protein as a Biomarker for Cardiovascular and Oral Diseases in Young and Old Subjects. J Pharm Bioallied Sci 2021; 13:S1458-S1461. [PMID: 35018009 PMCID: PMC8686985 DOI: 10.4103/jpbs.jpbs_251_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 06/16/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Increased C-reactive protein (CRP) levels are associated with various diseases such as cardiovascular diseases (CVDs), periodontal diseases, and other inflammatory diseases and can be an effective biomarker for predicting future risks of periodontal diseases. AIMS The present trial was carried out to evaluate if CRP levels are lower in healthy and young individuals as compared to individuals with high body mass index (BMI), gingival index, and CVDs by assessing CRP levels in young and old individuals (more than 45 years). MATERIALS AND METHODS A total of 174 participants were recruited for the study and were divided into three following groups: Less than 45 years healthy participants (n = 124), more than 45 years healthy participants, and more 45-year-old participants with CVDs (n = 25). The collected data were subjected to the statistical analysis. RESULTS In Group I, females had a CRP level of 8476 ± 6.86 pg, females of Group II had a CRP value of 13,262 ± 3.76, and in females of Group III CRP value was 22,761 ± 6.24 pg. These values, respectively, for males were 8494 ± 7.68, 13,840 ± 4.82, and 13,839 ± 3.8. In smokers, the CRP values for Group I, II, and III were 29,012 ± 14.66, 12,568 ± 4.16, and 16,826 ± 3.42, respectively. CONCLUSION CRP levels were higher in males as compared to females. Higher BMI was associated with higher values of CRP. The participants with higher BMI presented higher CRP values irrespective of age.
Collapse
Affiliation(s)
- Wagisha Barbi
- Department of Dentistry, All India Institute of Medical Sciences, Patna, Bihar, India
| | - Saurav Kumar
- Department of Oral and Maxillofacial Pathology and Microbiology, ITS CDSR Dental College and Hospital, Ghaziabad, Uttar Pradesh, India
| | - Sonal Sinha
- Department of Conservative Dentistry and Endodontics, Dr. B. R. Ambedkar Institute of Dental Sciences and Hospital, Patna, Bihar, India
| | - Mehdi Askari
- Dental Officer, ECHS Polyclinic station HQ, Gopalpur, Cantonment, Odisha, India
| | - Swati Priya
- Department of Conservative Dentistry and Endodontics, Dr. B. R. Ambedkar Institute of Dental Sciences and Hospital, Patna, Bihar, India,Address for correspondence: Dr. Swati Priya, Department of Conservative Dentistry and Endodontics, Dr. B. R. Ambedkar Institute of Dental Sciences and Hospital, Patna, Bihar, India. E-mail:
| | - Shubham J Kumar
- Department of Dentistry, Sarjug Dental College and Hospital, Darbhanga, Bihar, India
| |
Collapse
|
8
|
Abstract
Emerging research in biosensors has attracted much attention worldwide, particularly in response to the recent pandemic outbreak of coronavirus disease 2019 (COVID-19). Nevertheless, initiating research in biosensing applied to the diagnosis of diseases is still challenging for researchers, be it in the preferences of biosensor platforms, selection of biomarkers, detection strategies, or other aspects (e.g., cutoff values) to fulfill the clinical purpose. There are two sides to the development of a diagnostic tool: the biosensor development side and the clinical side. From the development side, the research engineers seek the typical characteristics of a biosensor: sensitivity, selectivity, linearity, stability, and reproducibility. On the other side are the physicians that expect a diagnostic tool that provides fast acquisition of patient information to obtain an early diagnosis or an efficient patient stratification, which consequently allows for making assertive and efficient clinical decisions. The development of diagnostic devices always involves assay developer researchers working as pivots to bridge both sides whose role is to find detection strategies suitable to the clinical needs by understanding (1) the intended use of the technology and its basic principle and (2) the preferable type of test: qualitative or quantitative, sample matrix challenges, biomarker(s) threshold (cutoff value), and if the system requires a mono- or multiplex assay format. This review highlights the challenges for the development of biosensors for clinical assessment and its broad application in multidisciplinary fields. This review paper highlights the following biosensor technologies: magnetoresistive (MR)-based, transistor-based, quartz crystal microbalance (QCM), and optical-based biosensors. Its working mechanisms are discussed with their pros and cons. The article also gives an overview of the most critical parameters that are optimized by developing a diagnostic tool.
Collapse
|
9
|
Biosensors Designed for Clinical Applications. Biomedicines 2021; 9:biomedicines9070702. [PMID: 34206405 PMCID: PMC8301448 DOI: 10.3390/biomedicines9070702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023] Open
Abstract
Emerging and validated biomarkers promise to revolutionize clinical practice, shifting the emphasis away from the management of chronic disease towards prevention, early diagnosis and early intervention. The challenge of detecting these low abundance protein and nucleic acid biomarkers within the clinical context demands the development of highly sensitive, even single molecule, assays that are also capable of selectively measuring a small number of defined analytes in complex samples such as whole blood, interstitial fluid, saliva or urine. Success relies on significant innovations in nanomaterials, bioreceptor engineering, transduction strategies and microfluidics. Primarily using examples from our work, this article discusses some recent advance in the selective and sensitive detection of disease biomarkers, highlights key innovations in sensor materials and identifies issues and challenges that need to be carefully considered especially for researchers entering the field.
