1
|
Liu X, Wang Q, Gong T, Jiang B, Yuan R, Xiang Y. Aptamer-based sensitive fluorescence β-lactoglobulin food allergen bioassay via dual and cyclic bidirectional strand displacement amplifications. Anal Bioanal Chem 2024; 416:7141-7149. [PMID: 39482386 DOI: 10.1007/s00216-024-05618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024]
Abstract
β-Lactoglobulin (β-Lg) is a prevalent allergenic protein found in most dairy products, which poses great food safety risks for individuals with allergies, especially for infants. Sensitive and effective detection methods for such allergens are essential to reduce the risk of allergies in daily life. Herein, a fluorescent aptamer bioassay based on a dual and cyclic bidirectional strand displacement means is developed for the sensitive detection of β-Lg in infant rice porridge and milk. The aptamer in the duplex DNA probe binds β-Lg to release the assistance strand to further hybridize with two hairpins, which triggers the initiation of two cyclic amplification cycles through the polymerization, displacement, and nicking of the strands under the action of DNA polymerase and endonuclease restriction enzymes. The amplification cycles lead to the unfolding of many fluorescently quenched signal probes to exhibit substantially enhanced fluorescence recovery for detecting β-Lg. The assay can realize detection of β-Lg in concentrations as low as 4.41 pM within the range of 0.01 to 10 nM. Furthermore, our sensing method has the capability to discriminate β-Lg from other proteins with high selectivity, resulting in low levels of β-Lg detection in rice porridge and milk samples, demonstrating promising potentials of the developed sensing method for monitoring various food allergens.
Collapse
Affiliation(s)
- Xiaoju Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qianying Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Tingting Gong
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Bingying Jiang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, People's Republic of China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| |
Collapse
|
2
|
Sokolov P, Evsegneeva I, Karaulov A, Sukhanova A, Nabiev I. Allergen Microarrays and New Physical Approaches to More Sensitive and Specific Detection of Allergen-Specific Antibodies. BIOSENSORS 2024; 14:353. [PMID: 39056629 PMCID: PMC11275078 DOI: 10.3390/bios14070353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The prevalence of allergic diseases has increased tremendously in recent decades, which can be attributed to growing exposure to environmental triggers, changes in dietary habits, comorbidity, and the increased use of medications. In this context, the multiplexed diagnosis of sensitization to various allergens and the monitoring of the effectiveness of treatments for allergic diseases become particularly urgent issues. The detection of allergen-specific antibodies, in particular, sIgE and sIgG, is a modern alternative to skin tests due to the safety and efficiency of this method. The use of allergen microarrays to detect tens to hundreds of allergen-specific antibodies in less than 0.1 mL of blood serum enables the transition to a deeply personalized approach in the diagnosis of these diseases while reducing the invasiveness and increasing the informativeness of analysis. This review discusses the technological approaches underlying the development of allergen microarrays and other protein microarrays, including the methods of selection of the microarray substrates and matrices for protein molecule immobilization, the obtainment of allergens, and the use of different types of optical labels for increasing the sensitivity and specificity of the detection of allergen-specific antibodies.
Collapse
Affiliation(s)
- Pavel Sokolov
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Irina Evsegneeva
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia; (I.E.); (A.K.)
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia; (I.E.); (A.K.)
| | - Alyona Sukhanova
- Laboratoire BioSpecT, Université de Reims Champagne-Ardenne, 51100 Reims, France;
| | - Igor Nabiev
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia; (I.E.); (A.K.)
- Laboratoire BioSpecT, Université de Reims Champagne-Ardenne, 51100 Reims, France;
| |
Collapse
|
3
|
Han X, Zhang D, Xie M, Yang J, Wang Y, Li H, Wang S, Pan M. Microfluidic paper-based analysis device applying black phosphorus nanosheets@MWCNTs-COOH: A portable and efficient strategy for detection of β-Lactoglobulin in dairy products. Food Chem 2024; 446:138844. [PMID: 38422642 DOI: 10.1016/j.foodchem.2024.138844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
This study prepared a novel, portable and cost-effective microfluidic paper-based electrochemical analysis device (μ-PAD) using black phosphorus nanosheets@carboxylated multi-walled carbon nanotubes (BPNSs@MWCNTs-COOH) nanocomposites for β-lactoglobulin (β-LG) detection. At the appreciate ratio, the synthesized BPNSs@MWCNTs-COOH was demonstrated to not only serve as a high-quality substrate for the specific aptamer immobilization, but also improve the electron transfer capability of the sensing interface. The μ-PADs, utilizing BPNSs@MWCNTs-COOH and aptamer recognition, exhibited a wider detection range (10-1000 ng mL-1) and lower detection limit (LOD: 0.12 ng mL-1) for β-LG, and demonstrated enhanced specificity, satisfactory anti-interference ability and stability. When applied to the β-LG determination in dairy samples, the μ-PAD yielded β-LG concentrations highly correlated with those obtained using the HPLC method (R2: 0.9982). These results emphasized the reliable performance of the developed μ-PADs in β-LG allergen quantification, highlighting their potential as an efficient platform for the rapid screening of β-LG allergens.
Collapse
Affiliation(s)
- Xintong Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Dan Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Mengjiao Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Yueyao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Huilin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China.
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China.
| |
Collapse
|
4
|
Venkatesan M, Hwan Shin J, Park J, Pil Park J. Designing tannic acid-polyethyleneimine-modified electrode and novel affinity peptide for β-lactoglobulin detection in milk. Food Chem 2024; 436:137714. [PMID: 37847961 DOI: 10.1016/j.foodchem.2023.137714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/19/2023]
Abstract
Harmful substances that cause food allergies can pose a significant threat to consumers along with food safety. According to the World Health Organization (WHO), approximately 10 % of the global population is currently affected by food allergies. Therefore, there is an urgent need for the development of more accurate and precise biosensors capable of detecting these hazardous substances including beta-lactoglobulin. Although numerous detection and analysis methods have been developed, they still suffer from various limitations. In this study, a tannic acid-polyethyleneimine (TA-PEI) network modified screen-printed electrodes (SPE) are newly developed and the binding sequence of peptide against β-LG was successfully screened using random peptide library. A novel affinity peptide with the desired sequence of S-L-S-P-S-L-W-Q-V-S-M-L-G-G-G-G-E-P-L-Q-L-K-M against β-lactoglobulin (β-LG) is designed and synthesized. The synthesized affinity peptide was immobilized on TA-PEI modified SPE to develop peptide-based sensor against β-LG for the first time. Under successful optimization, the developed sensor exhibited a linear relationship between 50 and 750 ng, with a Kd of 213.9 ng. In addition, the sensor was able to detect β-LG in cow and goat milk, with average recoveries of 88.5 % and 92.2 %, respectively.
Collapse
Affiliation(s)
- Manju Venkatesan
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, 4726 Seodong-daero, Anseong 17546, Republic of Korea
| | - Jae Hwan Shin
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, 4726 Seodong-daero, Anseong 17546, Republic of Korea
| | - Jinyoung Park
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea.
| | - Jong Pil Park
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, 4726 Seodong-daero, Anseong 17546, Republic of Korea.
| |
Collapse
|
5
|
Meng F, Duan M, Wu W, Shao S, Qin Y, Zhang M. Enzymatic construction Au NPs-rGO based MIP electrochemical sensor for adulteration detection of bovine-derived allergen in camel milk. Food Chem 2024; 436:137638. [PMID: 37832419 DOI: 10.1016/j.foodchem.2023.137638] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/07/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
In this work, a high-performance molecularly imprinted polymer (MIP) sensor for the determination of β-lactoglobulin (β-LG) was fabricated by using trypsin as a template removal reagent. Gold nanoparticles (Au NPs) and reduced graphene oxide (rGO) designed for electrode modification accelerate the heterogeneous electron transfer rate to enhance the sensitivity of the prepared sensor. With enzymatic hydrolysis, β-LG templates were effectively digested into short peptides without damage to the MIP so that the imprinted cavities of the MIP were preserved with a complete spatial structure exhibiting high selectivity. Based on the optimization of the protein removal time and pH, the prepared MIP electrochemical sensor could recognize β-LG in the range of 4-100 ng/mL with a low detection limit (3.58 ng/mL). The sensor also expressed excellent selectivity and was successfully applied to real sample detection. The results demonstrate that the proposed MIP electrochemical sensor may be a promising candidate for camel milk adulteration detection.
