1
|
Nair AC, Benny S, Tp A, Sudheesh MS, Lakshmi PK. Comprehensive profiling of traditional herbomineral formulation Manasamitra vatakam in rat brain following oral administration and in-silico screening of the identified compound for anti-Alzheimer's activity. JOURNAL OF ETHNOPHARMACOLOGY 2024:119024. [PMID: 39489356 DOI: 10.1016/j.jep.2024.119024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Multi-targeted drug therapy has received substantial attention for the treatment of diseases of multifactorial origin, such as neurodegenerative diseases. Manasamitra vatakam (MMV) is a traditional Ayurvedic formulation used to improve cognitive impairment and mental illness. Here we have used a unique method for leveraging the barrier properties of the intestinal and blood-brain barrier (BBB) to screen and identify the bioactive molecules against Alzheimer's disease (AD). The current method exemplifies a facile method to expedite drug discovery from traditional formulations. AIM OF THE STUDY The present study aimed to identify the phytoconstituents of MMV that reach the brain tissue and to predict major bioactive constituents by computational docking studies. MATERIALS AND METHODS After oral administration of the formulation, brain samples from male Sprague Dawley rats were collected at different time intervals and analyzed by liquid chromatography-mass spectrometry (LC-MS) to identify the phytoconstituents. In silico molecular docking studies were carried out to analyze the binding affinity of the compounds to the target proteins of AD using Schrodinger Maestro. The molecular dynamic studies were carried out for all the docked complexes having higher docking scores. RESULTS 34 phytoconstituents were identified by LC-MS analysis of brain homogenates. In the in silico docking study, the phytoconstituents chrysin, convolvin, rutin, galangin, palmatoside G, isoliquiritigenin, quercetin, and naringenin showed higher docking score against the target proteins of AD. These compounds may serve as the primary bioactive compounds responsible for the neuroprotective activity of the herbal formulation. Furthermore, molecular dynamic studies indicated that the galangin-acetylcholinesterase enzyme complex has the highest stability among these eight compounds. CONCLUSION The study, together with previous in vivo and in vitro efficacy results, suggests that BBB-permeable compounds with high binding affinities for the target proteins of AD might be responsible for the effectiveness of MMV against AD.
Collapse
Affiliation(s)
- Anju C Nair
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| | - Aneesh Tp
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| | - P K Lakshmi
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| |
Collapse
|
2
|
Nunes YC, Mendes NM, Pereira de Lima E, Chehadi AC, Lamas CB, Haber JFS, dos Santos Bueno M, Araújo AC, Catharin VCS, Detregiachi CRP, Laurindo LF, Tanaka M, Barbalho SM, Marin MJS. Curcumin: A Golden Approach to Healthy Aging: A Systematic Review of the Evidence. Nutrients 2024; 16:2721. [PMID: 39203857 PMCID: PMC11357524 DOI: 10.3390/nu16162721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Aging-related disorders pose significant challenges due to their complex interplay of physiological and metabolic factors, including inflammation, oxidative stress, and mitochondrial dysfunction. Curcumin, a natural compound with potent antioxidant and anti-inflammatory properties, has emerged as a promising candidate for mitigating these age-related processes. However, gaps in understanding the precise mechanisms of curcumin's effects and the optimal dosages for different conditions necessitate further investigation. This systematic review synthesizes current evidence on curcumin's potential in addressing age-related disorders, emphasizing its impact on cognitive function, neurodegeneration, and muscle health in older adults. By evaluating the safety, efficacy, and mechanisms of action of curcumin supplementation, this review aims to provide insights into its therapeutic potential for promoting healthy aging. A systematic search across three databases using specific keywords yielded 2256 documents, leading to the selection of 15 clinical trials for synthesis. Here, we highlight the promising potential of curcumin as a multifaceted therapeutic agent in combating age-related disorders. The findings of this review suggest that curcumin could offer a natural and effective approach to enhancing the quality of life of aging individuals. Further research and well-designed clinical trials are essential to validate these findings and optimize the use of curcumin in personalized medicine approaches for age-related conditions.
Collapse
Affiliation(s)
- Yandra Cervelim Nunes
- Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil; (Y.C.N.); (L.F.L.)
| | - Nathalia M. Mendes
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Amanda Chabrour Chehadi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Jesselina F. S. Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Manoela dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
| | - Vitor C. Strozze Catharin
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
| | - Claudia Rucco P. Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
| | - Lucas Fornari Laurindo
- Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil; (Y.C.N.); (L.F.L.)