Collapse
|
10
|
Adesina A, Mashazi P. Oriented Antibody Covalent Immobilization for Label-Free Impedimetric Detection of C-Reactive Protein via Direct and Sandwich Immunoassays. Front Chem 2021; 9:587142. [PMID: 34150714 PMCID: PMC8207519 DOI: 10.3389/fchem.2021.587142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
The detection and monitoring of biological markers as disease indicators in a simple manner is a subject of international interest. In this work, we report two simple and sensitive label-free impedimetric immunoassays for the detection of C-reactive protein (CRP). The gold electrode modified with boronic acid-terminated self-assembled monolayers afforded oriented immobilization of capture glycosylated antibody (antihuman CRP monoclonal antibody, mAb). This antibody-modified surface was able to capture human CRP protein, and the impedance signal showed linear dependence with CRP concentration. We confirmed the immobilization of anti-CRP mAb using surface sensitive X-ray photoelectron spectroscopy (XPS) and electrochemical impedance. The oriented covalent immobilization of mAb was achieved using glycosylated Fc (fragment, crystallizable) region specific to boronic acid. The direct immunoassay exhibited a linear curve for concentration range up to 100 ng ml-1. The limit of detection (LoD) of 2.9 ng ml-1, limit of quantification (LoQ) of 9.66 ng ml-1, and sensitivity of 0.585 kΩ ng-1 ml cm-2 were obtained. The sandwich immunoassay was carried out by capturing polyclonal anti-CRP antibody (pAb) onto the CRP antigen immunoreaction. The impedance signal after pAb capture also showed linear dependence with CRP antigen concentration and acted as a CRP antigen detection signal amplifier. The detection of the CRP antigen using sandwich pAb immunoassay improved LoD to 1.2 ng ml-1, LoQ to 3.97 ng ml-1, and enhanced the sensitivity to 0.885 kΩ ng-1 ml cm-2. The real sample analysis, using newborn calf serum, showed excellent selectivity and % recovery for the human CRP ranging from 91.2 to 96.5%. The method was reproducible to 4.5% for direct immunoassay and 2.3% for sandwich immunoassay.
Collapse
Affiliation(s)
- Abiola Adesina
- Department of Chemistry, Rhodes University, Makhanda, South Africa
| | - Philani Mashazi
- Department of Chemistry, Rhodes University, Makhanda, South Africa.,Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
| |
Collapse
|
11
|
|
12
|
Rho D, Kim S. Demonstration of a Label-Free and Low-Cost Optical Cavity-Based Biosensor Using Streptavidin and C-Reactive Protein. BIOSENSORS-BASEL 2020; 11:bios11010004. [PMID: 33374119 PMCID: PMC7824430 DOI: 10.3390/bios11010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 01/18/2023]
Abstract
An optical cavity-based biosensor (OCB) has been developed for point-of-care (POC) applications. This label-free biosensor employs low-cost components and simple fabrication processes to lower the overall cost while achieving high sensitivity using a differential detection method. To experimentally demonstrate its limit of detection (LOD), we conducted biosensing experiments with streptavidin and C-reactive protein (CRP). The optical cavity structure was optimized further for better sensitivity and easier fluid control. We utilized the polymer swelling property to fine-tune the optical cavity width, which significantly improved the success rate to produce measurable samples. Four different concentrations of streptavidin were tested in triplicate, and the LOD of the OCB was determined to be 1.35 nM. The OCB also successfully detected three different concentrations of human CRP using biotinylated CRP antibody. The LOD for CRP detection was 377 pM. All measurements were done using a small sample volume of 15 µL within 30 min. By reducing the sensing area, improving the functionalization and passivation processes, and increasing the sample volume, the LOD of the OCB are estimated to be reduced further to the femto-molar range. Overall, the demonstrated capability of the OCB in the present work shows great potential to be used as a promising POC biosensor.
Collapse
|
13
|
Baillargeon KR, Murray LP, Deraney RN, Mace CR. High-Yielding Separation and Collection of Plasma from Whole Blood Using Passive Filtration. Anal Chem 2020; 92:16245-16252. [DOI: 10.1021/acs.analchem.0c04127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Keith R. Baillargeon
- Department of Chemistry, Laboratory for Living Devices, Tufts University, Medford, Massachusetts 02155, United States
| | - Lara P. Murray
- Department of Chemistry, Laboratory for Living Devices, Tufts University, Medford, Massachusetts 02155, United States
| | - Rachel N. Deraney
- Department of Chemistry, Laboratory for Living Devices, Tufts University, Medford, Massachusetts 02155, United States
| | - Charles R. Mace
- Department of Chemistry, Laboratory for Living Devices, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
14
|
Molinero-Fernández Á, Moreno-Guzmán M, López MÁ, Escarpa A. An array-based electrochemical magneto-immunosensor for early neonatal sepsis diagnostic: Fast and accurate determination of C-reactive protein in whole blood and plasma samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Balayan S, Chauhan N, Chandra R, Kuchhal NK, Jain U. Recent advances in developing biosensing based platforms for neonatal sepsis. Biosens Bioelectron 2020; 169:112552. [PMID: 32931992 DOI: 10.1016/j.bios.2020.112552] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
Neonatal sepsis is a bloodstream infection primarily caused by Escherichia coli (E. coli), Group B Streptococcus (GBS), Listeria monocytogenes, Haemophilus influenzae, S. aureus, Klebsiella spp. and non-typhoidal Salmonella bacteria. Neonatal Sepsis is referred as a critical response to the infection in the neonatal period that can lead to the failure of body organs and thereby causing damage to the tissues resulting in death of the neonates. Nearly 4 million deaths across the world are occurred due to neonatal sepsis infections. In order to prevent the bloodstream infections in the neonates, it is indispensable to diagnose the disease properly for appropriate treatment during the point of care. Numerous studies have been reported to identify major biomarkers associated with neonatal sepsis including Serum Amyloid A (SAA), C - reactive protein (CRP), Procalcitonin (PCT) and Lipopolysaccharide-binding protein (LBP). Distinct diagnostic platforms have also been developed detecting the presence of bloodstream infections including electrochemical, potentiometric, and impedimetric sensors. Recently, electrochemical biosensors with the integration of nanomaterials have emerged as a better platform for neonatal sepsis biomarkers detection. This review article summarizes the diverse screening platforms, evaluation parameters, and new advances based on implications of nanomaterials for the development of biosensors detecting neonatal sepsis infections. The review further elucidates the significance and future scope of distinctive platforms which are predominantly associated with detection of neonatal sepsis.