Collapse
Affiliation(s)
- Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China
| | - Mengjiao Duan
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China
| | - Wanfeng Wu
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China
| | - Shuxuan Shao
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China; Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan 410082, China
| | - Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China.
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang 830046, China.
| |
Collapse
|
6
|
Fernández González A, Badía Laíño R, Costa-Fernández JM, Soldado A. Progress and Challenge of Sensors for Dairy Food Safety Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:1383. [PMID: 38474919 DOI: 10.3390/s24051383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
One of the most consumed foods is milk and milk products, and guaranteeing the suitability of these products is one of the major concerns in our society. This has led to the development of numerous sensors to enhance quality controls in the food chain. However, this is not a simple task, because it is necessary to establish the parameters to be analyzed and often, not only one compound is responsible for food contamination or degradation. To attempt to address this problem, a multiplex analysis together with a non-directed (e.g., general parameters such as pH) analysis are the most relevant alternatives to identifying the safety of dairy food. In recent years, the use of new technologies in the development of devices/platforms with optical or electrochemical signals has accelerated and intensified the pursuit of systems that provide a simple, rapid, cost-effective, and/or multiparametric response to the presence of contaminants, markers of various diseases, and/or indicators of safety levels. However, achieving the simultaneous determination of two or more analytes in situ, in a single measurement, and in real time, using only one working 'real sensor', remains one of the most daunting challenges, primarily due to the complexity of the sample matrix. To address these requirements, different approaches have been explored. The state of the art on food safety sensors will be summarized in this review including optical, electrochemical, and other sensor-based detection methods such as magnetoelastic or mass-based sensors.
Collapse
Affiliation(s)
- Alfonso Fernández González
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006 Oviedo, Asturias, Spain
| | - Rosana Badía Laíño
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006 Oviedo, Asturias, Spain
| | - José M Costa-Fernández
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006 Oviedo, Asturias, Spain
| | - Ana Soldado
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
7
|
He S, Xiong M, Li L, Yan Y, Li J, Feng Z, Li Y, Zhao J, Dong Y, Li X, Chen H, Long C. One-Step Purification of IgE Epitope-Specific Antibody Using Immunomagnetic Beads and Highly Sensitive Detection of Bovine β-Lactoglobulin for the Prediction of Milk Allergenicity in Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14068-14078. [PMID: 37679308 DOI: 10.1021/acs.jafc.3c03461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Bovine β-lactoglobulin (BLG) is a common allergen found in milk, and the immunoglobulin E (IgE) epitope plays a crucial role in cow milk allergy. Therefore, targeting the IgE epitope could be useful in accurately detecting BLG and assessing its allergenicity. However, producing an IgE epitope-specific antibody (IgE-EsAb) through traditional methods requires complex and time-consuming procedures. Here, IgE-EsAb was purified from rabbit anti-BLG sera by immunomagnetic beads in one step. Then, a sandwich ELISA (sELISA) based on the IgE-EsAb was developed to detect BLG and predict the potential milk allergenicity in foods. The obtained IgE-EsAb could specifically recognize the target IgE epitope of BLG and exhibited high affinity and specificity. The developed IgE-EsAb-based sELISA demonstrated an ultra-wide linear range of 3.9-1.28 × 105 ng/mL, with a limit of detection of 0.49 ng/mL for BLG. Additionally, the proposed immunoassay showed high specificity and recoveries (91.24-109.61%). The ability of the IgE-EsAb-based sELISA to evaluate the potential milk allergenicity in foods was validated using sera from cow milk allergy patients. These results suggest that immunomagnetic beads are an effective tool for rapidly obtaining the IgE-EsAb, and our proposed sELISA could be a reliable and user-friendly method for monitoring trace amounts of BLG and predicting the potential milk allergenicity of food samples.
Collapse
Affiliation(s)
- Shengfa He
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Meng Xiong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Liming Li
- First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Yan Yan
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Jinyu Li
- First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Ziling Feng
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Yang Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Jiangqiang Zhao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Yaping Dong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Caiyun Long
- Ganzhou Center for Disease Control and Prevention, Ganzhou 341000, China
| |
Collapse
|
8
|
Wang Y, Chen S, Chen W, Wang J, Li K, Hong C, Zhang K, Chen Q. Highly Sensitive β-Lactoglobulin Fluorescent Aptamer Biosensors Based on Tungsten Disulfide Nanosheets and DNase I-Assisted Signal Amplification. Molecules 2023; 28:molecules28083502. [PMID: 37110736 PMCID: PMC10146092 DOI: 10.3390/molecules28083502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
β-lactoglobulin (β-Lg) is a protein found in milk that can cause severe allergic reactions, including rash, vomiting, and diarrhea. Thus, it is crucial to develop a sensitive β-Lg detection method to protect people who are susceptible to allergies. Here, we introduce a novel and highly sensitive fluorescent aptamer biosensor for detecting β-Lg. First, a fluorescein-based dye (FAM)-labeled β-lactoglobulin aptamer (β-Lg aptamer) is adsorbed on the surface of tungsten disulfide (WS2) nanosheets via van der Waals forces, resulting in fluorescence quenching. When β-Lg is present, the β-Lg aptamer selectively binds to β-Lg, causing a conformational change in the β-Lg aptamer and releasing it from the surface of WS2 nanosheets, which restores the fluorescence signal. Simultaneously, DNase I in the system cleaves the aptamer bound to the target, producing a short oligonucleotide fragment and releasing β-Lg. The released β-Lg then binds to another β-Lg aptamer adsorbed on WS2, initiating the next round of cleavage, resulting in significant amplification of the fluorescence signal. This method has a linear detection range of 1-100 ng mL-1, and the limit of detection is 0.344 ng mL-1. Furthermore, this approach has been successfully used for detecting β-Lg in milk samples with satisfactory results, providing new opportunities for food analysis and quality control.
Collapse
Affiliation(s)
- Yuying Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Sisi Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Wanmei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jingjing Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Kun Li
- School of Life Sciences, Longyan University, Longyan 364012, China
| | - Chengyi Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Kailong Zhang
- School of Life Sciences, Longyan University, Longyan 364012, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
- Fujian Province Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Longyan University, Longyan 364012, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
9
|
Chakraborty G. Red emitting fluorogenic dye as an efficient turn-on probe for milk allergen. Int J Biol Macromol 2022; 221:1527-1535. [PMID: 36122782 DOI: 10.1016/j.ijbiomac.2022.09.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
Development of simple, fast and non-destructive technique such as fluorescence based method for the quantification of milk allergens in various dairy products is a highly rewarding task. In this contribution, a red emitting fluorogenic dye, quinaldine red (QR) is reported for the detection and quantification of a milk allergen, beta lactoglobulin (β-LG) in milk and whey matrices, utilizing its high selectivity and sensitivity towards β-LG. Detail spectroscopic investigation reveals that binding of QR to the hydrophobic calyx site of β-LG protein substantially reduces the torsional agility and propensity of TICT state formation of QR, rendering the dye highly fluorescent in nature. This enables estimation of β-LG with LOD 52.1(±0.9) nM in buffer solution and 0.21(±0.01) μM in 5 % bovine milk matrix respectively. Additionally, high selectivity and sensitivity, excellent repeatability, quick response, and emission in the biologically favorable red spectral region make QR based fluorometric quantification of β-LG a highly attractive choice. Finally, the estimated β-LG concentrations in milk and whey matrices from fluorometric titration and densitometry methods are found to match excellently with each other, suggesting potential of QR as an efficient turn-on fluorescent probe for the quantification of β-LG (milk allergen) in various dairy products.