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
- Research Coordination, Hospital Beneficente (HBU), University of Marília (UNIMAR), Marília 17525-160, SP, Brazil
| | | |
Collapse
|
3
|
Premkumar T, Sajitha Lulu S. Targeting key players in Alzheimer's disease: bioactive compounds from Moringa oleifera, Desmodium gangeticum, and Centella asiatica as potential therapeutics. J Biomol Struct Dyn 2024:1-23. [PMID: 38887054 DOI: 10.1080/07391102.2024.2335300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/20/2024] [Indexed: 06/20/2024]
Abstract
Alzheimer's Disease (AD) is one of the critical reasons for dementia around the world, with a huge number of cases being reported every year. The breakdown of Amyloid Precursor Protein (APP) plays a crucial role in AD development. The Beta-site APP Cleaving Enzyme 1 (BACE1) is a highly significant proteolytic enzyme found to be critically involved in the APP breakdown process and generates beta-amyloid plaques in the extracellular neuronal membrane. In this study, we have used natural compounds with cognitive and neuroprotective activities from three plants, Centella asiatica, Moringa oleifera, and Desmodium gangeticum to inhibit the activity of BACE1. We have identified nine compounds out of 73 compounds filtered out from the three plants showing high affinity with the catalytic dyad region of BACE1 through molecular docking studies. Interestingly, the 200 ns molecular dynamics simulation study further confirmed the stability of the complexes formed between 9 compounds and the BACE1 protein. Furthermore, the free energy calculations also revealed these complexes possess favorable energies. Astilbin, Delphinidin 3-glucoside, and kaempferol 7-O-glucoside showed good binding affinity and structural stability when compared to other compounds and the control CNP520. Following a preliminary screening, the Astilbin compound was chosen based on the grounds of binding affinity, ADMET Properties, Hbond formation, Molecular Dynamic simulation, and MM-PBSA studies. A subsequent 1microsecond molecular dynamics simulation was conducted for the Astilbin complex. Through microsecond simulation, it was found that Astilbin alters BACE1's behavior and induces conformational rearrangements. Thus, this study opens a gateway to inhibit the activity of BACE1 protein through Astilbin thereby disclosing the possibility of managing Alzheimer's Disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- T Premkumar
- Integrative Multiomics Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - S Sajitha Lulu
- Integrative Multiomics Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Ather S, Bhattacharyya C, Gupta H, Patil Y, Palicherla SR, Patil G, Khatoon Y, Gupta PP, Thakur KS, Thakur M. Exploring the neuropharmacological properties of scopoletin-rich Evolvulus alsinoides extract using in-silico and in-vitro methods. Am J Transl Res 2024; 16:2103-2121. [PMID: 38883392 PMCID: PMC11170599 DOI: 10.62347/ivap2549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVES This study investigates the neuropharmacologic properties of Scopoletin, a bioactive compound in Evolvulus alsinoides (EA) extract, for managing cognitive impairment using in-vitro, in-silico, and zebrafish embryo toxicity assays. METHODS The study estimates Scopoletin concentration in EA extract using HPTLC, assesses antioxidant properties using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing ability of plasma (FRAP) assays, and uses bioinformatic tools for scopoletin targets. Zebrafish embryo toxicity (ZET) is used to assess its toxicological profile. RESULTS 0.0076% w/w Scopoletin in the samples was quantified using HPTLC, further studies on the DPPH (0.5 mM) and FRAP gave EC50 at 440.0 μg/ml and 84.29 μg/ml respectively. Twelve common targets associated with cognitive impairment (CI) were identified, along with possible pathways and molecular interactions. Our results indicate significant binding affinities of Scopoletin with ERAP1, SCN3A, and COMT. Molecular dynamics simulations further confirm the stability of these interactions. ZET assessment demonstrated mortality after 450 µg/ml concentration of EA extract. CONCLUSION The study verifies the presence of Scopoletin in EA, along with their targets playing a crucial role in neurogenesis and neuroplasticity. The ZET demonstrated concentration-dependent effects, emphasizing the importance of dosage considerations in developing new formulations or therapeutics. This comprehensive study contributes valuable insight into the therapeutic potential of Scopoletin from EA for cognitive impairment, paving the way for further research.
Collapse
Affiliation(s)
- Shamshad Ather
- Department of Medical Biotechnology, Central Research Laboratory, Mahatma Gandhi Mission, School of Biomedical Sciences, Mahatma Gandhi Mission Institute of Health Sciences Navi Mumbai 410209, Maharashtra, India
| | - Chayan Bhattacharyya
- Department of Medical Biotechnology, Central Research Laboratory, Mahatma Gandhi Mission, School of Biomedical Sciences, Mahatma Gandhi Mission Institute of Health Sciences Navi Mumbai 410209, Maharashtra, India
| | - Himanshu Gupta
- Department of Medical Biotechnology, Central Research Laboratory, Mahatma Gandhi Mission, School of Biomedical Sciences, Mahatma Gandhi Mission Institute of Health Sciences Navi Mumbai 410209, Maharashtra, India
| | - Yogesh Patil
- Department of Medical Biotechnology, Central Research Laboratory, Mahatma Gandhi Mission, School of Biomedical Sciences, Mahatma Gandhi Mission Institute of Health Sciences Navi Mumbai 410209, Maharashtra, India
| | - Sairam Reddy Palicherla
- Heartfulness Institute Kanha Shanti Vanam, Kanha Village, Nandigama Mandal, Rangareddy District, Hyderabad 509325, Telangana, India
| | - Gauri Patil
- Department of Medical Biotechnology, Central Research Laboratory, Mahatma Gandhi Mission, School of Biomedical Sciences, Mahatma Gandhi Mission Institute of Health Sciences Navi Mumbai 410209, Maharashtra, India
| | - Yasmin Khatoon
- Department of Medical Biotechnology, Central Research Laboratory, Mahatma Gandhi Mission, School of Biomedical Sciences, Mahatma Gandhi Mission Institute of Health Sciences Navi Mumbai 410209, Maharashtra, India
| | - Pramodkumar P Gupta
- Department of Bioinformatics, DY Patil College School of Biotechnology and Bioinformatics Belapur, Navi Mumbai 400614, Maharashtra, India
| | - Kapil Singh Thakur
- Nuvox Healthcare Pvt. Ltd. Hiranandani Gardens, Powai, Mumbai 400076, Maharashtra, India
| | - Mansee Thakur
- Department of Medical Biotechnology, Central Research Laboratory, Mahatma Gandhi Mission, School of Biomedical Sciences, Mahatma Gandhi Mission Institute of Health Sciences Navi Mumbai 410209, Maharashtra, India
| |
Collapse
|
5
|
Naidu G, Tripathi DK, Nagar N, Mishra A, Poluri KM. Targeting chemokine-receptor mediated molecular signaling by ethnopharmacological approaches. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117837. [PMID: 38310985 DOI: 10.1016/j.jep.2024.117837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Infection and inflammation are critical to global human health status and the goal of current pharmacological interventions intends formulating medications/preventives as a measure to deal with this situation. Chemokines and their cognate receptors are major regulatory molecules in many of these ailments. Natural products have been a keen source to the drug development industry, every year contributing significantly to the growing list of FDA approved drugs. A multiverse of natural resource is employed as a part of curative regimen in folk/traditional/ethnomedicine which can be employed to discover, repurpose, and design potent medications for the diseases of clinical concern. AIM OF THE STUDY This review aims to systematically document the ethnopharmacologically active agents targeting the infectious-inflammatory diseases through the chemokine-receptor nexus. MATERIALS AND METHODS Articles related to chemokine/receptor modulating ethnopharmacological anti-inflammatory, anti-infectious natural sources, bioactive compounds, and formulations have been examined with special emphasis on women related diseases. The available literature has been thoroughly scrutinized for the application of traditional medicines in chemokine associated experimental methods, their regulatory outcomes, and pertinence to women's health wherever applicable. Moreover, the potential traditional regimens under clinical trials have been critically assessed. RESULTS A systematic and comprehensive review on the chemokine-receptor targeting ethnopharmaceutics from the available literature has been provided. The article discusses the implication of traditional medicine in the chemokine system dynamics in diverse infectious-inflammatory disorders such as cardiovascular diseases, allergic diseases, inflammatory diseases, neuroinflammation, and cancer. On this note, critical evaluation of the available data surfaced multiple diseases prevalent in women such as osteoporosis, rheumatoid arthritis, breast cancer, cervical cancer and urinary tract infection. Currently there is no available literature highlighting chemokine-receptor targeting using traditional medicinal approach from women's health perspective. Moreover, despite being potent in vitro and in vivo setups there remains a gap in clinical translation of these formulations, which needs to be strategically and scientifically addressed to pave the way for their successful industrial translation. CONCLUSIONS The review provides an optimistic global perspective towards the applicability of ethnopharmacology in chemokine-receptor regulated infectious and inflammatory diseases with special emphasis on ailments prevalent in women, consecutively addressing their current status of clinical translation and future directions.