Collapse
Affiliation(s)
- Sapna Balayan
- Amity Institute of Nanotechnology, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Nidhi Chauhan
- Amity Institute of Nanotechnology, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | | | - Utkarsh Jain
- Amity Institute of Nanotechnology, Amity University, Noida, 201313, Uttar Pradesh, India.
| |
Collapse
|
16
|
Correlation between C-reactive Protein with Malondialdehyde in Systemic Lupus Erythematosus Patients. Int J Rheumatol 2020; 2020:8078412. [PMID: 32695177 PMCID: PMC7350173 DOI: 10.1155/2020/8078412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/02/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by an inflammatory process. One of the inflammation markers that can be measured is C-reactive protein (CRP). Another indicator of inflammation is malondialdehyde (MDA), though it is still uncommon to be analyzed in SLE patients. The study looked for the MDA value and found a correlation with CRP. A cross-sectional study design with a correlative analytical was performed. CRP level data was taken from Hasan Sadikin lupus registry data, and MDA levels were analyzed from a bioarchive patient's serum. We collected the patients' data who had CRP level from Hasan Sadikin lupus registry and analysed MDA levels from the serum sample. MDA levels were analyzed using an ELISA method. The data obtained were analyzed using the Pearson correlation and Eta correlation test. The study involved 78 data patients as subjects. It was found that the median of CRP and MDA was 0.85 mg/l and 153.10 ng/ml, respectively. These results indicate that the CRP levels in SLE patients are still within normal limits. Statistical analysis showed no correlation between CRP and MDA level (r = 0.2, P > 0.05). Additionally, the correlation between CRP and MDA with organ involvement, such as lupus nephritis (LN), lupus cutaneous (LC), and lupus musculoskeletal (LM), showed no correlation (Fh < Ft). There is no correlation between CRP and MDA levels in SLE patients, and specific organ involvement of the disease does not affect the correlation.
Collapse
|
17
|
Review on electrochemical sensing strategies for C-reactive protein and cardiac troponin I detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104857] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Macwan I, Aphale A, Bhagvath P, Prasad S, Patra P. Detection of Cardiovascular CRP Protein Biomarker Using a Novel Nanofibrous Substrate. BIOSENSORS 2020; 10:E72. [PMID: 32599804 PMCID: PMC7345592 DOI: 10.3390/bios10060072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
It is known that different diseases have characteristic biomarkers that are secreted very early on, even before the symptoms have developed. Before any kind of therapeutic approach can be used, it is necessary that such biomarkers be detected at a minimum concentration in the bodily fluids. Here, we report the fabrication of an interdigitated sensing device integrated with polyvinyl alcohol (PVA) nanofibers and carbon nanotubes (CNT) for the detection of an inflammatory biomarker, C-reactive protein (CRP). The limit of detection (LOD) was achieved in a range of 100 ng mL-1 and 1 fg mL-1 in both phosphate buffered saline (PBS) and human serum (hs). Furthermore, a significant change in the electrochemical impedance from 45% to 70% (hs) and 38% to 60% (PBS) over the loading range of CRP was achieved. The finite element analysis indicates that a non-redox charge transduction at the solid/liquid interface on the electrode surface is responsible for the enhanced sensitivity. Furthermore, the fabricated biosensor consists of a large electro-active surface area, along with better charge transfer characteristics that enabled improved specific binding with CRP. This was determined both experimentally and from the simulated electrochemical impedance of the PVA nanofiber patterned gold electrode.
Collapse
Affiliation(s)
- Isaac Macwan
- Department of Electrical and Bioengineering, Fairfield University, Fairfield, CT 06824, USA
| | - Ashish Aphale
- Department of Biomedical Engineering, University of Bridgeport, Bridgeport, CT 06604, USA; (A.A.); (P.P.)
| | - Prathamesh Bhagvath
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA;
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Prabir Patra
- Department of Biomedical Engineering, University of Bridgeport, Bridgeport, CT 06604, USA; (A.A.); (P.P.)
- Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT 06604, USA
| |
Collapse
|
19
|
Gan X, Gong T, Zheng Y, Gopinath SCB, Zhao K. Electroimmunodetection of cardiac C-reactive protein for determining myocardial Injury. Biotechnol Appl Biochem 2020; 68:272-278. [PMID: 32275089 DOI: 10.1002/bab.1921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 11/07/2022]
Abstract
C-reactive protein (CRP) is an acute phase reactant to be a marker of inflammation and has been correlated with the cardiac injury. An immunoassay was performed using anti-human CRP antibody on an InterDigitated electrode (IDE) sensor to determine and specify CRP concentration for diagnosing the condition of myocardial inflammation. To promote the detection, gold nanoparticle (GNP) was seeded on the aminated-IDE surface. Anti-CRP was hitched on the GNP-seeded surface and identified the abundance of CRP. The limit of quantification was found as 100 fM, and the higher current response was noticed by increasing CRP concentrations with the sensitivity at 1 pM. Furthermore, CRP-spiked human serum did not interfere the determination of CRP and increased the current response, indicating suitability for a real-life sample. Similarly, the control experiments with nonimmune antibody Troponin I are not showing the definite current responses, proving the selective identification of CRP. This method of diagnosing is needful to determine the cardiovascular injury at the right time.
