1
|
Tawakey SH, Mansour M, Soltan A, Salim AI. Early detection of hypo/hyperglycemia using a microneedle electrode array-based biosensor for glucose ultrasensitive monitoring in interstitial fluid. LAB ON A CHIP 2024; 24:3958-3972. [PMID: 39015046 DOI: 10.1039/d4lc00365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Diabetes is a common chronic metabolic disease with a wide range of clinical symptoms and consequences and one of the main causes of death. For the management of diabetes, painless and continuous interstitial fluid (ISF) glucose monitoring is ideal. Here, we demonstrate continuous diabetes monitoring using an integrated microneedle (MN) biosensor with an emergency alert system. MNs are a novel technique in the field of biomedical engineering because of their ability to analyze bioinformation with minimal invasion. In this work we developed a poly(methyl methacrylate) (PMMA) based MN glucose sensor. The device was produced by the 3D printing technique, microfabrication, electrodeposition, and enzyme immobilization step. The in vitro test for the glucose MN sensor showed a linear range from 1.5 to 14 mM with a sensitivity of 1.51 μA mM-1, limit of detection (LOD) of 0.35 mM and good selectivity. Highly repeatable sensing is observed with good reproducibility. The interference-free detection of glucose in the presence of physiologically relevant concentrations of ascorbic acid, uric acid, and mannose is demonstrated, along with the operational stability of the array. After resolving the biofouling consequences linked to on-body sensing, this MN platform would be appealing for minimally invasive electrochemical glucose monitoring. An alert is sent to confidants via email or SMS when the values are abnormal. The application is also able to display the recorded values in the form of a graph to help determine the state of health of the user over a period of time. It can be concluded that continuous monitoring and an emergency alert system are important for keeping an eye on diabetic patients and can send alert in case of an abnormal situation of the patient.
Collapse
Affiliation(s)
- Samar H Tawakey
- Nanoelectronics Integrated Systems Center (NISC), Nile University, 26th of July Corridor, Sheikh Zayed City, 12588, Giza, Egypt
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohammad Mansour
- Nanoelectronics Integrated Systems Center (NISC), Nile University, 26th of July Corridor, Sheikh Zayed City, 12588, Giza, Egypt
| | - Ahmed Soltan
- Nanoelectronics Integrated Systems Center (NISC), Nile University, 26th of July Corridor, Sheikh Zayed City, 12588, Giza, Egypt
| | - Alyaa I Salim
- School of Biotechnology, Nile University, 26th of July Corridor, Sheikh Zayed City, 12588, Giza, Egypt.
| |
Collapse
|
2
|
Paglia EB, Baldin EKK, Freitas GP, Santiago TSA, Neto JBMR, Silva JVL, Carvalho HF, Beppu MM. Circulating Tumor Cells Adhesion: Application in Biosensors. BIOSENSORS 2023; 13:882. [PMID: 37754116 PMCID: PMC10526177 DOI: 10.3390/bios13090882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
The early and non-invasive diagnosis of tumor diseases has been widely investigated by the scientific community focusing on the development of sensors/biomarkers that act as a way of recognizing the adhesion of circulating tumor cells (CTCs). As a challenge in this area, strategies for CTCs capture and enrichment currently require improvements in the sensors/biomarker's selectivity. This can be achieved by understanding the biological recognition factors for different cancer cell lines and also by understanding the interaction between surface parameters and the affinity between macromolecules and the cell surface. To overcome some of these concerns, electrochemical sensors have been used as precise, fast-response, and low-cost transduction platforms for application in cytosensors. Additionally, distinct materials, geometries, and technologies have been investigated to improve the sensitivity and specificity properties of the support electrode that will transform biochemical events into electrical signals. This review identifies novel approaches regarding the application of different specific biomarkers (CD44, Integrins, and EpCAm) for capturing CTCs. These biomarkers can be applied in electrochemical biosensors as a cytodetection strategy for diagnosis of cancerous diseases.
Collapse
Affiliation(s)
- Eduarda B. Paglia
- School of Chemical Engineering, Department of Process and Product Development, University of Campinas, Campinas 13083-852, Brazil; (E.B.P.); (E.K.K.B.); (G.P.F.); (T.S.A.S.)
| | - Estela K. K. Baldin
- School of Chemical Engineering, Department of Process and Product Development, University of Campinas, Campinas 13083-852, Brazil; (E.B.P.); (E.K.K.B.); (G.P.F.); (T.S.A.S.)