Collapse
Affiliation(s)
- Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Deepak Kumar Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
6
|
Oldoni AA, Bacchi AD, Mendes FR, Tiba PA, Mota-Rolim S. Neuropsychopharmacological Induction of (Lucid) Dreams: A Narrative Review. Brain Sci 2024; 14:426. [PMID: 38790404 PMCID: PMC11119155 DOI: 10.3390/brainsci14050426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Lucid dreaming (LD) is a physiological state of consciousness that occurs when dreamers become aware that they are dreaming, and may also control the oneiric content. In the general population, LD is spontaneously rare; thus, there is great interest in its induction. Here, we aim to review the literature on neuropsychopharmacological induction of LD. First, we describe the circadian and homeostatic processes of sleep regulation and the mechanisms that control REM sleep with a focus on neurotransmission systems. We then discuss the neurophysiology and phenomenology of LD to understand the main cortical oscillations and brain areas involved in the emergence of lucidity during REM sleep. Finally, we review possible exogenous substances-including natural plants and artificial drugs-that increase metacognition, REM sleep, and/or dream recall, thus with the potential to induce LD. We found that the main candidates are substances that increase cholinergic and/or dopaminergic transmission, such as galantamine. However, the main limitation of this technique is the complexity of these neurotransmitter systems, which challenges interpreting results in a simple way. We conclude that, despite these promising substances, more research is necessary to find a reliable way to pharmacologically induce LD.
Collapse
Affiliation(s)
- Abel A. Oldoni
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil; (A.A.O.); (P.A.T.)
| | - André D. Bacchi
- Faculty of Health Sciences, Federal University of Rondonópolis, Rondonópolis 78736-900, Brazil;
| | - Fúlvio R. Mendes
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil;
| | - Paula A. Tiba
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil; (A.A.O.); (P.A.T.)
| | - Sérgio Mota-Rolim
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
7
|
Nithya K, Siddaraman R, Sheelajoice PP, Rajarathinam M, Chandra VB. Nootropic activity of methanolic extract from Evolvulus alsinoides Linn. in mice with scopolamine-induced amnesia. Bioinformation 2023; 19:1212-1216. [PMID: 38250536 PMCID: PMC10794754 DOI: 10.6026/973206300191212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
Plants have been used as therapeutic agents in both un-ionized (Unani, Ayurveda) and unstructured forms since ancient times. Therefore, it is of interest to document the nootropic activity of methanolic extract from Evolvulus alsinoides Linn (Vishnukranthi) in mice with scopolamine-induced amnesia. Healthy male Swiss albino mice ranging between 25 and 30 g were used in the study. Scopolamine induced amnesia, the following two tests are performed, elevated plus maze test, passive avoidance test. The mean time spent in the open arm, closed arm, and central platform for each group of animals. The total transitions were 12.6±0.89 by GS group mice, 3.4±0.55 by GSP group mice, 7±0.71 by GSLD group mice and 10±0.71 by GSHD group mice. A significant difference was seen between GS and GSP group mice means. The mean time in the safe zone and shock zone for each group of animals when comparing to Group 2 Vs Group 3, 4 showed a statistical significance of p < 0.05. The findings of this study suggest that Evolvulus alsinoides may be a promising candidate for the development of new treatments for memory impairment and other cognitive disorders. It should be noted that more data is needed to confirm the safety and efficacy of Evolvulus alsinoides in humans and to investigate its long-term effects.
Collapse
Affiliation(s)
- Karnam Nithya
- Department of Pharmacology, Vinayaka Missions University, Salem (Deemed to be university), Chinna Seeragapadi, Salem - 636308, Tamilnadu, India
| | - Rajaram Siddaraman
- Department of Pharmacology, VMKV Medical College, Chinna Seeragapadi, Salem - 636308, Tamil Nadu, India
| | - PP Sheelajoice
- Department of Physiology, VMKV Medical College, Chinna Seeragapadi, Salem - 636 308, Tamil Nadu, India
| | - Mani Rajarathinam
- Department of Pharmacology, GMKMC Medical College, Shavapet Salem 636002, Tamil Nadu, India
| | | |
Collapse
|
8
|
Ibáñez B, Melero A, Montoro A, Merino-Torres JF, Soriano JM, San Onofre N. A Narrative Review of the Herbal Preparation of Ayurvedic, Traditional Chinese, and Kampō Medicines Applied as Radioprotectors. Antioxidants (Basel) 2023; 12:1437. [PMID: 37507975 PMCID: PMC10376155 DOI: 10.3390/antiox12071437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, there has been growing scientific interest in the search for natural radioprotectors that can be used to mitigate the effects of radiation on patients, healthcare personnel, and even for space travel. This narrative review covers the past fifty years and focuses on herbal preparations of Ayurvedic, Traditional Chinese, and Kampō Medicines that have the potential to reduce or eliminate the harmful effects of radiation. Our findings highlight ten herbal preparations, namely Abana, Amalakyadi Churna, Amritaprasham, Brahma, Bu-zhong-yi-qi-tang (BZYQT), Chyavanaprasha, Cystone, Geriforte, Mentat, and Triphala, which have demonstrated potential radioprotective effects. This review examines their composition, properties, and possible mechanisms of action in relation to their radioprotective properties. Exploring the ethnobotany of traditional Asian medicine is particularly interesting as it may lead to the discovery of new active compounds with radioprotective properties.