Collapse
Affiliation(s)
- Goutam Chakraborty
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| |
Collapse
|
10
|
Fabrication and evaluation of a portable and reproducible quartz crystal microbalance immunochip for label-free detection of β-lactoglobulin allergen in milk products. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Oh HE, Eathorne S, Jones MA. Use of biosensor technology in analysing milk and dairy components: A review. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Cow's Milk Antigens Content in Human Milk: A Scoping Review. Foods 2022; 11:foods11121783. [PMID: 35741982 PMCID: PMC9222876 DOI: 10.3390/foods11121783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
The functionality of breast milk in terms of immunity is well-known. Despite this, a significant proportion of breastfed infants exhibit sensitization to different potentially allergenic proteins and clinical reactivity (including anaphylaxis) early in life and before the introduction of complementary feeding for the first time. The potential induction of early oral tolerance to overcome early allergic sensitization through exposure to allergens in breast milk also remains controversial and not yet well-established. The objective of this scoping review is to provide a critical appraisal of knowledge about the content of cow’s milk antigens in human milk. The amount of dietary derived milk antigens found in human milk and the analytical methodologies used to detect and quantify these antigens, the allergic status of the mother, the stage of lactation, the time of sampling (before or after ingestion of food), and the impact of human milk allergen on the infant were the outcomes that were assessed. Allergy risk was explored in all reviewed studies and could help to better elucidate its role in the context of allergic disease development. According to the included literature, we can conclude that there are mainly fragments derived from bovine proteins in human milk, and the presence of potentially allergenic molecules is greater in the milk of mothers with an allergic tendency. A clear relationship between maternal diet and allergen content in breast milk could not be firmly concluded though. Also, infants receiving milk from human milk banks, where donor milk is pasteurized for preservation, may be subject to greater risk of allergy development, especially for β-lactoglobulin.
Collapse
|
13
|
Yang J, Zhang Y, Lu Y. A fluorescence detection method for the determination of β-lactoglobulin in foods. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1872-1879. [PMID: 35506444 DOI: 10.1039/d2ay00158f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A fluorescence detection method based on quantum dot-aptamer-graphene oxide probes (QD-Apt-GO) was developed to detect β-lactoglobulin (β-LG) in foods. When β-LG was present in the samples, it specifically bound to the aptamer, inhibiting the binding of probes to graphene oxide (GO), and the fluorescence of the probes could be detected. When β-LG was not present, the probes could bind to GO through π-π stacking, and the fluorescence was consequently quenched. The detection range of the optimized assay for β-LG detection was 0.36-500 mg L-1. The limit of detection (LOD) for β-LG was 96.91 μg L-1. The method was also validated for food sample detection. In the spike and recovery experiments of Neocate amino acid infant formula, infant millet cookies, and infant rice porridge, the recoveries were in the range of 83.33-114.53%, which met the required range of the addition recoveries. At the same time, the results were consistent with those of commercial ELISA kits. Three types of random food products purchased from a local market were analyzed for β-LG via the developed assay and using a commercial ELISA kit. The results showed good accuracy and consistency between the proposed method and the commercial ELISA kit.
Collapse
Affiliation(s)
- Jingyi Yang
- State Key Laboratory for Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Yong Zhang
- State Key Laboratory for Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Yang Lu
- State Key Laboratory for Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
14
|
Hamza ME, Othman MA, Swillam MA. Plasmonic Biosensors: Review. BIOLOGY 2022; 11:621. [PMID: 35625349 PMCID: PMC9138269 DOI: 10.3390/biology11050621] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 04/26/2023]
Abstract
Biosensors have globally been considered as biomedical diagnostic tools required in abundant areas including the development of diseases, detection of viruses, diagnosing ecological pollution, food monitoring, and a wide range of other diagnostic and therapeutic biomedical research. Recently, the broadly emerging and promising technique of plasmonic resonance has proven to provide label-free and highly sensitive real-time analysis when used in biosensing applications. In this review, a thorough discussion regarding the most recent techniques used in the design, fabrication, and characterization of plasmonic biosensors is conducted in addition to a comparison between those techniques with regard to their advantages and possible drawbacks when applied in different fields.
Collapse
Affiliation(s)
| | | | - Mohamed A. Swillam
- Nanophotonics Research Laboratory, Department of Physics, The American University in Cairo, Cairo 11835, Egypt; (M.E.H.); (M.A.O.)
| |
Collapse
|
15
|
Shin JH, Reddy YVM, Park TJ, Park JP. Recent advances in analytical strategies and microsystems for food allergen detection. Food Chem 2022; 371:131120. [PMID: 34634648 DOI: 10.1016/j.foodchem.2021.131120] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022]
Abstract
Food allergies are abnormal immune responses that typically occur within short period after exposure of certain allergenic proteins in food or food-related resources. Currently, the means to treat food allergies is not clearly understood, and the only known prevention method is avoiding the consumption of allergen-containing foods. From the viewpoint of analytical methods, the effective detection of food allergens is hindered by the effects of various treatment processes and food matrices on trace amounts of allergens. The aim of this effort is to provide the reader with a clear and concise view of new advances for the detection of food allergens. Therefore, the present review explored the development status of various biosensors for the real-time, on-site detection of food allergens with high selectivity and sensitivity. The review also described the analytical consideration for the quantification of food allergens, and global development trends and the future availability of these technologies.
Collapse
Affiliation(s)
- Jae Hwan Shin
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Y Veera Manohara Reddy
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Jong Pil Park
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
16
|
Bai L, Gao Y, Wang J, Aili T, Jia Z, Lv X, Huang X, Yang J. Detection of β-Lactoglobulin by a Porous Silicon Microcavity Biosensor Based on the Angle Spectrum. SENSORS 2022; 22:s22051912. [PMID: 35271059 PMCID: PMC8914963 DOI: 10.3390/s22051912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
Abstract
In this paper, carbon quantum dot-labelled β-lactoglobulin antibodies were used for refractive index magnification, and β-lactoglobulin was detected by angle spectroscopy. In this method, the detection light is provided by a He-Ne laser whose central wavelength is the same as that of the porous silicon microcavity device, and the light source was changed to a parallel beam to illuminate the porous silicon microcavity’ surface by collimating beam expansion, and the reflected light was received on the porous silicon microcavity’ surface by a detector. The angle corresponding to the smallest luminous intensity before and after the onset of immune response was measured by a detector for different concentrations of β-lactoglobulin antigen and carbon quantum dot-labelled β-lactoglobulin antibodies, and the relationship between the variation in angle before and after the immune response was obtained for different concentrations of the β-lactoglobulin antigen. The results of the experiment present that the angle variations changed linearly with increasing β-lactoglobulin antigen concentration before and after the immune response. The limit of detection of β-lactoglobulin by this method was 0.73 μg/L, indicating that the method can be used to detect β-lactoglobulin quickly and conveniently at low cost.
Collapse
Affiliation(s)
- Lanlan Bai
- School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China; (L.B.); (Y.G.)
| | - Yun Gao
- School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China; (L.B.); (Y.G.)
| | - Jiajia Wang
- School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; (J.W.); (X.H.)
- The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China;
| | - Tuerxunnayi Aili
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (T.A.); (J.Y.)
| | - Zhenhong Jia
- School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; (J.W.); (X.H.)
- The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China;
- Correspondence:
| | - Xiaoyi Lv
- The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China;
- School of Software, Xinjiang University, Urumqi 830046, China
| | - Xiaohui Huang
- School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; (J.W.); (X.H.)
- The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China;
| | - Jie Yang
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (T.A.); (J.Y.)
| |
Collapse
|
17
|
Food Allergies: Immunosensors and Management. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Food allergies (FA) are commonly depicted as immune responses. The mechanism of allergic reactions involves immunoglobulin E (IgE) and non-immunoglobulin E (non-IgE)-related responses caused by contact with specific foods. FAs can be fatal, have negative effects and have become the subject of fanaticism in recent years. In terms of food safety, allergic compounds have become a problem. The immune response to allergens is different to that from food intolerance, pharmacological reactions, and poisoning. The most important allergenic foods are soybeans, milk, eggs, groundnuts, shellfishes, tree nuts, cereals and fish, which together are known as the “Big Eight”. This review will introduce and discuss FAs in milk, peanuts, nuts, shellfishes, eggs and wheat and their detections and potential treatments will also be provided. We believe that this review may provide important information regarding food-induced allergies for children who have allergic reactions and help them avoid the allergenic food in the future.