- Renato Archer Information Technology Center, Campinas 13069-901, Brazil;
| | - Gabriela P. Freitas
- School of Chemical Engineering, Department of Process and Product Development, University of Campinas, Campinas 13083-852, Brazil; (E.B.P.); (E.K.K.B.); (G.P.F.); (T.S.A.S.)
- Renato Archer Information Technology Center, Campinas 13069-901, Brazil;
| | - Thalyta S. A. Santiago
- School of Chemical Engineering, Department of Process and Product Development, University of Campinas, Campinas 13083-852, Brazil; (E.B.P.); (E.K.K.B.); (G.P.F.); (T.S.A.S.)
| | - João B. M. R. Neto
- Technology Center, Federal University of Alagoas, Maceió 57072-900, Brazil;
| | - Jorge V. L. Silva
- Renato Archer Information Technology Center, Campinas 13069-901, Brazil;
| | - Hernandes F. Carvalho
- Institute of Biology, Department of Structural and Functional Biology, University of Campinas, Campinas 13083-864, Brazil;
| | - Marisa M. Beppu
- School of Chemical Engineering, Department of Process and Product Development, University of Campinas, Campinas 13083-852, Brazil; (E.B.P.); (E.K.K.B.); (G.P.F.); (T.S.A.S.)
| |
Collapse
|
3
|
Perk B, Büyüksünetçi YT, Anık Ü. Gold nanoparticle deposited electrochemical sensor for hyaluronic acid detection. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
4
|
An ultrasensitive label-free electrochemical aptasensing platform for thiamethoxam detection based on ZIF-67 derived Co-N doped porous carbon. Bioelectrochemistry 2022; 149:108317. [DOI: 10.1016/j.bioelechem.2022.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
|
5
|
A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Biodes Manuf 2021; 5:371-395. [PMID: 34721937 PMCID: PMC8546395 DOI: 10.1007/s42242-021-00170-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023]
Abstract
Abstract Commercially pure titanium and titanium alloys have been among the most commonly used materials for biomedical applications since the 1950s. Due to the excellent mechanical tribological properties, corrosion resistance, biocompatibility, and antibacterial properties of titanium, it is getting much attention as a biomaterial for implants. Furthermore, titanium promotes osseointegration without any additional adhesives by physically bonding with the living bone at the implant site. These properties are crucial for producing high-strength metallic alloys for biomedical applications. Titanium alloys are manufactured into the three types of α, β, and α + β. The scientific and clinical understanding of titanium and its potential applications, especially in the biomedical field, are still in the early stages. This review aims to establish a credible platform for the current and future roles of titanium in biomedicine. We first explore the developmental history of titanium. Then, we review the recent advancement of the utility of titanium in diverse biomedical areas, its functional properties, mechanisms of biocompatibility, host tissue responses, and various relevant antimicrobial strategies. Future research will be directed toward advanced manufacturing technologies, such as powder-based additive manufacturing, electron beam melting and laser melting deposition, as well as analyzing the effects of alloying elements on the biocompatibility, corrosion resistance, and mechanical properties of titanium. Moreover, the role of titania nanotubes in regenerative medicine and nanomedicine applications, such as localized drug delivery system, immunomodulatory agents, antibacterial agents, and hemocompatibility, is investigated, and the paper concludes with the future outlook of titanium alloys as biomaterials. Graphic abstract ![]()
Collapse
|
6
|
Nycz M, Arkusz K, Pijanowska DG. Electrodes Based on a Titanium Dioxide Nanotube-Spherical Silver Nanoparticle Composite for Sensing of Proteins. ACS Biomater Sci Eng 2021; 7:105-113. [PMID: 33378150 DOI: 10.1021/acsbiomaterials.0c01207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of the research was to provide electrochemical, chemical, phase, and microscopic characteristics of electrodes based on titanium dioxide nanotubes (TNTs) containing uniformly deposited, nonagglomerated spherical silver nanoparticles (AgNPs). The nanoparticles were produced with the use of electrodeposition and sputter deposition methods. This paper presents the results of research of these platforms with the use of the following techniques: electrochemical impedance spectroscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, and scanning electron microscopy. Evaluation of the adsorption of proteins-bovine serum albumin (BSA)-was carried out to establish the possibility of the use of the electrodes in a low-cost, simple detection system without surface functionalization. The research proved that the AgNP deposition facilitated the electron transfer increasing their conductivity properties as well as promoting the protein adsorption. The AgNPs/TNT electrodes showed a high selectivity to the BSA-anti-BSA complex. Half an hour of immobilization was enough to completely saturate the TNT electrodes, whereas for AgNPs/TNTs, 1 h of immobilization seemed to be not enough. The impedance parameter changes for electrodes with the AgNPs reached even about 300%. The biggest changes were noted for the platform obtained using cyclic voltammetry, so it is the best detection platform for biosensing.