Collapse
Affiliation(s)
- Blanca Ibáñez
- Food & Health Laboratory, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Juan F Merino-Torres
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, University of Valencia, 46026 Valencia, Spain
- Department of Endocrinology and Nutrition, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Department of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Jose M Soriano
- Food & Health Laboratory, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, University of Valencia, 46026 Valencia, Spain
| | - Nadia San Onofre
- Food & Health Laboratory, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
- Department of Community Nursing, Preventive Medicine and Public Health and History of Science, University of Alicante, 03690 Alicante, Spain
| |
Collapse
|
9
|
Mittal P, Dhankhar S, Chauhan S, Garg N, Bhattacharya T, Ali M, Chaudhary AA, Rudayni HA, Al-Zharani M, Ahmad W, Khan SUD, Singh TG, Mujwar S. A Review on Natural Antioxidants for Their Role in the Treatment of Parkinson's Disease. Pharmaceuticals (Basel) 2023; 16:908. [PMID: 37513820 PMCID: PMC10385773 DOI: 10.3390/ph16070908] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
The neurodegenerative condition known as Parkinson's disease (PD) is brought on by the depletion of dopaminergic neurons in the basal ganglia, which is the brain region that controls body movement. PD occurs due to many factors, from which one of the acknowledged effects of oxidative stress is pathogenic pathways that play a role in the development of Parkinson's disease. Antioxidants, including flavonoids, vitamins E and C, and polyphenolic substances, help to reduce the oxidative stress brought on by free radicals. Consequently, this lowers the risk of neurodegenerative disorders in the long term. Although there is currently no cure for neurodegenerative illnesses, these conditions can be controlled. The treatment of this disease lessens its symptoms, which helps to preserve the patient's quality of life. Therefore, the use of naturally occurring antioxidants, such as polyphenols, which may be obtained through food or nutritional supplements and have a variety of positive effects, has emerged as an appealing alternative management strategy. This article will examine the extent of knowledge about antioxidants in the treatment of neurodegenerative illnesses, as well as future directions for research. Additionally, an evaluation of the value of antioxidants as neuroprotective agents will be provided.
Collapse
Affiliation(s)
- Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
- Ganpati Institute of Pharmacy, Bilaspur 135102, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Nitika Garg
- Ganpati Institute of Pharmacy, Bilaspur 135102, India
| | - Tanima Bhattacharya
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 260 Kyunghee-daero, Seoul 02447, Republic of Korea
- Nondestructive Bio-Sensing Laboratory, Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, 99 Daehak-ro, BLDG# E10-2, RM# 2213, Daejeon 34134, Republic of Korea
| | - Maksood Ali
- Department of Pharmacognosy, Orlean College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, 42, Knowledge Park-III, Greater Noida 201308, India
- Department of Pharmacognosy, HIMT College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, 8, Institutional Area, Knowledge Park-I, Greater Noida 201301, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hassan Ahmad Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Salah Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | | | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| |
Collapse
|
10
|
Melloni E, Grassilli S, Romani A, Rimondi E, Marcuzzi A, Zauli E, Secchiero P, Paganetto G, Guerrini A, Sacchetti G, Tacchini M. Convolvulus pluricaulis Choisy’s Extraction, Chemical Characterization and Evaluation of the Potential Effects on Glycaemic Balance in a 3T3-L1 Adipocyte Cell Model. Nutrients 2023; 15:nu15071727. [PMID: 37049568 PMCID: PMC10097163 DOI: 10.3390/nu15071727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Convolvulus pluricaulis (CP) is a common Indian herb, largely employed in Ayurvedic medicine and known for its neuroprotective and neuroinflammatory action. Its effectiveness against several pathologic/sub-pathologic conditions is widely accepted, but it is not yet completely chemically characterized. In recent years, several researchers have pointed out the involvement of CP and other Convolvulaceae in lipidic and glucidic metabolism, particularly in the control of hyperlipidaemia and diabetic conditions. In this scenario, the aim of the study was to chemically characterize the medium polarity part of the CP whole plant and its fractions and to shed light on their biological activity in adipocyte differentiation using the 3T3-L1 cell model. Our results demonstrated that the CP extract and fractions could upregulate the adipocyte differentiation through the modulation of the nuclear receptor PPARγ (Peroxisome Proliferator-Activated Receptor γ), broadly recognized as a key regulator of adipocyte differentiation, and the glucose transporter GLUT-4, which is fundamental for cellular glucose uptake and for metabolism control. CP also showed the ability to exert an anti-inflammatory effect, downregulating cytokines such as Rantes, MCP-1, KC, eotaxin, and GM-CSF, which are deeply involved in insulin resistance and glucose intolerance. Taken together, these data suggest that CP could exert a potential beneficial effect on glycemia and could be employed as an anti-diabetic adjuvant or, in any case, a means to better control glucose homeostasis.