Collapse
|
18
|
Mahajan R, Suriyanarayanan S, Olsson GD, Wiklander JG, Aastrup T, Sellergren B, Nicholls IA. Oxytocin-Selective Nanogel Antibody Mimics. Int J Mol Sci 2022; 23:2534. [PMID: 35269677 PMCID: PMC8909970 DOI: 10.3390/ijms23052534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Oxytocin imprinted polymer nanoparticles were synthesized by glass bead supported solid phase synthesis, with NMR and molecular dynamics studies used to investigate monomer-template interactions. The nanoparticles were characterized by dynamic light scattering, scanning- and transmission electron microscopy and X-ray photoelectron spectroscopy. Investigation of nanoparticle-template recognition using quartz crystal microbalance-based studies revealed sub-nanomolar affinity, kd ≈ 0.3 ± 0.02 nM (standard error of the mean), comparable to that of commercial polyclonal antibodies, kd ≈ 0.02-0.2 nM.
Collapse
Affiliation(s)
- Rashmi Mahajan
- Bioorganic and Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden; (R.M.); (G.D.O.); (J.G.W.)
| | - Subramanian Suriyanarayanan
- Bioorganic and Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden; (R.M.); (G.D.O.); (J.G.W.)
| | - Gustaf D. Olsson
- Bioorganic and Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden; (R.M.); (G.D.O.); (J.G.W.)
| | - Jesper G. Wiklander
- Bioorganic and Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden; (R.M.); (G.D.O.); (J.G.W.)
| | - Teodor Aastrup
- Attana AB, Greta Arwidssons Väg 21, 11419 Stockholm, Sweden;
| | - Börje Sellergren
- Biofilms Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden;
| | - Ian A. Nicholls
- Bioorganic and Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182 Kalmar, Sweden; (R.M.); (G.D.O.); (J.G.W.)
| |
Collapse
|
19
|
Gao Y, Zhang S, Aili T, Yang J, Jia Z, Wang J, Li H, Bai L, Lv X, Huang X. Dual signal light detection of beta-lactoglobulin based on a porous silicon bragg mirror. Biosens Bioelectron 2022; 204:114035. [PMID: 35149452 DOI: 10.1016/j.bios.2022.114035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/24/2022]
Abstract
In this work, a new dual signal light detection method based on porous silicon Bragg mirror (PSBM) and biological labelling with quantum dots (QDs) is proposed for the detection of beta-lactoglobulin (β-lg). The first signal light is a probe light emitted by a laser with wavelength of 633 nm, which enters the PSBM and is reflected from the surface. The wavelength of the probe light is located at the edge of the PSBM band gap, where it has the lowest reflectivity. β-lg antibodies is labelled with CdSe/ZnS QDs and reacts with β-lg molecules have been fixed to the inner wall of the porous silicon pores. Due to the specific binding of biomolecules in PSBM, the refractive index of the device increases, resulting in the enhancement of detection reflected light. The QDs play the role of refractive index amplification. The second signal light is the fluorescence of QDs in immune reactants. QDs produce fluorescence at 630 nm when excited by a short-wavelength laser. The fluorescence signal is further enhanced by PSBM. The superimposed images of two kinds of light on the surface of PSBM are obtained by digital microscope at the same time. By calculating the average grey value change of the image before and after biological reaction, β-lg can be detected with high sensitivity. The detection limit of β-lg was 0.12 ng/mL. The experimental results showed that the PSBM-based dual signal light method could be used to detect the content of cow milk adulterated in β-lg free camel milk.
Collapse
Affiliation(s)
- Yun Gao
- School of Physical Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Shuangshuang Zhang
- School of Physical Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Tuerxunnayi Aili
- School of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Jie Yang
- School of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Zhenhong Jia
- School of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China; The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi, 830046, China.
| | - Jiajia Wang
- School of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China; The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi, 830046, China
| | - Hongyuan Li
- School of Physical Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Lanlan Bai
- School of Physical Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Xiaoyi Lv
- School of Software, Xinjiang University, Urumqi, 830046, China; The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi, 830046, China
| | - Xiaohui Huang
- School of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China; The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
20
|
A UCMPs@MIL-100 based thermo-sensitive molecularly imprinted fluorescence sensor for effective detection of β-lactoglobulin allergen in milk products. J Nanobiotechnology 2022; 20:51. [PMID: 35078480 PMCID: PMC8787952 DOI: 10.1186/s12951-022-01258-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022] Open
Abstract
In this study, a thermo-sensitive molecularly imprinted fluorescence sensor was developed for the specific detection of β-Lactoglobulin (β-LG) allergen in milk products. The metal–organic frameworks (MIL-100) with a high specific surface area was coated on the surface of upconversion micro-particles (UCMPs). As the core, an imprinted polymer layer allowing for swelling and shrinking with response to temperature was prepared, which exhibited high adsorption and mass transfer capabilities for β-LG allergen. The fluorescence intensity of UCMPs@MIL-100@MIP decreased linearly with the concentration of β-LG in the range of 0.1–0.8 mg mL−1, and the limit of detection was 0.043 mg mL−1. The imprinting factor reached 3.415, which indicated that excellent specificity of the UCMPs@MIL-100@MIP for β-LG allergen. In the analysis of β-LG allergen in actual milk samples, the proposed UCMPs@MIL-100@MIP fluorescence sensor produced reliable and accurate results (recovery: 86.0–98.4%, RSD: 2.8–6.8%), closely related to the results of standard HPLC method (correlation coefficient: 0.9949), indicating that its feasibility in the detection of β-LG allergen.
Collapse
|
21
|
Li C, Zhu Q, Chang H, Jiang M, Mao S, Chen Z, Kong L, Liu H, Tian H, Wang J. A sensitive biosensor of CdS QDs sensitized CdWO4-TiO2 composite for the photoelectrochemical immunoassay of β-lactoglobulin in the milk. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
De S, Das G. Insights into the self-aggregating properties of a solvatochromic probe and interaction with β-lactoglobulin. NEW J CHEM 2022. [DOI: 10.1039/d2nj02787a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A solvatochromic benzothiazole compound is designed, which exhibits water-induced aggregation and selective detection of β-lactoglobulin at physiological pH.
Collapse
Affiliation(s)
- Sagnik De
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
23
|
Wang B, Hong J, Liu C, Zhu L, Jiang L. An Electrochemical Molecularly Imprinted Polymer Sensor for Rapid β-Lactoglobulin Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:8240. [PMID: 34960338 PMCID: PMC8703442 DOI: 10.3390/s21248240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Facile detection of β-lactoglobulin is extraordinarily important for the management of the allergenic safety of cow's milk and its dairy products. A sensitive electrochemical sensor based on a molecularly imprinted polymer-modified carbon electrode for the detection of β-lactoglobulin was successfully synthesized. This molecularly imprinted polymer was prepared using a hydrothermal method with choline chloride as a functional monomer, β-lactoglobulin as template molecule and ethylene glycol dimethacrylate as crosslinking agent. Then, the molecularly imprinted polymer was immobilized on polyethyleneimine (PEI)-reduced graphene oxide (rGO)-gold nanoclusters (Au-NCs) to improve the sensor's selectivity for β-lactoglobulin. Under optimal experimental conditions, the designed sensor showed a good response to β-lactoglobulin, with a linear detection range between 10-9 and 10-4 mg/mL, and a detection limit of 10-9 mg/mL (S/N = 3). The developed electrochemical sensor showed a high correlation in the detection of β-lactoglobulin in four different milk samples from the market, indicating that the sensor can be used with actual sample.
Collapse
Affiliation(s)
- Bixuan Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Jingyi Hong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.H.); (C.L.); (L.J.)
| | - Chun Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.H.); (C.L.); (L.J.)