Collapse
Affiliation(s)
- Marta Nycz
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Prof. Z. Szafrana 4, Zielona Gora 65-516, Poland
| | - Katarzyna Arkusz
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Prof. Z. Szafrana 4, Zielona Gora 65-516, Poland
| | - Dorota Genowefa Pijanowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, Warszawa 02-109, Poland
| |
Collapse
|
7
|
Arkusz K, Paradowska E. Impedimetric Detection of Femtomolar Levels of Interleukin6, Interleukin 8, and Tumor Necrosis Factor Alpha Based on Thermally Modified Nanotubular Titanium Dioxide Arrays. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2399. [PMID: 33266223 PMCID: PMC7760759 DOI: 10.3390/nano10122399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 01/07/2023]
Abstract
An inexpensive, easy to prepare, and label-free electrochemical impedance spectroscopy-based biosensor has been developed for the selective detection of human interleukin 6 (IL-6), interleukin 8 (CXCL8, IL-8), and tumor necrosis factor (TNFα)-potential inflammatory cancer biomarkers. We describe a, so far, newly developed and unexplored method to immobilize antibodies onto a titanium dioxide nanotube (TNT) array by physical adsorption. Immobilization of anti-IL-6, anti-IL-8, and anti-TNFα on TNT and the detection of human IL-6, IL-8, and TNFα were examined using electrochemical impedance spectroscopy (EIS). The impedimetric immunosensor demonstrates good selectivity and high sensitivity against human biomarker analytes and can detect IL-6, IL-8, and TNFα at concentrations as low as 5 pg/mL, equivalent to the standard concentration of these proteins in human blood. The calibration curves evidenced that elaborated biosensors are sensitive to three cytokines within 5 ÷ 2500 pg/mL in the 0.01 M phosphate-buffered saline solution (pH 7.4).
Collapse
Affiliation(s)
- Katarzyna Arkusz
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Licealna 9 Street, 65-417 Zielona Gora, Poland;
| | | |
Collapse
|
8
|
Paradowska E, Arkusz K, Pijanowska DG. Comparison of Gold Nanoparticles Deposition Methods and Their Influence on Electrochemical and Adsorption Properties of Titanium Dioxide Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4269. [PMID: 32992707 PMCID: PMC7578957 DOI: 10.3390/ma13194269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 01/13/2023]
Abstract
The increasing interest of attachment of gold nanoparticles (AuNPs) on titanium dioxide nanotubes (TNTs) has been devoted to obtaining tremendous properties suitable for biosensor applications. Achieving precise control of the attachment and shape of AuNPs by methods described in the literature are far from satisfactory. This work shows the comparison of physical adsorption (PA), cyclic voltammetry (CV) and chronoamperometry (CA) methods and the parameters of these methods on TNTs properties. The structural, chemical, phase and electrochemical characterizations of TNTs, Au/TNTs, AuNPs/TNTs are carried out using scanning electron microscopy (SEM), electrochemical impedance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy. The use of PA methods does not allow the deposition of AuNPs on TNTs. CV allows easily obtaining spherical nanoparticles, for which the diameter increases from 20.3 ± 2.9 nm to 182.3 ± 51.7 nm as a concentration of tetrachloroauric acid solution increase from 0.1 mM to 10 mM. Increasing the AuNPs deposition time in the CA method increases the amount of gold, but the AuNPs diameter does not change (35.0 ± 5 nm). Importantly, the CA method also causes the dissolution of the nanotubes layer from 1000 ± 10.0 nm to 823 ± 15.3 nm. Modification of titanium dioxide nanotubes with gold nanoparticles improved the electron transfer and increased the corrosion resistance, as well as promoted the protein adsorption. Importantly, after the deposition of bovine serum albumin, an almost 5.5-fold (324%) increase in real impedance, compared to TNTs (59%) was observed. We found that the Au nanoparticles-especially those with smaller diameter-promoted the stability of bovine serum albumin binding to the TNTs platform. It confirms that the modification of TNTs with gold nanoparticles allows the development of the best platform for biosensing applications.