Collapse
Affiliation(s)
- Xiaoya Gan
- Department of Cardiology, Shandong Provincial Taishan Hospital, Taian, Shandong Province, China
| | - Tao Gong
- Department of Critical Medicine, Pingyi County Hospital of Traditional Chinese Medicine, Pingyi County, Linyi, Shandong Province, China
| | - Yin Zheng
- Department of Cardiology, Hainan Cancer Hospital, Xiuying District, Haikou, Hainan, China.,Hainan Chengmei International Health Management Center, Xiuying District, Haikou, Hainan, China
| | - Subash C B Gopinath
- Universiti Malaysia Perlis, Institute of Nano Electronic Engineering, Kangar, Perlis, Malaysia.,School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Ketong Zhao
- Department of Cardiology, Hainan Cancer Hospital, Xiuying District, Haikou, Hainan, China.,Hainan Chengmei International Health Management Center, Xiuying District, Haikou, Hainan, China
| |
Collapse
|
20
|
Molinero-Fernández Á, Arruza L, López MÁ, Escarpa A. On-the-fly rapid immunoassay for neonatal sepsis diagnosis: C-reactive protein accurate determination using magnetic graphene-based micromotors. Biosens Bioelectron 2020; 158:112156. [PMID: 32275206 DOI: 10.1016/j.bios.2020.112156] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/05/2020] [Accepted: 03/15/2020] [Indexed: 01/19/2023]
Abstract
Based on the exceptional and new opened biosensing possibilities of self-propelled micromotors, a micromotor-based immunoassay (MIm) has smartly been designed for C-reactive protein (CRP) determination in plasma of preterm infants with sepsis suspicion. The design of the micromotors involved the electrosynthesis of a carbon-based outer layer (for antibody functionalization), an intermediate Ni layer (for magnetic guidance and stopped flow operations) and PtNPs inner catalytic layer (for catalytic bubble propulsion). Micromotors biofunctionalization on the outer layer (using carbon black (CB), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs), and biocompatible propulsion capabilities, were carefully studied. Magnetic rGO/Ni/PtNPs micromotors exhibited the most efficient and reproducible (CV = 9%) anti-CRP functionalization, controlled stopped-flow operations as well as efficient bubble propulsion (1% H2O2, 1,5% NaCh, speed 140 μm s-1). Analytical performance of MIm was excellent, allowing the direct (without dilution), sensitive (LOD = 0.80 μg/mL), and accurate CRP determination (Er = 1%) in hardly available preterm babies' plasma samples with suspected sepsis using very low volumes (<10 μL) and in just 5 min of on-the-fly bioassay. Overall, the results obtained allowed the fast and reliable sepsis diagnostics in preterm babies' individuals with suspected sepsis, not only proving the usefulness of the approach as its potential utilization as point-of-care device for clinical analysis but drawing new horizons in extremely low sample volumes-based diagnostics.
Collapse
Affiliation(s)
- Águeda Molinero-Fernández
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - Luis Arruza
- Division of Neonatology, Child and Teenager Institute, San Carlos Clinic Hospital-IdISSC, Madrid, Spain
| | - Miguel Ángel López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain; Chemical Research Institute "Andres M. Del Rio", University of Alcala, Madrid, Spain.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain; Chemical Research Institute "Andres M. Del Rio", University of Alcala, Madrid, Spain.
| |
Collapse
|
21
|
Tran TT, Clark K, Ma W, Mulchandani A. Detection of a secreted protein biomarker for citrus Huanglongbing using a single-walled carbon nanotubes-based chemiresistive biosensor. Biosens Bioelectron 2020; 147:111766. [DOI: 10.1016/j.bios.2019.111766] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 01/17/2023]
|
22
|
Chinnadayyala SR, Park J, Kim YH, Choi SH, Lee SM, Cho WW, Lee GY, Pyun JC, Cho S. Electrochemical Detection of C-Reactive Protein in Human Serum Based on Self-Assembled Monolayer-Modified Interdigitated Wave-Shaped Electrode. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5560. [PMID: 31888286 PMCID: PMC6960938 DOI: 10.3390/s19245560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Abstract
An electrochemical capacitance immunosensor based on an interdigitated wave-shaped micro electrode array (IDWµE) for direct and label-free detection of C-reactive protein (CRP) was reported. A self-assembled monolayer (SAM) of dithiobis (succinimidyl propionate) (DTSP) was used to modify the electrode array for antibody immobilization. The SAM functionalized electrode array was characterized morphologically by atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDX). The nature of gold-sulfur interactions on SAM-treated electrode array was probed by X-ray photoelectron spectroscopy (XPS). The covalent linking of anti-CRP-antibodies onto the SAM modified electrode array was characterized morphologically through AFM, and electrochemically through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The application of phosphate-buffered saline (PBS) and human serum (HS) samples containing different concentrations of CRP in the electrode array caused changes in the electrode interfacial capacitance upon CRP binding. CRP concentrations in PBS and HS were determined quantitatively by measuring the change in capacitance (ΔC) through EIS. The electrode immobilized with anti-CRP-antibodies showed an increase in ΔC with the addition of CRP concentrations over a range of 0.01-10,000 ng mL-1. The electrode showed detection limits of 0.025 ng mL-1 and 0.23 ng mL-1 (S/N = 3) in PBS and HS, respectively. The biosensor showed a good reproducibility (relative standard deviation (RSD), 1.70%), repeatability (RSD, 1.95%), and adequate selectivity in presence of interferents towards CRP detection. The sensor also exhibited a significant storage stability of 2 weeks at 4 °C in 1× PBS.