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.H.); (C.L.); (L.J.)
| |
Collapse
|
24
|
Zhu H, Mao Z, Chen J, Hu J, Hu X, Koh K, Chen H. Cucurbit[7]urils induced bimetallic nanoparticles network for ultra-sensitive detection of Caspase-3 based on surface plasmon resonance. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Kutateladze T, Bitskinashvili K, Sapojnikova N, Kartvelishvili T, Asatiani N, Vishnepolsky B, Datukishvili N. Development of Multiplex PCR Coupled DNA Chip Technology for Assessment of Endogenous and Exogenous Allergens in GM Soybean. BIOSENSORS 2021; 11:481. [PMID: 34940238 PMCID: PMC8699511 DOI: 10.3390/bios11120481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022]
Abstract
Allergenicity assessment of transgenic plants and foods is important for food safety, labeling regulations, and health protection. The aim of this study was to develop an effective multi-allergen diagnostic approach for transgenic soybean assessment. For this purpose, multiplex polymerase chain reaction (PCR) coupled with DNA chip technology was employed. The study was focused on the herbicide-resistant Roundup Ready soya (RRS) using a set of certified reference materials consisting of 0, 0.1%, 0.5%, and 10% RRS. Technically, the procedure included design of PCR primers and probes; genomic DNA extraction; development of uniplex and multiplex PCR systems; DNA analysis by agarose gel electrophoresis; microarray development, hybridization, and scanning. The use of the asymmetric multiplex PCR method is shown to be very efficient for DNA hybridization with biochip probes. We demonstrate that newly developed fourplex PCR methods coupled with DNA-biochips enable simultaneous identification of three major endogenous allergens, namely, Gly m Bd 28K, Gly m Bd 30K, and lectin, as well as exogenous 5-enolppyruvyl shikimate-phosphate synthase (epsps) expressed in herbicide-resistant roundup ready GMOs. The approach developed in this study can be used for accurate, cheap, and fast testing of food allergens.
Collapse
Affiliation(s)
- Tamara Kutateladze
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua str., Tbilisi 0160, Georgia; (T.K.); (K.B.); (B.V.)
| | - Kakha Bitskinashvili
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua str., Tbilisi 0160, Georgia; (T.K.); (K.B.); (B.V.)
- School of Natural Sciences and Medicine, Ilia State University, 3/5 Kakutsa Cholokashvili Ave, Tbilisi 0162, Georgia
| | - Nelly Sapojnikova
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., Tbilisi 0162, Georgia; (N.S.); (T.K.); (N.A.)
| | - Tamar Kartvelishvili
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., Tbilisi 0162, Georgia; (N.S.); (T.K.); (N.A.)
| | - Nino Asatiani
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., Tbilisi 0162, Georgia; (N.S.); (T.K.); (N.A.)
| | - Boris Vishnepolsky
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua str., Tbilisi 0160, Georgia; (T.K.); (K.B.); (B.V.)
| | - Nelly Datukishvili
- Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua str., Tbilisi 0160, Georgia; (T.K.); (K.B.); (B.V.)
- School of Natural Sciences and Medicine, Ilia State University, 3/5 Kakutsa Cholokashvili Ave, Tbilisi 0162, Georgia
| |
Collapse
|
26
|
Sridhar A, Kapoor A, Kumar PS, Ponnuchamy M, Sivasamy B, Vo DVN. Lab-on-a-chip technologies for food safety, processing, and packaging applications: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 20:901-927. [PMID: 34803553 PMCID: PMC8590809 DOI: 10.1007/s10311-021-01342-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The advent of microfluidic systems has led to significant developments in lab-on-a-chip devices integrating several functions onto a single platform. Over the years, these miniature devices have become a promising tool for faster analytical testing, displaying high precision and efficiency. Nonetheless, most microfluidic systems are not commercially available. Research is actually undergoing on the application of these devices in environmental, food, biomedical, and healthcare industries. The lab-on-a-chip industry is predicted to grow annually by 20%. Here, we review the use of lab-on-a-chip devices in the food sector. We present fabrication technologies and materials to developing lab-on-a-chip devices. We compare electrochemical, optical, colorimetric, chemiluminescence and biological methods for the detection of pathogens and microorganisms. We emphasize emulsion processing, food formulation, nutraceutical development due to their promising characteristics. Last, smart packaging technologies like radio frequency identification and indicators are highlighted because they allow better product identification and traceability.
Collapse
Affiliation(s)
- Adithya Sridhar
- School of Food Science and Nutrition, Faculty of Environment, The University of Leeds, Leeds, LS2 9JT UK
| | - Ashish Kapoor
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110 India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Balasubramanian Sivasamy
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu 641407 India
| | - Dai-Viet Nguyen Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
27
|
A Fabry-Pérot cavity coupled surface plasmon photodiode for electrical biomolecular sensing. Nat Commun 2021; 12:6483. [PMID: 34759292 PMCID: PMC8580965 DOI: 10.1038/s41467-021-26652-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/29/2021] [Indexed: 12/17/2022] Open
Abstract
Surface plasmon resonance is a well-established technology for real-time highly sensitive label-free detection and measurement of binding kinetics between biological samples. A common drawback, however, of surface plasmon resonance detection is the necessity for far field angular resolved measurement of specular reflection, which increases the size as well as requiring precise calibration of the optical apparatus. Here we present an alternative optoelectronic approach in which the plasmonic sensor is integrated within a photovoltaic cell. Incident light generates an electronic signal that is sensitive to the refractive index of a solution via interaction with the plasmon. The photogenerated current is enhanced due to the coupling of the plasmon mode with Fabry-Pérot modes in the absorbing layer of the photovoltaic cell. The near field electrical detection of surface plasmon resonance we demonstrate will enable a next generation of cheap, compact and high throughput biosensors. Surface plasmon resonance is well established for biosensing applications, but commonly limited by complex optical detection. Here, the authors present a plasmonic sensor integrated in a photovoltaic cell, which generates an electronic signal sensitive to the solution refractive index via plasmon interaction
Collapse
|
28
|
Qiu Q, Ni X, Liu T, Li Z, An X, Chen X. An electrochemical aptasensor for the milk allergen β-lactoglobulin detection based on a target-induced nicking site reconstruction strategy. Analyst 2021; 146:6808-6814. [PMID: 34647930 DOI: 10.1039/d1an01483h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Food allergy is an immune system reaction to a particular food, milk being the most common one. β-Lactoglobulin (β-Lg) is the main ingredient of milk protein and the main cause of infant milk allergy. On such an occasion, the determination of β-Lg is very important and the electrochemical sensors are a good alternative for this purpose since they are sensitive, selective and inexpensive. In this work, an electrochemical aptasensor was fabricated for the quantitative detection of β-Lg in hypoallergenic formula (HF) milk. A tri-functional hairpin (HP) was designed, which was composed of an aptamer sequence, a nicking site and a DNA sequence (T1). In the absence of β-Lg, the aptamer part hybridized with T1 to form a stable stem-loop structure. However, in the presence of β-Lg, the capture of the aptamer sequence towards β-Lg caused the reconstruction of HP and thus the nicking sites were exposed. Then, the nicking enzyme was activated and T1 could be released, which bound with the end of the hairpin 1-methylene blue (HP1-MB)/HP2-MB conjugation on the Au nanoparticle (AuNP) modified electrode surface. Thus, the insulating property of the electrode was enhanced and the current response of MB decreased, which built the quantitative basis for β-Lg detection. In this way, the proposed aptasensor exhibited a wide linear range of 0.01-100 ng mL-1 and a low detection limit of 5.7 pg mL-1. This aptasensor also displayed high selectivity, reproducibility and stability, and became a promising platform for β-Lg detection in real food samples.
