1
|
Jao CW, Wu YT, Yeh JH, Tsai YF, Hsiao CY, Lau CI. Exploring cortical morphology biomarkers of amnesic mild cognitive impairment using novel fractal dimension-based structural MRI analysis. Eur J Neurosci 2024; 60:6254-6266. [PMID: 39353858 DOI: 10.1111/ejn.16557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Amnestic mild cognitive impairment (aMCI) is considered as an intermediate stage of Alzheimer's disease, but no MRI biomarkers currently distinguish aMCI from healthy individuals effectively. Fractal dimension, a quantitative parameter, provides superior morphological information compared to conventional cortical thickness methods. Few studies have used cortical fractal dimension values to differentiate aMCI from healthy controls. In this study, we aim to build an automated discriminator for accurately distinguishing aMCI using fractal dimension measures of the cerebral cortex. Thirty aMCI patients and 30 health controls underwent structural MRI of the brain. First, the atrophy of participants' cortical sub-regions of Desikan-Killiany cortical atlas was assessed using fractal dimension and cortical thickness. The fractal dimension is more sensitive than cortical thickness in reducing dimensional effects and may accurately reflect morphological changes of the cortex in aMCI. The aMCI group had significantly lower fractal dimension values in the bilateral temporal lobes, right limbic lobe and right parietal lobe, whereas they showed significantly lower cortical thickness values only in the bilateral temporal lobes. Fractal dimension analysis was able to depict most of the significantly different focal regions detected by cortical thickness, but additionally with more regions. Second, applying the measured fractal dimensions (and cortical thickness) of both cerebral hemispheres, an unsupervised discriminator was built for the aMCI and healthy controls. The proposed fractal dimension-based method achieves 80.54% accuracy in discriminating aMCI from healthy controls. The fractal dimension appears to be a promising biomarker for cortical morphology changes that can discriminate patients with aMCI from healthy controls.
Collapse
Affiliation(s)
- Chi-Wen Jao
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiann-Horng Yeh
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yuh-Feng Tsai
- College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Diagnostic Radiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chen-Yu Hsiao
- Department of Diagnostic Radiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chi Ieong Lau
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Dementia Center, Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Applied Cognitive Neuroscience Group, Institute of Cognitive Neuroscience, University College London, London, UK
- University Hospital, Taipa, Macau
| |
Collapse
|
2
|
Jiang S, Yang S, Deng K, Jiang R, Xue Y. Machine learning models for diagnosing Alzheimer's disease using brain cortical complexity. Front Aging Neurosci 2024; 16:1434589. [PMID: 39450051 PMCID: PMC11500324 DOI: 10.3389/fnagi.2024.1434589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Objective This study aimed to develop and validate machine learning models (MLMs) to diagnose Alzheimer's disease (AD) using cortical complexity indicated by fractal dimension (FD). Methods A total of 296 participants with normal cognitive (NC) function and 182 with AD from the AD Neuroimaging Initiative database were randomly divided into training and internal validation cohorts. Then, FDs, demographic characteristics, baseline global cognitive function scales [Montreal Cognitive Assessment (MoCA), Functional Activities Questionnaire (FAQ), Global Deterioration Scale (GDS), Neuropsychiatric Inventory (NPI)], phospho-tau (p-tau 181), amyloidβ-42/40, apolipoprotein E (APOE) and polygenic hazard score (PHS) were collected to establish multiple MLMs. Receiver operating characteristic curves were used to evaluate model performance. Participants from our institution (n = 66; 33 with NC and 33 with AD) served as external validation cohorts to validate the MLMs. Decision curve analysis was used to estimate the models' clinical values. Results The FDs from 30 out of 69 regions showed significant alteration. All MLMs were conducted based on the 30 significantly different FDs. The FD model had good accuracy in predicting AD in three cohorts [area under the receiver operating characteristic (ROC) curve (AUC) = 0.842, 0.808, and 0.803]. There were no statistically significant differences in AUC values between the FD model and the other combined models in the training and internal validation cohorts except MoCA + FD and FAQ + FD models. Among MLMs, the MoCA + FD model showed the best predictive efficiency in three cohorts (AUC = 0.951, 0.931, and 0.955) and had the highest clinical net benefit. Conclusion The FD model showed favorable diagnostic performance for AD. Among MLMs, the MoCA + FD model can predict AD with the highest efficiency and could be used as a non-invasive diagnostic method.