Collapse
Affiliation(s)
| | - Jinsoo Park
- Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea;
| | - Young Hyo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Inha University, Incheon 22332, Korea;
| | - Seong Hye Choi
- Department of Neurology, School of Medicine, Inha University, Incheon 22332, Korea;
| | - Sang-Myung Lee
- Department of Chemical Engineering, Kangwon National University, Chuncheon 25341, Korea;
| | - Won Woo Cho
- Cantis Inc., Ansan-si, Gyeonggi-do 15588, Korea;
| | - Ga-Yeon Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03772, Korea; (G.-Y.L.); (J.-C.P.)
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, Seoul 03772, Korea; (G.-Y.L.); (J.-C.P.)
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Incheon 13120, Korea;
- Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea;
| |
Collapse
|
23
|
Shafiee A, Ghadiri E, Kassis J, Atala A. Nanosensors for therapeutic drug monitoring: implications for transplantation. Nanomedicine (Lond) 2019; 14:2735-2747. [PMID: 31617787 DOI: 10.2217/nnm-2019-0150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The number of patients requiring organ transplantations is exponentially increasing. New organs are either provided by healthy or deceased donors, or are grown in laboratories by tissue engineers. Post-surgical follow-up is vital for preventing any complications that can cause organ rejection. Physiological monitoring of a patient who receives newly transplanted organs is crucial. Many efforts are being made to enhance follow-up technologies for monitoring organ recipients, and point-of-care devices are beginning to emerge. Here, we describe the role of biosensors and nanosensors in improving organ transplantation efficiency, managing post-surgical follow-up and reducing overall costs. We provide an overview of the state-of-the-art biosensing technologies and offer some perspectives related to their further development.
Collapse
Affiliation(s)
- Ashkan Shafiee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Elham Ghadiri
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.,Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA.,Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Jareer Kassis
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
24
|
Albuquerque VVS, Kumar NP, Fukutani KF, Vasconcelos B, Arriaga MB, Silveira-Mattos PS, Babu S, Andrade BB. Plasma levels of C-reactive protein, matrix metalloproteinase-7 and lipopolysaccharide-binding protein distinguish active pulmonary or extrapulmonary tuberculosis from uninfected controls in children. Cytokine 2019; 123:154773. [PMID: 31299414 DOI: 10.1016/j.cyto.2019.154773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/10/2019] [Accepted: 07/04/2019] [Indexed: 02/03/2023]
Abstract
The immune profile associated with distinct clinical forms of tuberculosis (TB) has been extensively described for adult populations. Nevertheless, studies describing immune determinants of pulmonary or extrapulmonary TB (PTB or EPTB, respectively) in children are scarce. Here, we retrospectively assessed plasma levels of several mediators of inflammation in age and sex-matched children from South India presenting with PTB (n = 14) or EPTB (n = 22) as well as uninfected healthy controls (n = 19) to identify biomarkers that could accurately distinguish different TB clinical forms. Furthermore, we performed exploratory analyses testing the influence of sex on the systemic inflammatory profile. The analyses identified a biosignature of 10 biomarkers capable of distinguishing the three clinical groups simultaneously. Machine-learning decision trees indicated that C-reactive protein (CRP), matrix metalloproteinase (MMP)-7 and lipopolysaccharide-binding protein (LBP) were the markers that, when combined, displayed the highest accuracy in identifying the clinical groups. Additional exploratory analyses suggested that the disease signatures were highly influenced by sex. Therefore, sex differentially impacted status of systemic inflammation, immune activation and tissue remodeling in children with distinct clinical forms of TB. Regardless of such nuances related to biological sex, MMP-7, CRP and LBP were strong discriminators of active TB and thus could be considered as biomarkers useful in discrimination different TB clinical forms. These observations have implications on our understanding of the immunopathology of both clinical forms of TB in pediatric patients. If validated by other studies in the future, the combination of identified biomarkers may help development of point-of-care diagnostic or prognostic tools.