Collapse
Affiliation(s)
- Qianying Qiu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Xiao Ni
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Tianchen Liu
- Nanjing Foreign Language School, Nanjing 210018, PR China
| | - Zening Li
- Nanjing Foreign Language School, Nanjing 210018, PR China
| | - Xinyi An
- Nanjing Foreign Language School, Nanjing 210018, PR China
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China. .,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, PR China
| |
Collapse
|
29
|
Immunological Analytical Techniques for Cosmetics Quality Control and Process Monitoring. Processes (Basel) 2021. [DOI: 10.3390/pr9111982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cosmetics analysis represents a rapidly expanding field of analytical chemistry as new cosmetic formulations are increasingly in demand on the market and the ingredients required for their production are constantly evolving. Each country applies strict legislation regarding substances in the final product that must be prohibited or regulated. To verify the compliance of cosmetics with current regulations, official analytical methods are available to reveal and quantitatively determine the analytes of interest. However, since ingredients, and the lists of regulated/prohibited substances, rapidly change, dedicated analytical methods must be developed ad hoc to fulfill the new requirements. Research focuses on finding innovative techniques that allow a rapid, inexpensive, and sensitive detection of the target analytes in cosmetics. Among the different methods proposed, immunological techniques are gaining interest, as they make it possible to carry out low-cost analyses on raw materials and finished products in a relatively short time. Indeed, immunoassays are based on the specific and selective antibody/antigen reaction, and they have been extensively applied for clinical diagnostic, alimentary quality control and environmental security purposes, and even for routine analysis. Since the complexity and variability of the matrices, as well as the great variety of compounds present in cosmetics, are analogous with those from food sources, immunological methods could also be applied successfully in this field. Indeed, this would provide a valid approach for the monitoring of industrial production chains even in developing countries, which are currently the greatest producers of cosmetics and the major exporters of raw materials. This review aims to highlight the immunological techniques proposed for cosmetics analysis, focusing on the detection of prohibited/regulated compounds, bacteria and toxins, and allergenic substances, and the identification of counterfeits.
Collapse
|
30
|
Subramani IG, Perumal V, Gopinath SCB, Mohamed NM, Ovinis M, Sze LL. 1,1'-Carbonyldiimidazole-copper nanoflower enhanced collapsible laser scribed graphene engraved microgap capacitive aptasensor for the detection of milk allergen. Sci Rep 2021; 11:20825. [PMID: 34675227 PMCID: PMC8531451 DOI: 10.1038/s41598-021-00057-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022] Open
Abstract
The bovine milk allergenic protein, 'β-lactoglobulin' is one of the leading causes of milk allergic reaction. In this research, a novel label-free non-faradaic capacitive aptasensor was designed to detect β-lactoglobulin using a Laser Scribed Graphene (LSG) electrode. The graphene was directly engraved into a microgapped (~ 95 µm) capacitor-electrode pattern on a flexible polyimide (PI) film via a simple one-step CO2 laser irradiation. The novel hybrid nanoflower (NF) was synthesized using 1,1'-carbonyldiimidazole (CDI) as the organic molecule and copper (Cu) as the inorganic molecule via one-pot biomineralization by tuning the reaction time and concentration. NF was fixed on the pre-modified PI film at the triangular junction of the LSG microgap specifically for bio-capturing β-lactoglobulin. The fine-tuned CDI-Cu NF revealed the flower-like structures was viewed through field emission scanning electron microscopy. Fourier-transform infrared spectroscopy showed the interactions with PI film, CDI-Cu NF, oligoaptamer and β-lactoglobulin. The non-faradaic sensing of milk allergen β-lactoglobulin corresponds to a higher loading of oligoaptamer on 3D-structured CDI-Cu NF, with a linear range detection from 1 ag/ml to 100 fg/ml and attomolar (1 ag/ml) detection limit (S/N = 3:1). This novel CDI-Cu NF/LSG microgap aptasensor has a great potential for the detection of milk allergen with high-specificity and sensitivity.
Collapse
Affiliation(s)
- Indra Gandi Subramani
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.,Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Veeradasan Perumal
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia. .,Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering , Universiti Malaysia Perlis (UniMAP) , Kangar, 01000, Malaysia. .,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP) , Arau, 02600, Perlis, Malaysia.
| | - Norani Muti Mohamed
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.,Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Mark Ovinis
- Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Lim Li Sze
- Medical Innovation Ventures Sdn. Bhd (Mediven), Gelugor, 11700, Penang, Malaysia
| |
Collapse
|
31
|
Treebupachatsakul T, Shinnakerdchoke S, Pechprasarn S. Analysis of Effects of Surface Roughness on Sensing Performance of Surface Plasmon Resonance Detection for Refractive Index Sensing Application. SENSORS 2021; 21:s21186164. [PMID: 34577371 PMCID: PMC8473353 DOI: 10.3390/s21186164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/26/2022]
Abstract
This paper provides a theoretical framework to analyze and quantify roughness effects on sensing performance parameters of surface plasmon resonance measurements. Rigorous coupled-wave analysis and the Monte Carlo method were applied to compute plasmonic reflectance spectra for different surface roughness profiles. The rough surfaces were generated using the low pass frequency filtering method. Different coating and surface treatments and their reported root-mean-square roughness in the literature were extracted and investigated in this study to calculate the refractive index sensing performance parameters, including sensitivity, full width at half maximum, plasmonic dip intensity, plasmonic dip position, and figure of merit. Here, we propose a figure-of-merit equation considering optical intensity contrast and signal-to-noise ratio. The proposed figure-of-merit equation could predict a similar refractive index sensing performance compared to experimental results reported in the literature. The surface roughness height strongly affected all the performance parameters, resulting in a degraded figure of merit for surface plasmon resonance measurement.
Collapse
Affiliation(s)
- Treesukon Treebupachatsakul
- Department of Biomedical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (T.T.); (S.S.)
| | - Siratchakrit Shinnakerdchoke
- Department of Biomedical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (T.T.); (S.S.)
| | - Suejit Pechprasarn
- College of Biomedical Engineering, Rangsit University, Pathum Thani 12000, Thailand
- Correspondence:
| |
Collapse
|
32
|
Ravindran N, Kumar S, M Y, S R, C A M, Thirunavookarasu S N, C K S. Recent advances in Surface Plasmon Resonance (SPR) biosensors for food analysis: a review. Crit Rev Food Sci Nutr 2021; 63:1055-1077. [PMID: 34328048 DOI: 10.1080/10408398.2021.1958745] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Food safety is the prime area of concern that builds trust. With the prevailing advancements, it has become facile to ensure safety in almost all aspects. Technology has grown from tedious lab techniques to modern chromatographic techniques and immunoassays, progressed with more precise and rapid sensing through the advent of Biosensors. Biosensors provide an automated technology by presenting superfast, nondestructive and cost-effective detection in food analysis. SPR biosensor is an optical biosensor known for its versatility and has wider applications in food testing and analysis. It has an optical system for excitation and interrogation of surface plasmons, and a biomolecular recognition element to detect and seize the target analyte present in a sample. The optical signal detects the binding analyte, on the recognition element, which results in a change in refractive index at the surface and modifies the surface plasmons' propagation constant. SPR aids in label-free detection of various components such as adulterants, antibiotics, biomolecules, genetically modified foods, pesticides, insecticides, herbicides, microorganisms and microbial toxins in food and assures safety. The distinct advancements of SPR in food analysis have been found and discussed. The review also provides knowledge on the advantages and the key challenges encountered by SPR.