Collapse
Affiliation(s)
- Shaofan Jiang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, China
| | - Siyu Yang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Kaiji Deng
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rifeng Jiang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yunjing Xue
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
3
|
Wang Y, Leiberg K, Kindred N, Madan CR, Poirier C, Petkov CI, Taylor PN, Mota B. Neuro-evolutionary evidence for a universal fractal primate brain shape. eLife 2024; 12:RP92080. [PMID: 39347569 PMCID: PMC11441977 DOI: 10.7554/elife.92080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
The cerebral cortex displays a bewildering diversity of shapes and sizes across and within species. Despite this diversity, we present a universal multi-scale description of primate cortices. We show that all cortical shapes can be described as a set of nested folds of different sizes. As neighbouring folds are gradually merged, the cortices of 11 primate species follow a common scale-free morphometric trajectory, that also overlaps with over 70 other mammalian species. Our results indicate that all cerebral cortices are approximations of the same archetypal fractal shape with a fractal dimension of df = 2.5. Importantly, this new understanding enables a more precise quantification of brain morphology as a function of scale. To demonstrate the importance of this new understanding, we show a scale-dependent effect of ageing on brain morphology. We observe a more than fourfold increase in effect size (from two standard deviations to eight standard deviations) at a spatial scale of approximately 2 mm compared to standard morphological analyses. Our new understanding may, therefore, generate superior biomarkers for a range of conditions in the future.
Collapse
Affiliation(s)
- Yujiang Wang
- CNNP Lab (https://www.cnnp-lab.com), School of Computing, Newcastle UniversityNewcastle upon TyneUnited Kingdom
- Faculty of Medical Sciences, Newcastle UniversityNewcastle upon TyneUnited Kingdom
- UCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | - Karoline Leiberg
- CNNP Lab (https://www.cnnp-lab.com), School of Computing, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Nathan Kindred
- Faculty of Medical Sciences, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | | | - Colline Poirier
- Faculty of Medical Sciences, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Christopher I Petkov
- Faculty of Medical Sciences, Newcastle UniversityNewcastle upon TyneUnited Kingdom
- Department of Neurosurgery, University of IowaDes MoinesUnited States
| | - Peter Neal Taylor
- CNNP Lab (https://www.cnnp-lab.com), School of Computing, Newcastle UniversityNewcastle upon TyneUnited Kingdom
- Faculty of Medical Sciences, Newcastle UniversityNewcastle upon TyneUnited Kingdom
- UCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | - Bruno Mota
- metaBIO Lab, Instituto de Física, Universidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| |
Collapse
|
4
|
Zhao X, Wang Y, Wu X, Liu S. An MRI Study of Morphology, Asymmetry, and Sex Differences of Inferior Precentral Sulcus. Brain Topogr 2024; 37:748-763. [PMID: 38374489 PMCID: PMC11393153 DOI: 10.1007/s10548-024-01035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
Numerous studies utilizing magnetic resonance imaging (MRI) have observed sex and interhemispheric disparities in sulcal morphology, which could potentially underpin certain functional disparities in the human brain. Most of the existing research examines the precentral sulcus comprehensively, with a rare focus on its subsections. To explore the morphology, asymmetry, and sex disparities within the inferior precentral sulcus (IPCS), we acquired 3.0T magnetic resonance images from 92 right-handed Chinese adolescents. Brainvisa was used to reconstruct the IPCS structure and calculate its mean depth (MD). Based on the morphological patterns of IPCS, it was categorized into five distinct types. Additionally, we analyzed four different types of spatial relationships between IPCS and inferior frontal sulcus (IFS). There was a statistically significant sex disparity in the MD of IPCS, primarily observed in the right hemisphere. Females exhibited significantly greater asymmetry in the MD of IPCS compared to males. No statistically significant sex or hemispheric variations were identified in sulcal patterns. Our findings expand the comprehension of inconsistencies in sulcal structure, while also delivering an anatomical foundation for the study of related regions' function.