Collapse
Affiliation(s)
- Ewa Paradowska
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Prof. Zygmunta Szafrana 4 Street, 65-516 Zielona Gora, Poland;
| | - Katarzyna Arkusz
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Prof. Zygmunta Szafrana 4 Street, 65-516 Zielona Gora, Poland;
| | - Dorota G. Pijanowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 Street, 02-109 Warszawa, Poland;
| |
Collapse
|
9
|
Arkusz K, Pasik K, Halinski A, Halinski A. Surface analysis of ureteral stent before and after implantation in the bodies of child patients. Urolithiasis 2020; 49:83-92. [PMID: 32909098 PMCID: PMC7867540 DOI: 10.1007/s00240-020-01211-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
The aim of this work was to determine which part of a double-J ureteral stent (DJ stents) showed the highest tendency to crystal, calculi, and biofilm deposition after ureterorenoscopic-lithotripsy procedure (URS-L) to treat calcium oxalate stones. Additionally, the mechanical strength and the stiffness of DJ stents were evaluated before and after exposure to urine. Obtained results indicated that the proximal (renal pelvis) and distal (urinary bladder) part is the most susceptible for post-URS-L fragments and urea salt deposition. Both, the outer and inner surfaces of the DJ ureteral stents were completely covered even after 7 days of implantation. Encrustation of DJ stents during a 31-day period results in reducing the Young’s modulus by 27–30%, which confirms the loss of DJ stent elasticity and increased probability of cracks or interruption. Performed analysis pointed to the need to use an antibacterial coating in the above-mentioned part of the ureteral stent to prolong its usage time and to prevent urinary tract infection.
Collapse
Affiliation(s)
- Katarzyna Arkusz
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, 9 Licealna Street, 65-417, Zielona Gora, Poland.
| | - Kamila Pasik
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, 9 Licealna Street, 65-417, Zielona Gora, Poland
| | - Andrzej Halinski
- Department of Paediatric Urology, Cherry Clinic, Anieli Krzywon 2 Street, 65-534, Zielona Gora, Poland
| | - Adam Halinski
- Department of Paediatric Urology, Cherry Clinic, Anieli Krzywon 2 Street, 65-534, Zielona Gora, Poland
| |
Collapse
|
10
|
Arkusz K, Nycz M, Paradowska E. Electrochemical Evaluation of the Compact and Nanotubular Oxide Layer Destruction under Ex Vivo Ti6Al4V ELI Transpedicular Screw Implantation. MATERIALS 2020; 13:ma13010176. [PMID: 31906376 PMCID: PMC6981910 DOI: 10.3390/ma13010176] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 12/19/2022]
Abstract
Nano-engineered implants are a promising orthopedic implant modification enhancing bioactivity and integration. Despite the lack of destruction of an oxide layer confirmed in ex vivo and in vivo implantation, the testing of a microrupture of an anodic layer initiating immune-inflammatory reaction is still underexplored. The aim of this work was to form the compact and nanotubular oxide layer on the Ti6Al4V ELI transpedicular screws and electrochemical detection of layer microrupture after implantation ex vivo by the Magerl technique using scanning electron microscopy and highly sensitive electrochemical methods. For the first time, the obtained results showed the ability to form the homogenous nanotubular layer on an Ti6Al4V ELI screw, both in α and β-phases, with favorable morphology, i.e., 35 ÷ 50 ± 5 nm diameter, 1500 ± 100 nm height. In contrast to previous studies, microrupture and degradation of both form layers were observed using ultrasensitive electrochemical methods. Mechanical stability and corrosion protection of nanotubular layer were significantly better when compared to compact oxide layer and bare Ti6Al4V ELI.
Collapse
|