Collapse
Affiliation(s)
- Nevetha Ravindran
- Department of Food Engineering, Indian Institute of Food Processing Technology, Thanjavur, India
| | - Sandhya Kumar
- Department of Food Engineering, Indian Institute of Food Processing Technology, Thanjavur, India
| | - Yashini M
- Department of Food Engineering, Indian Institute of Food Processing Technology, Thanjavur, India
| | - Rajeshwari S
- Department of Food Engineering, Indian Institute of Food Processing Technology, Thanjavur, India
| | - Mamathi C A
- Department of Food Engineering, Indian Institute of Food Processing Technology, Thanjavur, India
| | | | - Sunil C K
- Department of Food Engineering, Indian Institute of Food Processing Technology, Thanjavur, India
| |
Collapse
|
33
|
Seherler S, Bozdogan A, Ozal Ildeniz TA, Kok FN, Anac Sakir I. Detection of cholera toxin with surface plasmon field-enhanced fluorescent spectroscopy. Biotechnol Appl Biochem 2021; 69:1557-1566. [PMID: 34297408 DOI: 10.1002/bab.2227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022]
Abstract
In this work, a biosensor based on surface plasmon field-enhanced florescence spectroscopy (SPFS) method was successfully constructed to detect the truncated form of cholera toxin, that is, its beta subunit (CTX-B). CTX-B is a relatively small molecule (12 kDa) and it was chosen as model analyte for the detection of protein toxins originated from waterborne pathogens. Recognition layer was prepared on gold-coated LaSFN9 glasses modified with 11-mercaptoundecanoic acid (11-MUA). Biotin-conjugated anti-CTX-B polyclonal antibody (B-Ab) was immobilized on streptavidin (SA) layer constructed on the 11-MUA-modified surface. CTX-B amount was determined with direct assay using B-Ab in surface plasmon resonance (SPR) mode and with sandwich assay in SPFS mode using Cy5-conjugated anti-CTX-B polyclonal antibody. Minimum detected CTX-B concentrations were 10 and 0.01 μg/ml with SPR and SPFS, respectively, showing the sensitivity of the SPFS system over the conventional one. The detection was done in 2-6 h, which was faster than both culture and polymerase chain reaction (PCR)-based methods. Stability tests were performed with SA-coated sensors (excluding B-Ab). In this form, the layer was stable after 30 days of storage in phosphate-buffered saline (PBS; 0.01 M, pH = 7.4) at +4°C. B-Ab layer was formed immediately on them before each measurement.
Collapse
Affiliation(s)
- Sebnem Seherler
- Molecular Biology-Genetics and Biotechnology Programme, Istanbul Technical University, Istanbul, Turkey
| | - Anil Bozdogan
- Department of Material Science and Engineering, Gebze Technical University, Kocaeli, Turkey.,Center for Electrochemical Surface Technology (CEST), Austrian Institute of Technology, Tulln, Austria
| | - Tugba Arzu Ozal Ildeniz
- Department of Medical Engineering, Faculty of Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Fatma Nese Kok
- Molecular Biology-Genetics and Biotechnology Programme, Istanbul Technical University, Istanbul, Turkey
| | - Ilke Anac Sakir
- Department of Material Science and Engineering, Gebze Technical University, Kocaeli, Turkey.,Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
34
|
Khan MU, Lin H, Ahmed I, Chen Y, Zhao J, Hang T, Dasanayaka BP, Li Z. Whey allergens: Influence of nonthermal processing treatments and their detection methods. Compr Rev Food Sci Food Saf 2021; 20:4480-4510. [PMID: 34288394 DOI: 10.1111/1541-4337.12793] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 12/16/2022]
Abstract
Whey and its components are recognized as value-added ingredients in infant formulas, beverages, sports nutritious foods, and other food products. Whey offers opportunities for the food industrial sector to develop functional foods with potential health benefits due to its unique physiological and functional attributes. Despite all the above importance, the consumption of whey protein (WP) can trigger hypersensitive reactions and is a constant threat for sensitive individuals. Although avoiding such food products is the most successful approach, there is still a chance of incorrect labeling and cross-contamination during food processing. As whey allergens in food products are cross-reactive, the phenomenon of homologous milk proteins of various species may escalate to a more serious problem. In this review, nonthermal processing technologies used to prevent and eliminate WP allergies are presented and discussed in detail. These processing technologies can either enhance or mitigate the impact of potential allergenicity. Therefore, the development of highly precise analytical technologies to detect and quantify the existence of whey allergens is of considerable importance. The present review is an attempt to cover all the updated approaches used for the detection of whey allergens in processed food products. Immunological and DNA-based assays are generally used for detecting allergenic proteins in processed food products. In addition, mass spectrometry is also employed as a preliminary technique for detection. We also highlighted the latest improvements in allergen detection toward biosensing strategies particularly immunosensors and aptasensors.
Collapse
Affiliation(s)
- Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, No. 7 Panjiayuan Nanli, Beijing, Chaoyang, 100021, China
| | - Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | - Tian Hang
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | | | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| |
Collapse
|
35
|
Xu J, Ye Y, Ji J, Sun J, Sun X. Advances on the rapid and multiplex detection methods of food allergens. Crit Rev Food Sci Nutr 2021; 62:6887-6907. [PMID: 33830835 DOI: 10.1080/10408398.2021.1907736] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
With the gradually increasing prevalence of food allergy in recent years, food allergy has become a major public health problem worldwide. The clinical symptoms caused by food allergy seriously affect people's quality of life; there are unknown allergen components in novel food and hidden allergens caused by cross contamination in food processing, which pose a serious risk to allergy sufferers. Thus, rapid and multiplex detection methods are required to achieve on-site detection or examination of allergic components, so as to identify the risk of allergy in time. This paper reviews the progress of high-efficiency detection of food allergens, including enhanced traditional detection techniques and emerging detection techniques with the ability high-throughput detection or screening potential food allergen, such as xMAP, biosensors, biochips, etc. focusing on their sensitivity, applicability of each method in food, along with their pretreatment, advantages, limitation in the application of food analysis. This paper also introduces the challenges faced by these high-efficiency detection technologies, as well as the potential of customized allergen screening methods and rapid on-site detection technology as future research directions.
Collapse
Affiliation(s)
- Jiayuan Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
36
|
Wang Q, Yao H, Feng Y, Deng X, Yang B, Xiong D, He M, Zhang W. Surface plasmon resonances boost the transverse magneto-optical Kerr effect in a CoFeB slab covered by a subwavelength gold grating for highly sensitive detectors. OPTICS EXPRESS 2021; 29:10546-10555. [PMID: 33820188 DOI: 10.1364/oe.414749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Herein, we have theoretically investigated the sensing performance-including enormous increase in the sensitivity and figure of merit (FOM)-of a magneto-optical surface plasmon resonance (MOSPR) sensor, which is based on the transverse magneto-optical Kerr effect (T-MOKE) in a ferromagnet coupled with a noble-metal grating. Specifically, we propose to use a CoFeB magnetic slab covered by a subwavelength, periodic gold grating configured as a magnetoplasmonic heterostructure. In such a device, sharp, Fano-like T-MOKE signals of high amplitude can be achieved due to the surface plasmon resonances (SPRs) excited in the presence of the gold grating, especially after optimizing the grating period. Tiny changes in the refractive index of an analyte surrounding the MOSPR sensor can be measured by analyzing the shift in the angle of incidence of the resonance positions of the T-MOKE signals. By calculating these resonance positions, we have demonstrated that it is possible to achieve a considerable sensitivity of 105° RIU-1 and a FOM as high as ∼102. Such a MOSPR sensing system can be exploited in biosensors with high detection limits.
Collapse
|
37
|
Sena-Torralba A, Pallás-Tamarit Y, Morais S, Maquieira Á. Recent advances and challenges in food-borne allergen detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116050] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Abstract
Food manufacturers are aiming to manage the levels of cross-contamination of allergens within food processing plants and ultimately move away from precautionary labelling. Hence, the need for rapid methods to detect allergens cross-contamination. A sensitive and selective label-free nanoMIPs based sensor was developed and tested for the detection of β-lactoglobulin (BLG). NanoMIPs were synthesized using solid-phase synthesis and appeared as spherical nanoparticles with sizes ranging from 264–294 nm, using dynamic light scattering (DLS). The nanoMIPs were functionalized with amine groups and attached to the surface of the SPR gold chip via amine-coupling protocol. The SPR nanoMIPs-based sensor demonstrated a detection limit of 3 ng mL−1 (211 pM) over a linear range of 1–5000 ng mL−1, with binding affinity of 7.0 × 10−8 M and specificity towards BLG. With further testing and final optimization, the developed nanosensor can be integrated on-line or at-line cleaning-in-place (CIP) wash systems, allowing to effectively monitor milk protein allergens as a rapid, point-of-source methodology.