Collapse
Affiliation(s)
- Elisabetta Melloni
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Arianna Romani
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Erika Rimondi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Guglielmo Paganetto
- Department of Life Sciences and Biotechnology (SVeB), UR7 Terra&Acqua Tech, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Guerrini
- Department of Life Sciences and Biotechnology (SVeB), UR7 Terra&Acqua Tech, University of Ferrara, 44121 Ferrara, Italy
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology (SVeB), UR7 Terra&Acqua Tech, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Tacchini
- Department of Life Sciences and Biotechnology (SVeB), UR7 Terra&Acqua Tech, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
11
|
Acero N, Ortega T, Villagrasa V, Leon G, Muñoz-Mingarro D, Castillo E, González-Rosende ME, Borrás S, Rios JL, Bosch-Morell F, Martínez-Solís I. Phytotherapeutic alternatives for neurodegenerative dementias: Scientific review, discussion and therapeutic proposal. Phytother Res 2023; 37:1176-1211. [PMID: 36690605 DOI: 10.1002/ptr.7727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/16/2022] [Accepted: 12/27/2022] [Indexed: 01/25/2023]
Abstract
The incidence and prevalence of age-related neurodegenerative dementias have been increasing. There is no curative therapy and conventional drug treatment can cause problems for patients. Medicinal plants traditionally used for problems associated with ageing are emerging as a therapeutic resource. The main aim is to give a proposal for use and future research based on scientific knowledge and tradition. A literature search was conducted in several searchable databases. The keywords used were related to neurodegenerative dementias, ageing and medicinal plants. Boolean operators and filters were used to focus the search. As a result, there is current clinical and preclinical scientific information on 49 species used in traditional medicine for ageing-related problems, including neurodegenerative dementias. There are preclinical and clinical scientific evidences on their properties against protein aggregates in the central nervous system and their effects on neuroinflammation, apoptosis dysregulation, mitochondrial dysfunction, gabaergic, glutamatergic and dopaminergic systems alterations, monoamine oxidase alterations, serotonin depletion and oestrogenic protection. In conclusion, the potential therapeutic effect of the different medicinal plants depends on the type of neurodegenerative dementia and its stage of development, but more clinical and preclinical research is needed to find better, safer and more effective treatments.
Collapse
Affiliation(s)
- Nuria Acero
- Pharmaceutical and Health Sciences Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Teresa Ortega
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy Faculty, Complutense University of Madrid, Madrid, Spain
| | - Victoria Villagrasa
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Gemma Leon
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Dolores Muñoz-Mingarro
- Chemistry and Biochemistry Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Encarna Castillo
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - M Eugenia González-Rosende
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Silvia Borrás
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Burjassot, Valencia, Spain
| | - Jose Luis Rios
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Burjassot, Valencia, Spain
| | - Francisco Bosch-Morell
- Biomedical Sciences Institute, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain.,Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Isabel Martínez-Solís
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain.,ICBiBE-Botanical Garden, University of Valencia, Valencia, Valencia, Spain
| |
Collapse
|
12
|
Vijh D, Imam MA, Haque MMU, Das S, Islam A, Malik MZ. Network pharmacology and bioinformatics approach reveals the therapeutic mechanism of action of curcumin in Alzheimer disease. Metab Brain Dis 2023; 38:1205-1220. [PMID: 36652025 DOI: 10.1007/s11011-023-01160-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023]
Abstract
Curcumin is a natural anti-inflammatory and antioxidant substance which plays a major role in reducing the amyloid plaques formation, which is the major cause of Alzheimer's disease (AD). Consequently, a methodical approach was used to select the potential protein targets of curcumin in AD through network pharmacology. In this study, through integrative methods, AD targets of curcumin through SwissTargetPrediction database, STITCH database, BindingDB, PharmMapper, Therapeutic Target Database (TTD), Online Mendelian Inheritance in Man (OMIM) database were predicted followed by gene enrichment analysis, network construction, network topology, and docking studies. Gene ontology analysis facilitated identification of a list of possible AD targets of curcumin (74 targets genes). The correlation of the obtained targets with AD was analysed by using gene ontology (GO) pathway enrichment analyses and Kyoto Encyclopaedia of Genes and Genomes (KEGG). We have incorporated the applied network pharmacological approach to identify key genes. Furthermore, we have performed molecular docking for analysing the mechanism of curcumin. In order to validate the temporospatial expression of key genes in human central nervous system (CNS), we searched the Human Brain Transcriptome (HBT) dataset. We identified top five key genes namely, PPARγ, MAPK1, STAT3, KDR and APP. Further validated the expression profiling of these key genes in publicly available brain data expression profile databases. In context to a valuable addition in the treatment of AD, this study is concluded with novel insights into the therapeutic mechanisms of curcumin, will ease the treatment of AD with the clinical application of curcumin.
Collapse
Affiliation(s)
- Deepanshi Vijh
- Agriculture Plant Biotechnology Lab (ARL-316), University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| | - Md Ali Imam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | | | - Subhajit Das
- National Centre for Cell Science, Pune, Maharashtra, India, 411007
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Zubbair Malik
- Department of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, P.O. Box 1180, 15462, Dasman, Kuwait.
| |
Collapse
|
13
|
Campisi A, Sposito G, Pellitteri R, Santonocito D, Bisicchia J, Raciti G, Russo C, Nardiello P, Pignatello R, Casamenti F, Puglia C. Effect of Unloaded and Curcumin-Loaded Solid Lipid Nanoparticles on Tissue Transglutaminase Isoforms Expression Levels in an Experimental Model of Alzheimer’s Disease. Antioxidants (Basel) 2022; 11:antiox11101863. [PMID: 36290586 PMCID: PMC9599010 DOI: 10.3390/antiox11101863] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 12/06/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease representing the most prevalent cause of dementia. It is also related to the aberrant amyloid-beta (Aβ) protein deposition in the brain. Since oxidative stress is involved in AD, there is a possible role of antioxidants present in the effected person’s diet. Thus, we assessed the effect of the systemic administration of solid lipid nanoparticles (SLNs) to facilitate curcumin (CUR) delivery on TG2 isoform expression levels in Wild Type (WT) and in TgCRND8 (Tg) mice. An experimental model of AD, which expresses two mutated human amyloid precursor protein (APP) genes, was used. Behavioral studies were also performed to evaluate the improvement of cognitive performance and memory function induced by all treatments. The expression levels of Bcl-2, Cyclin-D1, and caspase-3 cleavage were evaluated as well. In this research, for the first time, we demonstrated that the systemic administration of SLNs-CUR, both in WT and in Tg mice, allows one to differently modulate TG2 isoforms, which act either on apoptotic pathway activation or on the ability of the protein to repair cellular damage in the brains of Tg mice. In this study, we also suggest that SLNs-CUR could be an innovative tool for the treatment of AD.