Collapse
Affiliation(s)
- Victor V S Albuquerque
- Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Bahia, Brazil; Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Bahia, Brazil
| | - Nathella Pavan Kumar
- National Institutes of Health, NIRT, International Center for Excellence in Research, Chennai, India
| | - Kiyoshi F Fukutani
- Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Bahia, Brazil
| | - Beatriz Vasconcelos
- Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Bahia, Brazil; Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Bahia, Brazil
| | - Maria B Arriaga
- Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Bahia, Brazil
| | - Paulo S Silveira-Mattos
- Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Bahia, Brazil
| | - Subash Babu
- National Institutes of Health, NIRT, International Center for Excellence in Research, Chennai, India; Wellcome Trust Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Bruno B Andrade
- Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Bahia, Brazil; Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Bahia, Brazil; Wellcome Trust Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Bahia, Brazil; Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
25
|
Boonkaew S, Chaiyo S, Jampasa S, Rengpipat S, Siangproh W, Chailapakul O. An origami paper-based electrochemical immunoassay for the C-reactive protein using a screen-printed carbon electrode modified with graphene and gold nanoparticles. Mikrochim Acta 2019; 186:153. [DOI: 10.1007/s00604-019-3245-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/05/2019] [Indexed: 01/21/2023]
|
26
|
Sinha A, Tai TY, Li KH, Gopinathan P, Chung YD, Sarangadharan I, Ma HP, Huang PC, Shiesh SC, Wang YL, Lee GB. An integrated microfluidic system with field-effect-transistor sensor arrays for detecting multiple cardiovascular biomarkers from clinical samples. Biosens Bioelectron 2019; 129:155-163. [PMID: 30703568 DOI: 10.1016/j.bios.2019.01.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 12/29/2022]
Abstract
Certain blood-borne biomarkers offer a potent methodology for understanding the risk of cardiovascular diseases (CVDs) with clinicians generally advocating the use of multiple biomarkers for proper risk assessment of CVDs. Herein four such CVDs biomarkers- C-reactive protein (CRP), N-terminal pro b-type natriuretic peptide (NT-proBNP), cardiac troponin I (cTnI), and fibrinogen- were rapidly (5 min) analyzed from clinical samples (~ 4 µL) on an integrated microfluidic platform equipped with 1) immobilized highly specific aptamer probes and 2) field-effect transistor (FET)-based sensor arrays. The calibration curve from the FET sensor arrays showed good agreement in the physiological concentration ranges for CRP (0.1-50 mg/L), NT-proBNP (50-10,000 pg/mL), cTnI (1-10,000 pg/mL), and fibrinogen (0.1-5 mg/mL). The developed prototype of this fully automated portable device requires minimal reagent and sample inputs and consequently shows great promise for next-generation point-of-care devices assaying multiple CVDs biomarkers in clinical samples.
Collapse
Affiliation(s)
- Anirban Sinha
- Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Tse-Yu Tai
- Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Kuang-Hsien Li
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Priya Gopinathan
- Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Da Chung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Indu Sarangadharan
- Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsi-Pin Ma
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Po-Chiun Huang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Chu Shiesh
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Lin Wang
- Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan; Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Gwo-Bin Lee
- Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan; Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
27
|
Sloan-Dennison S, Laing S, Shand NC, Graham D, Faulds K. A novel nanozyme assay utilising the catalytic activity of silver nanoparticles and SERRS. Analyst 2018; 142:2484-2490. [PMID: 28603799 DOI: 10.1039/c7an00887b] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artificial enzymes have become an increasingly interesting area of research due to their many advantages over natural protein enzymes which are expensive, difficult to isolate and unable to stand harsh environments. An important area of this research involves using metal nanoparticles as artificial enzymes, known as nanozymes, which exhibit peroxidase-like activity enabling them to catalyse the oxidation of substrates such as 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2), giving a colorimetric response. Here we exploit the catalytic activity of silver nanoparticles (Ag NPs) in a surface based silver-linked immunosorbent assay (SLISA) to detect human C-reactive protein (CRP), an inflammatory marker. Ag NPs were conjugated to antibodies with specific recognition for the corresponding target antigenic molecule, CRP, and the Ag NPs were used to catalyse the oxidation of TMB by H2O2. The resulting coloured oxidation product was detected using SERRS. We demonstrate that Ag NPs can replace the enzymes used in a conventional ELISA and a detection limit of 1.09 ng mL-1 of CRP can be achieved. It indicates the promise for SLISAs for biomarker detection and opens the way for further assays of this nature to be created. This novel assay has the potential to be optimised to detect lower levels of CRP and can be further extended for the sensitive and specific detection of other relevant biomarkers.
Collapse
Affiliation(s)
- Sian Sloan-Dennison
- Centre for Molecular Nanometrology, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, UK.
| | | | | | | | | |
Collapse
|
28
|
A novel biocompatible chitosan–Selenium nanoparticles (SeNPs) film with electrical conductivity for cardiac tissue engineering application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:151-160. [DOI: 10.1016/j.msec.2018.06.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/08/2018] [Accepted: 06/16/2018] [Indexed: 02/07/2023]
|
29
|
Occlusion phenomenon of redox probe by protein as a way of voltammetric detection of non-electroactive C-reactive protein. Biosens Bioelectron 2018; 117:232-239. [DOI: 10.1016/j.bios.2018.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 11/18/2022]
|
30
|
Stefan-van Staden RI, Mitrofan G, Ionescu-Tirgoviste C. Pattern Recognition of Diabetes Related Biomarkers. ELECTROANAL 2018. [DOI: 10.1002/elan.201800523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest; National Institute of Research for Electrochemistry and Condensed Matter, 202; Splaiul Independentei St. Bucharest 060021 Romania
- Faculty of Applied Chemistry and Materials Science; Politehnica University of Bucharest; 1-7 Polizu St., Bucharest 011061 Romania
| | - Grigorina Mitrofan
- Faculty of Applied Chemistry and Materials Science; Politehnica University of Bucharest; 1-7 Polizu St., Bucharest 011061 Romania
| | | |
Collapse
|
31
|
Madhurantakam S, Babu KJ, Rayappan JBB, Krishnan UM. Nanotechnology-based electrochemical detection strategies for hypertension markers. Biosens Bioelectron 2018; 116:67-80. [DOI: 10.1016/j.bios.2018.05.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022]
|
32
|
Bakirhan NK, Ozcelikay G, Ozkan SA. Recent progress on the sensitive detection of cardiovascular disease markers by electrochemical-based biosensors. J Pharm Biomed Anal 2018; 159:406-424. [PMID: 30036704 DOI: 10.1016/j.jpba.2018.07.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/07/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease is the most reason for deaths in all over the world. Hence, biomarkers of cardiovascular diseases are very crucial for diagnosis and management process. Biomarker detection demand is opened the important way in biosensor development field. Rapid, cheap, portable, precise, selective and sensitive biomarker sensing devices are needed at this point to detect and predict disease. A cardiac biomarker can be orderable as C-reactive protein, troponin I or T, myoglobin, tumor necrosis factor alpha, interleukin-6, interleukin-1, lipoprotein-associated phospholipase, low-density lipoprotein and myeloperoxidase. They are used for prediction of cardiovascular diseases. There are many methods for early diagnosis of cardiovascular diseases, but these have long time process and expensive devices. In recent studies, different biosensors have been developed to remove the problems in this field. Electrochemical devices and developed biosensors have many superiorities than others such as low cost, mobile, reliable, repeatable, need a little amount of solution. In this review, recent studies were presented as details for cardiovascular disease biomarkers detection using electrochemical methods.