Collapse
|
39
|
High-Sensitivity Terahertz Refractive Index Sensor in a Multilayered Structure with Graphene. NANOMATERIALS 2020; 10:nano10030500. [PMID: 32164280 PMCID: PMC7153478 DOI: 10.3390/nano10030500] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 12/14/2022]
Abstract
In this paper, we propose a high-sensitivity optical sensor at terahertz frequencies based on a composite structure containing a one-dimensional photonic crystal (1D PC) coated with a layer of monolayer graphene. Between the 1D PC and the graphene there is a sensing medium. This high-sensitivity phenomenon originates from the excitation of optical resonance between the graphene and the 1D PC. The proposed sensor is highly sensitive to the Fermi energy of graphene, the thickness and refractive index of the sensing medium, and the number of graphene layers. By selecting appropriate parameters, the maximum sensitivity (407.36∘/RIU) is obtained. We believe the proposed configuration is promising for fabricating graphene-based biosensor- or gas-sensor devices and other related applications in the terahertz band.
Collapse
|
40
|
Quantification of shellfish major allergen tropomyosin by SPR biosensor with gold patterned Biochips. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.02.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
41
|
Nehra M, Lettieri M, Dilbaghi N, Kumar S, Marrazza G. Nano-Biosensing Platforms for Detection of Cow's Milk Allergens: An Overview. SENSORS (BASEL, SWITZERLAND) 2019; 20:E32. [PMID: 31861555 PMCID: PMC6982970 DOI: 10.3390/s20010032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022]
Abstract
Among prevalent food allergies, cow milk allergy (CMA) is most common and may persist throughout the life. The allergic individuals are exposed to a constant threat due to milk proteins' presence in uncounted food products like yogurt, cheese, and bakery items. The problem can be more severe due to cross-reactivity of the milk allergens in the food products due to homologous milk proteins of diverse species. This problem can be overcome by proper and reliable food labeling in order to ensure the life quality of allergic persons. Therefore, highly sensitive and accurate analytical techniques should be developed to detect the food allergens. Here, significant research advances in biosensors (specifically immunosensors and aptasensors) are reviewed for detection of the milk allergens. Different allergic proteins of cow milk are described here along with the analytical standard methods for their detection. Additionally, the commercial status of biosensors is also discussed in comparison to conventional techniques like enzyme-linked immunosorbent assay (ELISA). The development of novel biosensing mechanisms/kits for milk allergens detection is imperative from the perspective of enforcement of labeling regulations and directives keeping in view the sensitive individuals.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India; (M.N.)
| | - Mariagrazia Lettieri
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 350019 Sesto Fiorentino (Fi), Italy;
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India; (M.N.)
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India; (M.N.)
| | - Giovanna Marrazza
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 350019 Sesto Fiorentino (Fi), Italy;
| |
Collapse
|
42
|
Zhou J, Qi Q, Wang C, Qian Y, Liu G, Wang Y, Fu L. Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens Bioelectron 2019; 142:111449. [PMID: 31279816 DOI: 10.1016/j.bios.2019.111449] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/23/2019] [Accepted: 06/18/2019] [Indexed: 11/25/2022]
Abstract
Food allergies are recognized as a growing public health concern, with an estimated 3% of adults and 6-8% of children affected by food allergy disorders. Hence, food allergen detection, labeling, and management have become significant priorities within the food industry, and there is an urgent requirement for reliable, sensitive, and user-friendly technologies to trace food allergens in food products. In this critical review, we provide a comprehensive overview of the principles and applications of surface plasmon resonance (SPR) biosensors in the identification and quantification of food allergens (milk, egg, peanut, and seafood), including fiber-optic surface plasmon resonance (FOSPR), surface plasmon resonance imaging (SPRI), localized surface plasmon resonance (LSPR), and transmission surface plasmon resonance (TSPR). Moreover, the characteristics and fitness-for-purpose of each reviewed SPR biosensor is discussed, and the potential of newly developed SPR biosensors for multi-allergen real-time detection in a complex food system is highlighted. Such SPR biosensors are also required to facilitate the reliable, high-throughput, and real-time detection of food allergens by the food control industry and food safety control officials to easily monitor cross-contamination during food processing.
Collapse
Affiliation(s)
- Jinru Zhou
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Qinqin Qi
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Chong Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Yifan Qian
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Guangming Liu
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, PR China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| |
Collapse
|
43
|
Demonstration of a Low-Cost and Portable Optical Cavity-Based Sensor through Refractive Index Measurements. SENSORS 2019; 19:s19092193. [PMID: 31083614 PMCID: PMC6539703 DOI: 10.3390/s19092193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 11/16/2022]
Abstract
An optical cavity-based sensor using a differential detection method has been proposed for point-of-care diagnostics. We developed a low-cost and portable optical cavity-based sensor system using a 3D printer and off-the-shelf optical components. In this paper, we demonstrate the sensing capability of the portable system through refractive index measurements. Fabricated optical cavity samples were tested using the portable system and compared to simulation results. A referencing technique and digital low pass filtering were applied to reduce the noise of the portable system. The measurement results match the simulation results well and show the improved linearity and sensitivity by employing the differential detection method. The limit of detection achieved was 1.73 × 10−5 Refractive Index Unit (RIU), which is comparable to other methods for refractive index sensing.
Collapse
|
44
|
Khan MN, Orimoto Y, Ihara H. Amphiphilic spherical nanoparticles with a nitrogen-enriched carbon-like surface by using β-lactoglobulin as a template. Chem Commun (Camb) 2018; 54:13204-13207. [PMID: 30328421 DOI: 10.1039/c8cc07532h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We demonstrate a versatile and facile method for fabrication of a new class of amphiphilic spherical nanoparticles having a nitrogen-enriched carbonised surface and precisely-controlled morphology. They are prepared by one-pot polymerization with β-lactoglobulin aggregates as a template with tunable size (70-750 nm) and mild heat-treatment to extend the π-conjugated structures.
Collapse
Affiliation(s)
- M Nuruzzaman Khan
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | | | | |
Collapse
|
45
|
Molinari J, Florez L, Medrano A, Monsalve L, Ybarra G. Electrochemical Determination of β-Lactoglobulin Employing a Polystyrene Bead-Modified Carbon Nanotube Ink. BIOSENSORS 2018; 8:bios8040109. [PMID: 30445706 PMCID: PMC6316051 DOI: 10.3390/bios8040109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 05/03/2023]
Abstract
In this article, we introduce the use of a carboxy-functionalized waterborne carbon nanotube ink for the fabrication of an amperometric biosensor aimed at the quantification of β-lactoglobulin. Detection of this protein from cow's milk was performed by a sandwich immunoassay onto printed carbon nanotube electrodes. The electrodes were printed using a carbon nanotube ink modified with polystyrene beads containing a high amount of carboxylic groups for protein immobilization. This strategy showed enhanced sensing performance compared to the use of oxidative treatments for the functionalization of electrodes. These electrodes showed an excellent electrochemical behavior, and proteins could be immobilized on their surface via the carbodiimide reaction. These antibody-immobilized carbon nanotube electrodes allowed for the detection of β-lactoglobulin in sub-ppm concentrations.
Collapse
Affiliation(s)
- Judith Molinari
- U.T. Nanomateriales, INTI-Procesos Superficiales, Instituto Nacional de Tecnología Industrial, Av. Gral. Paz 5445, San Martín B1650WAB, Argentina.
| | - Laura Florez
- U.T. Nanomateriales, INTI-Procesos Superficiales, Instituto Nacional de Tecnología Industrial, Av. Gral. Paz 5445, San Martín B1650WAB, Argentina.
| | - Anahí Medrano
- Centro de Micro y Nanoelectrónica, Instituto Nacional de Tecnología Industrial, Av. Gral. Paz 5445, San Martín B1650WAB, Argentina.
| | - Leandro Monsalve
- Centro de Micro y Nanoelectrónica, Instituto Nacional de Tecnología Industrial, Av. Gral. Paz 5445, San Martín B1650WAB, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina.
| | - Gabriel Ybarra
- U.T. Nanomateriales, INTI-Procesos Superficiales, Instituto Nacional de Tecnología Industrial, Av. Gral. Paz 5445, San Martín B1650WAB, Argentina.
| |
Collapse
|