Collapse
Affiliation(s)
- Agatina Campisi
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
- Correspondence: (A.C.); (C.P.); Tel.: +39-0957384070 (A.C.); +39-0957384206 (C.P.); Fax: +39-0957384220 (A.C.)
| | - Giovanni Sposito
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, 95126 Catania, Italy
| | - Debora Santonocito
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Julia Bisicchia
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy
| | - Giuseppina Raciti
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Pamela Nardiello
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50134 Florence, Italy
| | - Rosario Pignatello
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Fiorella Casamenti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50134 Florence, Italy
| | - Carmelo Puglia
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
- Correspondence: (A.C.); (C.P.); Tel.: +39-0957384070 (A.C.); +39-0957384206 (C.P.); Fax: +39-0957384220 (A.C.)
| |
Collapse
|
14
|
Lu W, Khatibi Shahidi F, Khorsandi K, Hosseinzadeh R, Gul A, Balick V. An update on molecular mechanisms of curcumin effect on diabetes. J Food Biochem 2022; 46:e14358. [PMID: 35945662 DOI: 10.1111/jfbc.14358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022]
Abstract
Owing to its prevalent nature, diabetes mellitus has become one of the most serious endocrine illnesses affecting a patient's quality of life due to the manifestation of side effects such as cardiovascular diseases, retinopathy, neuropathy, and nephropathy. Curcumin ((1E, 6E) 21, 7-bis (4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a major compound of turmeric, has been used in conventional medicine because of its safe nature and cost-effectiveness to meliorate diabetes and its comorbidities. These effects have also been observed in rodent models of diabetes resulting in a reduction of glycemia and blood lipids. Both the preventive and therapeutic activities of this compound are due to its antioxidant and anti-inflammatory characteristics. Furthermore, preclinical outcomes and clinical investigation demonstrate that the use of curcumin neutralizes insulin resistance, obesity, and hyperglycemia. Despite the many benefits of curcumin, its two limiting factors, solubility and bioavailability, remain a challenge for researchers; therefore, several methods such as drug formulation, nano-drug delivery, and the use of curcumin analogs have been developed to deliver curcumin and increase its bioavailability. PRACTICAL APPLICATIONS: The rise of people with type 2 diabetes has become a major concern at the global healthcare level. The best diabetes treatments today are anti-diabetic drug administration, lifestyle-related interventions (such as healthy eating and daily physical activity), arterial pressure detection, and fat control. The polyphenol curcumin, found in turmeric, can promote health by acting on a variety of cellular signaling pathways. This review article discusses curcumin and its role in the treatment of diabetes.
Collapse
Affiliation(s)
- Wensong Lu
- People's Hospital of Longhua, Shenzhen, China
| | - Fedora Khatibi Shahidi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Reza Hosseinzadeh
- Department of Chromatography Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Urmia, Iran
| | - Asma Gul
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Veronica Balick
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
15
|
Paidi RK, Sarkar S, Ambareen N, Biswas SC. Medha Plus - A novel polyherbal formulation ameliorates cognitive behaviors and disease pathology in models of Alzheimer's disease. Biomed Pharmacother 2022; 151:113086. [PMID: 35617801 DOI: 10.1016/j.biopha.2022.113086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022] Open
Abstract
Alzheimer's disease (AD) is a multi-faceted neurodegenerative disorder that leads to drastic cognitive impairments culminating in death. Pathologically, it is characterized by amyloid-β (Aβ) plaques, neurofibrillary tangles and neurodegeneration in brain. Complete cure of AD remains elusive to date. Available synthetic drugs only provide symptomatic reliefs targeting single molecule, hence, are unable to address the multi-factorial aspects in AD pathogenesis. It is imperative to develop combinatorial drugs that address the multiple molecular targets in AD. We show a unique polyherbal formulation of Brahmi, Mandukaparni, Shankhpushpi, Yastimadhu, Kokilaksha and Shunthi called 'Medha Plus' (MP), conventionally used for improving memory and reducing anxiety, was able to ameliorate cognitive deficits and associated pathological hallmarks of AD. Viability assays revealed that MP prevented Aβ-induced loss of neurites as well as neuronal apoptosis in cellular models. An array of behavioral studies showed that MP was able to recover AD-associated memory deficits in both Aβ-injected rats and 5XFAD mice. Immunohistochemical studies further revealed that MP treatment reduced Aβ depositshpi and decreased apoptotic cell death in the hippocampus. Enzymatic assays demonstrated anti-oxidative and anti-acetyl cholinesterase properties of MP especially in hippocampus of Aβ-injected rats. An underlying improvement in synaptic plasticity was observed with MP treatment in 5XFAD mice along with an increased expression of phospho-Akt at serine 473 indicating a role of PI3K/Akt signaling in correcting these synaptic deficits. Thus, our strong experiment-driven approach shows that MP is an incredible combinatorial drug that targets multiple molecular targets with exemplary neuroprotective properties and is proposed for clinical trial.
Collapse
Affiliation(s)
- Ramesh Kumar Paidi
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Sukanya Sarkar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Naqiya Ambareen
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Headquarters, CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Subhas Chandra Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Headquarters, CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, India.
| |
Collapse
|
16
|
Application of Sol–Gels Modified with Natural Plants Extracts as Stationary Phases in Open-Tubular Capillary Electrochromatography. Gels 2022; 8:gels8040198. [PMID: 35448099 PMCID: PMC9029637 DOI: 10.3390/gels8040198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Ethanol extracts of three widely growing plants were added to silica sol–gel solutions, which were subsequently applied as wall surface modifiers in inner quartz capillaries. Modified capillaries were used for open-tubular capillary electrochromatographic separation of nucleotides and amino groups containing biological compounds (neurotransmitters, amino acids and oligopeptides). The experiments were performed at physiological pH 7.40, and eventual changes of effective mobilities were calculated. Specific compounds characteristic for each plant were tested as sol–gel additives as well, and thus-modified capillaries were used for the separations of the same analytes under identical conditions. The aim of this study was to find out possible interactions between physiological compounds and extracts of freely available plants anchorded in the sol-gel stationary phase in the flowing system. Even though the amount of the modifier in each capillary is very small, basic statistical evaluation showed some not negligible changes in effective mobility of tested analytes. These changes were bigger than ±5% for separations of nucleotides in capillaries with curcuma, Moringa or the mixture of synthetic additives as the sol-gel aditive, and for separations of amino compounds where these changes varying by additive, analyte by analyte.