Collapse
Affiliation(s)
- Xinran Zhao
- Department of Clinical Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Institute for Sectional Anatomy and Digital Human, Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Wang
- Institute for Sectional Anatomy and Digital Human, Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaokang Wu
- Department of Clinical Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
- Institute for Sectional Anatomy and Digital Human, Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Shuwei Liu
- Institute for Sectional Anatomy and Digital Human, Department of Anatomy and Neurobiology, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
5
|
Lee WK, Hinrichs C, Chen YL, Wang PS, Guo WY, Wu YT. Analysis of the difference between Alzheimer's disease, mild cognitive impairment and normal people by using fractal dimensions and small-world network. PROGRESS IN BRAIN RESEARCH 2024; 290:179-190. [PMID: 39448112 DOI: 10.1016/bs.pbr.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 10/26/2024]
Abstract
This research examined the distinctions in brain network characteristics among individuals with Alzheimer's disease (AD), mild cognitive impairment (MCI), and a control group. Magnetic resonance imaging (MRI) and mini-mental state examination (MMSE) data were retrieved from the Alzheimer's Disease Neuroimaging Initiative (ANDI) database, comprising 40 subjects in each group. Correlation maps for evaluating brain network connectivity were generated using fractal dimension (FD) analysis, a method capable of quantifying morphological changes in cortical and cerebral regions. Employing graph theory, each parcellated brain region was represented as a node, and edges between nodes were utilized to compute small-world network properties for each group. In the comparison between control and AD demonstrated the significantly lower FD values (P<0.05) in temporal lobe, motor cortex, part of occipital and parietal, hippocampus, amygdala, and entorhinal cortex, which present the atrophy. Similarly, comparing control group to MCIs, regions closely associated with memory, such as the hippocampus, showed significantly lower FD values. Furthermore, both AD and MCI groups displayed diminished connectivity and decreased network efficiency. In conclusion, fractal dimension (FD) analysis illustrate the progression of structural declination from mild cognitive impairment (MCI) to Alzheimer's disease (AD). Additionally, structural small-world network analysis presents itself as a potential method for assessing network efficiency and the progression of AD. Moving forward, further clinical assessments are warranted to validate the findings observed in this study.
Collapse
Affiliation(s)
- Wei-Kai Lee
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Clay Hinrichs
- Hackettstown Medical Center, Atlantic Health System, Hackettstown, NJ, United States; Touro College of Osteopathic Medicine, New York, NY, United States; Rutgers Medical School, Newark, NJ, United States
| | - Yen-Ling Chen
- Department of Occupational Therapy, I-Shou University, Kaohsiung, Taiwan
| | - Po-Shan Wang
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medicine, Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan
| | - Wan-Yuo Guo
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; College Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
6
|
Lin L, Wu Y, Liu L, Sun S, Wu S. Understanding the Temporal Dynamics of Accelerated Brain Aging and Resilient Brain Aging: Insights from Discriminative Event-Based Analysis of UK Biobank Data. Bioengineering (Basel) 2024; 11:647. [PMID: 39061729 PMCID: PMC11273398 DOI: 10.3390/bioengineering11070647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The intricate dynamics of brain aging, especially the neurodegenerative mechanisms driving accelerated (ABA) and resilient brain aging (RBA), are pivotal in neuroscience. Understanding the temporal dynamics of these phenotypes is crucial for identifying vulnerabilities to cognitive decline and neurodegenerative diseases. Currently, there is a lack of comprehensive understanding of the temporal dynamics and neuroimaging biomarkers linked to ABA and RBA. This study addressed