Collapse
Affiliation(s)
- Nurgul K Bakirhan
- Hitit University, Faculty of Arts and Sciences, Department of Chemistry, Corum, Turkey
| | - Goksu Ozcelikay
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, Ankara, Turkey
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Tandogan, Ankara, Turkey.
| |
Collapse
|
33
|
Biosensing Technologies for Medical Applications, Manufacturing, and Regenerative Medicine. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0123-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Label-Free Electrochemical Immunoassay for C-Reactive Protein. BIOSENSORS-BASEL 2018; 8:bios8020034. [PMID: 29601504 PMCID: PMC6022967 DOI: 10.3390/bios8020034] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022]
Abstract
C-reactive protein (CRP) is one of the most expressed proteins in blood during acute phase inflammation, and its minute level increase has also been recognized for the clinical diagnosis of cardio vascular diseases. Unfortunately, the available commercial immunoassays are labour intensive, require large sample volumes, and have practical limitations, such as low stability and high production costs. Hence, we have developed a simple, cost effective, and label-free electrochemical immunoassay for the measurement of CRP in a drop of serum sample using an immunosensor strip made up of a screen printed carbon electrode (SPE) modified with anti-CRP functionalized gold nanoparticles (AuNPs). The measurement relies on the decrease of the oxidation current of the redox indicator Fe3+/Fe2+, resulting from the immunoreaction between CRP and anti-CRP. Under optimal conditions, the present immunoassay measures CRP in a linear range from 0.4–200 nM (0.047–23.6 µg mL−1), with a detection limit of 0.15 nM (17 ng mL−1, S/N = 3) and sensitivity of 90.7 nA nM−1, in addition to a good reproducibility and storage stability. The analytical applicability of the presented immunoassay is verified by CRP measurements in human blood serum samples. This work provides the basis for a low-priced, safe, and easy-to-use point-of-care immunosensor assay to measure CRP at clinically relevant concentrations.
Collapse
|
35
|
Sensors and Biosensors for C-Reactive Protein, Temperature and pH, and Their Applications for Monitoring Wound Healing: A Review. SENSORS 2017; 17:s17122952. [PMID: 29257113 PMCID: PMC5750823 DOI: 10.3390/s17122952] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/24/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023]
Abstract
Wound assessment is usually performed in hospitals or specialized labs. However, since patients spend most of their time at home, a remote real time wound monitoring would help providing a better care and improving the healing rate. This review describes the advances in sensors and biosensors for monitoring the concentration of C-reactive protein (CRP), temperature and pH in wounds. These three parameters can be used as qualitative biomarkers to assess the wound status and the effectiveness of therapy. CRP biosensors can be classified in: (a) field effect transistors, (b) optical immunosensors based on surface plasmon resonance, total internal reflection, fluorescence and chemiluminescence, (c) electrochemical sensors based on potentiometry, amperometry, and electrochemical impedance, and (d) piezoresistive sensors, such as quartz crystal microbalances and microcantilevers. The last section reports the most recent developments for wearable non-invasive temperature and pH sensors suitable for wound monitoring.
Collapse
|
36
|
Design of a New Ultracompact Resonant Plasmonic Multi-Analyte Label-Free Biosensing Platform. SENSORS 2017; 17:s17081810. [PMID: 28783075 PMCID: PMC5579753 DOI: 10.3390/s17081810] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/13/2017] [Accepted: 08/03/2017] [Indexed: 11/17/2022]
Abstract
In this paper, we report on the design of a bio-multisensing platform for the selective label-free detection of protein biomarkers, carried out through a 3D numerical algorithm. The platform includes a number of biosensors, each of them is based on a plasmonic nanocavity, consisting of a periodic metal structure to be deposited on a silicon oxide substrate. Light is strongly confined in a region with extremely small size (=1.57 μm2), to enhance the light-matter interaction. A surface sensitivity Ss = 1.8 nm/nm has been calculated together with a detection limit of 128 pg/mm2. Such performance, together with the extremely small footprint, allow the integration of several devices on a single chip to realize extremely compact lab-on-chip microsystems. In addition, each sensing element of the platform has a good chemical stability that is guaranteed by the selection of gold for its fabrication.