Collapse
|
17
|
Singh B, Singh H, Singh B, Kumar N, Rajput A, Sidhu D, Kaur A, Arora S, Kaur S. A comprehensive review on medicinal herbs and novel formulations for the prevention of Alzheimer's disease. Curr Drug Deliv 2021; 19:212-228. [PMID: 34779370 DOI: 10.2174/1567201818666211015152733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/13/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases reported in the aging population across the globe. About 46.8 million people are reported to have dementia, and AD is mainly responsible for dementia in aged people. Alzheimer's disease (AD) is thought to occur due to the accumulation of β-amyloid (Aβ) in the neocortex portion of the brain, nitric oxide mediated dysfunctioning of blood-brain barrier, reduced activity of serine racemase enzyme, cell cycle disturbances, damage of N-methyl-D-aspartate (NMDA) receptors and glutamatergic neurotransmission. Modern treatment methods target the pathways responsible for the disease. To date, solely symptomatic treatments exist for this disease, all making an attempt to counterbalance the neurotransmitter disturbance. Treatments able to prevent or at least effectively modifying the course of AD, referred to as 'disease-modifying' drugs, are still under extensive research. Effective treatments entail a better indulgence of the herbal bioactives by novel drug delivery systems. The herbal bioactive administered by novel drug delivery systems have proved beneficial in treating this disease. This review provides detailed information about the role of medicinal plants and their formulations in treating Alzheimer disease which will be highly beneficial for the researchers working in this area.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Hasandeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Brahmjot Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Navkaran Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Disha Sidhu
- Department Pharmaceutical Sciences, Guru Nanak Dev University, Grand Trunk Road, Off, NH 1 . India
| | - Amandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| |
Collapse
|
18
|
Dixit H, Selvaa Kumar C, Dasgupta D, Gadewal N. Molecular docking analysis of hyperphosphorylated tau protein with compounds derived from Bacopa monnieri and Withania somnifera. Bioinformation 2021; 17:798-804. [PMID: 35539884 PMCID: PMC9049085 DOI: 10.6026/97320630017798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022] Open
Abstract
Tau protein, the major player in Alzheimer's disease forms neurofibrillary tangles in elderly people. Bramhi (Baccopa Monniera) is often used as an ayurvedic treatment for Alzheimer's disease. Therefore it is of interest to study the interaction of compounds derived from Baccopa with the Tau protein involved in tangle formation. We show that compounds such as bacopaside II, bacopaside XII, and nicotine showed optimal binding features with the R2 repeat domain of hyperphosphorylated tau protein for further consideration in the context of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Hrushikesh Dixit
- School of Biotechnology and Bioinformatics, D.Y.Patil Deemed to be University, CBD Belpaur, Navi Mumbai, Maharashtra, India
| | - C Selvaa Kumar
- School of Biotechnology and Bioinformatics, D.Y.Patil Deemed to be University, CBD Belpaur, Navi Mumbai, Maharashtra, India
| | - Debjani Dasgupta
- School of Biotechnology and Bioinformatics, D.Y.Patil Deemed to be University, CBD Belpaur, Navi Mumbai, Maharashtra, India
| | - Nikhil Gadewal
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
| |
Collapse
|
19
|
Juszczyk G, Mikulska J, Kasperek K, Pietrzak D, Mrozek W, Herbet M. Chronic Stress and Oxidative Stress as Common Factors of the Pathogenesis of Depression and Alzheimer's Disease: The Role of Antioxidants in Prevention and Treatment. Antioxidants (Basel) 2021; 10:antiox10091439. [PMID: 34573069 PMCID: PMC8470444 DOI: 10.3390/antiox10091439] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
There is a growing body of scientific research showing the link between depression and dementia in Alzheimer’s disease (AD). The chronic stress contributes to the formation of oxidative stress in the parts of the brain involved in the development of depression and AD. The scientific literature reports the significant role of antioxidants, which are highly effective in treating these diseases. In this review, we have summarized the relationship between chronic stress, oxidative stress, and the changes in the brain they cause occurring in the brain. Among all the compounds showing antioxidant properties, the most promising results in AD treatment were observed for Vitamin E, coenzyme Q10 (CoQ10), melatonin, polyphenols, curcumin, and selenium. In case of depression treatment, the greatest potential was observed in curcumin, zinc, selenium, vitamin E, and saffron.
Collapse
|
20
|
Stonebarger GA, Bimonte-Nelson HA, Urbanski HF. The Rhesus Macaque as a Translational Model for Neurodegeneration and Alzheimer's Disease. Front Aging Neurosci 2021; 13:734173. [PMID: 34539388 PMCID: PMC8446616 DOI: 10.3389/fnagi.2021.734173] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/12/2021] [Indexed: 12/01/2022] Open
Abstract
A major obstacle to progress in understanding the etiology of normative and pathological human brain aging is the availability of suitable animal models for experimentation. The present article will highlight our current knowledge regarding human brain aging and neurodegeneration, specifically in the context of Alzheimer's disease (AD). Additionally, it will examine the use of the rhesus macaque monkey as a pragmatic translational animal model in which to study underlying causal mechanisms. Specifically, the discussion will focus on behavioral and protein-level brain changes that occur within the central nervous system (CNS) of aged monkeys, and compare them to the changes observed in humans during clinically normative aging and in AD.