this gap by utilizing a large-scale UK Biobank (UKB) cohort, with the aim to elucidate brain aging heterogeneity and establish the foundation for targeted interventions. Employing Lasso regression on multimodal neuroimaging data, structural MRI (sMRI), diffusion MRI (dMRI), and resting-state functional MRI (rsfMRI), we predicted the brain age and classified individuals into ABA and RBA cohorts. Our findings identified 1949 subjects (6.2%) as representative of the ABA subpopulation and 3203 subjects (10.1%) as representative of the RBA subpopulation. Additionally, the Discriminative Event-Based Model (DEBM) was applied to estimate the sequence of biomarker changes across aging trajectories. Our analysis unveiled distinct central ordering patterns between the ABA and RBA cohorts, with profound implications for understanding cognitive decline and vulnerability to neurodegenerative disorders. Specifically, the ABA cohort exhibited early degeneration in four functional networks and two cognitive domains, with cortical thinning initially observed in the right hemisphere, followed by the temporal lobe. In contrast, the RBA cohort demonstrated initial degeneration in the three functional networks, with cortical thinning predominantly in the left hemisphere and white matter microstructural degeneration occurring at more advanced stages. The detailed aging progression timeline constructed through our DEBM analysis positioned subjects according to their estimated stage of aging, offering a nuanced view of the aging brain's alterations. This study holds promise for the development of targeted interventions aimed at mitigating age-related cognitive decline.
Collapse
Affiliation(s)
- Lan Lin
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (Y.W.); (L.L.); (S.W.)
| | - Yutong Wu
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (Y.W.); (L.L.); (S.W.)
| | - Lingyu Liu
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (Y.W.); (L.L.); (S.W.)
| | - Shen Sun
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing University of Technology, Beijing 100124, China
| | - Shuicai Wu
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (Y.W.); (L.L.); (S.W.)
| |
Collapse
|
7
|
Yang K, Du R, Yang Q, Zhao R, Fan F, Chen S, Luo X, Tan S, Wang Z, Yu T, Tian B, Le TM, Li CSR, Tan Y. Cortical thickness of the inferior parietal lobule as a potential predictor of relapse in men with alcohol dependence. Brain Imaging Behav 2024; 18:331-342. [PMID: 38078981 DOI: 10.1007/s11682-023-00838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 12/26/2023]
Abstract
Alcohol dependence is a disorder with a high recurrence rate that leads to a considerable public health burden. The risk of relapse appears to be related to a complex interplay of multiple factors. Herein, we aimed to explore the potential neural predictors of relapse in Chinese male patients with alcohol dependence. This study enrolled 58 male patients with alcohol dependence who had undergone acute detoxification. General demographic information and clinical features were collected. Magnetic resonance imaging data were used to measure cortical thickness across 34 regions of the brain. Patients were followed up at six months, and 51 patients completed the follow-up visit. These patients were divided into a relapser and an abstainer group. A binary logistic regression analysis was performed to investigate the potential risk factors of relapse. Compared to abstainers, relapsers showed higher inattention and non-planning impulsivity on the 11th version of the Barratt Impulsive Scale. The cortical thicknesses of the inferior-parietal lobules were significantly higher in abstainers compared with those in relapsers. Furthermore, binary logistic regression analysis showed that the thickness of the inferior parietal lobule predicted relapse, and lower non-planning impulse was a protective factor against relapse. Relapsers show poorer impulse control than abstainers, and structural magnetic resonance imaging revealed a decreased thickness of the inferior parietal lobule in relapsers. Our results indicate the thickness of the inferior parietal lobule as a potential relapse predictor in male patients with alcohol dependence.