Collapse
|
37
|
Rajesh, Singal S, Kotnala RK. Single Frequency Impedance Analysis on Reduced Graphene Oxide Screen-Printed Electrode for Biomolecular Detection. Appl Biochem Biotechnol 2017; 183:672-683. [DOI: 10.1007/s12010-017-2510-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/09/2017] [Indexed: 12/29/2022]
|
38
|
Chakma B, Jain P, Singh NK, Goswami P. Development of an Indicator Displacement Based Detection of Malaria Targeting HRP-II as Biomarker for Application in Point-of-Care Settings. Anal Chem 2016; 88:10316-10321. [DOI: 10.1021/acs.analchem.6b03315] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Babina Chakma
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Priyamvada Jain
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Naveen K. Singh
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pranab Goswami
- Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
39
|
Zhang Y, Huang S, Xu D, Chen J, Wu Q, He J. Preparation of novel three-dimensionally ordered macroporous molecularly imprinted microspheres and its recognition for proteins. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1182915] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
40
|
Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016; 116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Citation(s) in RCA: 555] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Labib
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
41
|
Multiplexed electrochemical immunosensor for label-free detection of cardiac markers using a carbon nanofiber array chip. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Pawula M, Altintas Z, Tothill IE. SPR detection of cardiac troponin T for acute myocardial infarction. Talanta 2016; 146:823-30. [DOI: 10.1016/j.talanta.2015.06.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/30/2015] [Accepted: 06/03/2015] [Indexed: 11/25/2022]
|
43
|
Goda T, Toya M, Matsumoto A, Miyahara Y. Poly(3,4-ethylenedioxythiophene) Bearing Phosphorylcholine Groups for Metal-Free, Antibody-Free, and Low-Impedance Biosensors Specific for C-Reactive Protein. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27440-27448. [PMID: 26588324 DOI: 10.1021/acsami.5b09325] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Conducting polymers possessing biorecognition elements are essential for developing electrical biosensors sensitive and specific to clinically relevant biomolecules. We developed a new 3,4-ethylenedioxythiophene (EDOT) derivative bearing a zwitterionic phosphorylcholine group via a facile synthesis through the Michael-type addition thiol-ene "click" reaction for the detection of an acute-phase biomarker human C-reactive protein (CRP). The phosphorylcholine group, a major headgroup in phospholipid, which is the main constituent of plasma membrane, was also expected to resist nonspecific adsorption of other proteins at the electrode/solution interface. The biomimetic EDOT derivative was randomly copolymerized with EDOT, via an electropolymerization technique with a dopant sodium perchlorate, onto a glassy carbon electrode to make the synthesized polymer film both conductive and target-responsive. The conducting copolymer films were characterized by cyclic voltammetry, scanning electron microscopy, attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. The specific interaction of CRP with phosphorylcholine in a calcium-containing buffer solution was determined by differential pulse voltammetry, which measures the altered redox reaction between the indicators ferricyanide/ferrocyanide as a result of the binding event. The conducting polymer-based protein sensor achieved a limit of detection of 37 nM with a dynamic range of 10-160 nM, covering the dynamically changing CRP levels in circulation during the acute phase. The results will enable the development of metal-free, antibody-free, and low-impedance electrochemical biosensors for the screening of nonspecific biomarkers of inflammation and infection.
Collapse
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Masahiro Toya
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
44
|
Yuan G, Yu C, Xia C, Gao L, Xu W, Li W, He J. A simultaneous electrochemical multianalyte immunoassay of high sensitivity C-reactive protein and soluble CD40 ligand based on reduced graphene oxide-tetraethylene pentamine that directly adsorb metal ions as labels. Biosens Bioelectron 2015; 72:237-46. [DOI: 10.1016/j.bios.2015.04.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/09/2015] [Accepted: 04/27/2015] [Indexed: 11/28/2022]
|
45
|
A flexible giant magnetoimpedance-based biosensor for the determination of the biomarker C-reactive protein. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1587-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Kokkinos C, Prodromidis M, Economou A, Petrou P, Kakabakos S. Disposable integrated bismuth citrate-modified screen-printed immunosensor for ultrasensitive quantum dot-based electrochemical assay of C-reactive protein in human serum. Anal Chim Acta 2015; 886:29-36. [DOI: 10.1016/j.aca.2015.05.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
|
47
|
O'Reilly EJ, Conroy PJ, Hearty S, Keyes TE, O'Kennedy R, Forster RJ, Dennany L. Electrochemiluminescence platform for the detection of C-reactive proteins: application of recombinant antibody technology to cardiac biomarker detection. RSC Adv 2015. [DOI: 10.1039/c5ra08450d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The stepwise fabrication of the sensor is highlighted, scFv immobilization, binding of pentameric CRP followed by binding of metal labeled scFv fragments.
Collapse
Affiliation(s)
- Emmet J. O'Reilly
- Materials and Surface Science Institute
- Department of Chemical and Environmental Sciences
- University of Limerick
- Limerick
- Ireland
| | - Paul J. Conroy
- Biomedical Diagnostics Institute
- National Centre for Sensor Research
- Dublin City University
- Dublin 9
- Ireland
| | - Stephen Hearty
- Biomedical Diagnostics Institute
- National Centre for Sensor Research
- Dublin City University
- Dublin 9
- Ireland
| | - Tia E. Keyes
- Biomedical Diagnostics Institute
- National Centre for Sensor Research
- Dublin City University
- Dublin 9
- Ireland
| | - Richard O'Kennedy
- Biomedical Diagnostics Institute
- National Centre for Sensor Research
- Dublin City University
- Dublin 9
- Ireland
| | - Robert J. Forster
- Biomedical Diagnostics Institute
- National Centre for Sensor Research
- Dublin City University
- Dublin 9
- Ireland
| | - Lynn Dennany
- WestCHEM
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
- Glasgow
| |
Collapse
|