Collapse
Affiliation(s)
- Gail A. Stonebarger
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Heather A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
21
|
In Vivo Neuropharmacological Potential of Gomphandra tetrandra (Wall.) Sleumer and In-Silico Study against β-Amyloid Precursor Protein. Processes (Basel) 2021. [DOI: 10.3390/pr9081449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Medicinal plants possess a surplus of novel and biologically active secondary metabolites that are responsible for counteracting diseases. Traditionally, Gomphandra tetrandra (Wall.) Sleumer is used to treat mental disorders. The present research was designed to explore phytochemicals from the ethanol leaf extract of Gomphandra tetrandra (Wall.) Sleumer to identify the potential pharmacophore(s) in the treatment of neurological disorders. The chemical compounds of the experimental plant were identified through GC-MS analysis. In-vitro antioxidant activity was assessed using different methods. Furthermore, in-vivo neurological activity was assessed in Swiss-albino mice. Computer-aided analysis was appraised to determine the best-fit phytoconstituent of a total of fifteen identified compounds in the experimental plant extract against beta-amyloid precursor protein. The experimental extract revealed fifteen compounds in GC-MS analysis and the highest content was 9, 12, 15-octadecatrienoic acid (z,z,z). The extract showed potent antioxidant activity in in-vitro assays. Furthermore, in in-vivo neurological assays, the extract disclosed significant (p < 0.05) neurological activity. The most favorable phytochemicals as neurological agents were selected via ADMET profiling, and molecular docking was studied with beta-amyloid precursor protein. In the computer-aided study, 1, 5-diphenyl-2h-1, 2, 4-triazoline-3-thione (Pub Chem CID: 2802516) was more active than other identified compounds with strong binding affinity to beta-amyloid precursor protein. The present in vivo and in silico studies revealed neuropharmacological features of G. tetrandra leaf extract as a natural agent against neurological disorders, especially Alzheimer’s disease.
Collapse
|
22
|
Singh MP, Rai SN, Dubey SK, Pandey AT, Tabassum N, Chaturvedi VK, Singh NB. Biomolecules of mushroom: a recipe of human wellness. Crit Rev Biotechnol 2021; 42:913-930. [PMID: 34412526 DOI: 10.1080/07388551.2021.1964431] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Indian system of medicine - Ayurveda says "When diet is wrong, medicine is of no use. When diet is correct, medicine is of no use". In this context, mushroom constitutes one of the major resources for nutraceuticals. Biomolecules of mushrooms have attracted the attention of researchers around the globe due to their proven healthy attributes. They have a plenitude of health-giving properties and these range from immunomodulatory, antiviral, antibacterial, antifungal, antioxidant, anti-inflammatory, antitumor, anticancer, anti-HIV, antidiabetic, anticholesterolic to antiarthritic activities.Mushrooms contain both primary and secondary metabolites. The primary metabolites provide energy while the secondary metabolite exhibits medicinal properties. Hence, the mushroom can be a recipe for human wellness and will play a significant role in fighting COVID-19 pandemics and other infectious diseases.The key findings suggested in this paper refer to the exploration of health and the healing traits of biomolecules of mushrooms. This article reviews the current status of the medicinal attributes of mushrooms and their biomolecules in different diseases such as cardiovascular, diabetes, reproductive diseases, cancer, and neurodegenerative diseases. The global malnutrition-related morbidity and mortality among children under five and lactating women presents a frightening picture and also a black spot on the human face. Malnutrition is responsible for more ill-health than any other cause. Mushrooms as a rich source of bioactive compounds can be claimed as "Best from the Waste" since they grow on the most abundant organic wastes of the Earth, the lignocellulosic substrate, and 'Best of the Rest' because they are excellent nutraceutical resources.
Collapse
Affiliation(s)
| | | | | | | | - Nazish Tabassum
- Centre of Biotechnology, University of Allahabad, Prayagraj, India
| | | | - Narsingh Bahadur Singh
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), Baltimore, MD, USA.,Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County (UMBC), Baltimore, MD, USA
| |
Collapse
|
23
|
Gregory J, Vengalasetti YV, Bredesen DE, Rao RV. Neuroprotective Herbs for the Management of Alzheimer's Disease. Biomolecules 2021; 11:biom11040543. [PMID: 33917843 PMCID: PMC8068256 DOI: 10.3390/biom11040543] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background—Alzheimer’s disease (AD) is a multifactorial, progressive, neurodegenerative disease that is characterized by memory loss, personality changes, and a decline in cognitive function. While the exact cause of AD is still unclear, recent studies point to lifestyle, diet, environmental, and genetic factors as contributors to disease progression. The pharmaceutical approaches developed to date do not alter disease progression. More than two hundred promising drug candidates have failed clinical trials in the past decade, suggesting that the disease and its causes may be highly complex. Medicinal plants and herbal remedies are now gaining more interest as complementary and alternative interventions and are a valuable source for developing drug candidates for AD. Indeed, several scientific studies have described the use of various medicinal plants and their principal phytochemicals for the treatment of AD. This article reviews a subset of herbs for their anti-inflammatory, antioxidant, and cognitive-enhancing effects. Methods—This article systematically reviews recent studies that have investigated the role of neuroprotective herbs and their bioactive compounds for dementia associated with Alzheimer’s disease and pre-Alzheimer’s disease. PubMed Central, Scopus, and Google Scholar databases of articles were collected, and abstracts were reviewed for relevance to the subject matter. Conclusions—Medicinal plants have great potential as part of an overall program in the prevention and treatment of cognitive decline associated with AD. It is hoped that these medicinal plants can be used in drug discovery programs for identifying safe and efficacious small molecules for AD.
Collapse
Affiliation(s)
- Julie Gregory
- Apollo Health, P.O. Box 117040, Burlingame, CA 94011, USA;
| | | | - Dale E. Bredesen
- Apollo Health, P.O. Box 117040, Burlingame, CA 94011, USA;
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90024, USA
- Correspondence: (D.E.B.); (R.V.R.)
| | - Rammohan V. Rao
- Apollo Health, P.O. Box 117040, Burlingame, CA 94011, USA;
- California College of Ayurveda, 700 Zion Street, Nevada City, CA 95959, USA
- Correspondence: (D.E.B.); (R.V.R.)
| |
Collapse
|