Collapse
Affiliation(s)
- Kebing Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, 100096, People's Republic of China
| | - Ruonan Du
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, 100096, People's Republic of China
| | - Qingyan Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, 100096, People's Republic of China
| | - Rongjiang Zhao
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, 100096, People's Republic of China
| | - Fengmei Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, 100096, People's Republic of China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, 100096, People's Republic of China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, 100096, People's Republic of China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, 100096, People's Republic of China
| | - Ting Yu
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, 100096, People's Republic of China
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, 100096, People's Republic of China
| | - Thang M Le
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, 100096, People's Republic of China.
| |
Collapse
|
8
|
Davidson JM, Zhang L, Yue GH, Di Ieva A. Fractal Dimension Studies of the Brain Shape in Aging and Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 36:329-363. [PMID: 38468041 DOI: 10.1007/978-3-031-47606-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The fractal dimension is a morphometric measure that has been used to investigate the changes of brain shape complexity in aging and neurodegenerative diseases. This chapter reviews fractal dimension studies in aging and neurodegenerative disorders in the literature. Research has shown that the fractal dimension of the left cerebral hemisphere increases until adolescence and then decreases with aging, while the fractal dimension of the right hemisphere continues to increase until adulthood. Studies in neurodegenerative diseases demonstrated a decline in the fractal dimension of the gray matter and white matter in Alzheimer's disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia. In multiple sclerosis, the white matter fractal dimension decreases, but conversely, the fractal dimension of the gray matter increases at specific stages of disease. There is also a decline in the gray matter fractal dimension in frontotemporal dementia and multiple system atrophy of the cerebellar type and in the white matter fractal dimension in epilepsy and stroke. Region-specific changes in fractal dimension have also been found in Huntington's disease and Parkinson's disease. Associations were found between the fractal dimension and clinical scores, showing the potential of the fractal dimension as a marker to monitor brain shape changes in normal or pathological processes and predict cognitive or motor function.
Collapse
Affiliation(s)
- Jennilee M Davidson
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Guang H Yue
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Antonio Di Ieva
- Computational Neurosurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
9
|
Díaz Beltrán L, Madan CR, Finke C, Krohn S, Di Ieva A, Esteban FJ. Fractal Dimension Analysis in Neurological Disorders: An Overview. ADVANCES IN NEUROBIOLOGY 2024; 36:313-328. [PMID: 38468040 DOI: 10.1007/978-3-031-47606-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Fractal analysis has emerged as a powerful tool for characterizing irregular and complex patterns found in the nervous system. This characterization is typically applied by estimating the fractal dimension (FD), a scalar index that describes the topological complexity of the irregular components of the nervous system, both at the macroscopic and microscopic levels, that may be viewed as geometric fractals. Moreover, temporal properties of neurophysiological signals can also be interpreted as dynamic fractals. Given its sensitivity for detecting changes in brain morphology, FD has been explored as a clinically relevant marker of brain damage in several neuropsychiatric conditions as well as in normal and pathological cerebral aging. In this sense, evidence is accumulating for decreases in FD in Alzheimer's disease, frontotemporal dementia, Parkinson's disease, multiple sclerosis, and many other neurological disorders. In addition, it is becoming increasingly clear that fractal analysis in the field of clinical neurology opens the possibility of detecting structural alterations in the early stages of the disease, which highlights FD as a potential diagnostic and prognostic tool in clinical practice.
Collapse
Affiliation(s)
- Leticia Díaz Beltrán
- Department of Medical Oncology, Clinical Research Unit, University Hospital of Jaén, Jaén, Spain
| | | | - Carsten Finke
- Department of Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Stephan Krohn
- Department of Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Francisco J Esteban
- Systems Biology Unit, Department of Experimental Biology, University of Jaén, Jaén, Spain.
| |
Collapse
|
10
|
Xu X, Lin L, Wu S, Sun S. Exploring Successful Cognitive Aging: Insights Regarding Brain Structure, Function, and Demographics. Brain Sci 2023; 13:1651. [PMID: 38137099 PMCID: PMC10741933 DOI: 10.3390/brainsci13121651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
In the realm of cognitive science, the phenomenon of "successful cognitive aging" stands as a hallmark of individuals who exhibit cognitive abilities surpassing those of their age-matched counterparts. However, it is paramount to underscore a significant gap in the current research, which is marked by a paucity of comprehensive inquiries that deploy substantial sample sizes to methodically investigate the cerebral biomarkers and contributory elements underpinning this cognitive success. It is within this context that our present study emerges, harnessing data derived from the UK Biobank. In this study, a highly selective cohort of 1060 individuals aged 65 and above was meticulously curated from a larger pool of 17,072 subjects. The selection process was guided by their striking cognitive resilience, ascertained via rigorous evaluation encompassing both generic and specific cognitive assessments, compared to their peers within the same age stratum. Notably, the cognitive abilities of the chosen participants closely aligned with the cognitive acumen commonly observed in middle-aged individuals. Our study leveraged a comprehensive array of neuroimaging-derived metrics, obtained from three Tesla MRI scans (T1-weighted images, dMRI, and resting-state fMRI). The metrics included image-derived phenotypes (IDPs) that addressed grey matter morphology, the strength of brain network connectivity, and the microstructural attributes of white matter. Statistical analyses were performed employing ANOVA, Mann-Whitney U tests, and chi-square tests to evaluate the distinctive aspects of IDPs pertinent to the domain of successful cognitive aging. Furthermore, these analyses aimed to elucidate lifestyle practices that potentially underpin the maintenance of cognitive acumen throughout the aging process. Our findings unveiled a robust and compelling association between heightened cognitive aptitude and the integrity of white matter structures within the brain. Furthermore, individuals who exhibited successful cognitive aging demonstrated markedly enhanced activity in the cerebral regions responsible for auditory perception, voluntary motor control, memory retention, and emotional regulation. These advantageous cognitive attributes were mirrored in the health-related lifestyle choices of the surveyed cohort, characterized by elevated educational attainment, a lower incidence of smoking, and a penchant for moderate alcohol consumption. Moreover, they displayed superior grip strength and enhanced walking speeds. Collectively, these findings furnish valuable insights into the multifaceted determinants of successful cognitive aging, encompassing both neurobiological constituents and lifestyle practices. Such comprehensive comprehension significantly contributes to the broader discourse on aging, thereby establishing a solid foundation for the formulation of targeted interventions aimed at fostering cognitive well-being among aging populations.
Collapse
Affiliation(s)
- Xinze Xu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (X.X.); (S.W.); (S.S.)
| | - Lan Lin
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (X.X.); (S.W.); (S.S.)
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing University of Technology, Beijing 100124, China
| | - Shuicai Wu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (X.X.); (S.W.); (S.S.)
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing University of Technology, Beijing 100124, China
| | - Shen Sun
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (X.X.); (S.W.); (S.S.)
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
11
|
Sun F, Wang Y, Li Y, Li Y, Wang S, Xu F, Wang X. Variation in functional networks between clinical and subclinical discharges in childhood absence epilepsy: A multi-frequency MEG study. Seizure 2023; 111:109-121. [PMID: 37598560 DOI: 10.1016/j.seizure.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023] Open
Abstract
OBJECTIVE Two types of spike-and-wave discharges (SWDs) exist in childhood absence epilepsy (CAE): clinical discharges are prolonged and manifest primarily as impaired consciousness, whereas subclinical discharges are brief with few objectively visible symptoms. This study aimed to compare neural functional network and default mode network (DMN) activity between clinical and subclinical discharges to better understand the underlying mechanism of CAE. METHODS Using magnetoencephalography (MEG) data from 21 patients, we obtained 25 segments each of clinical discharges and subclinical discharges. Amplitude envelope correlation analysis was used to construct functional networks and graph theory was used to calculate network topological data. We then compared differences in functional connectivity within the DMN between clinical and subclinical discharges. All statistical comparisons were performed using paired-sample tests. RESULTS Compared to subclinical discharges, the functional network of clinical discharges exhibited higher synchronization - particularly in the parahippocampal gyrus - as early as 10 s before the seizure. Additionally, the functional network of clinical SWDs presented an anterior shift of key nodes in the alpha frequency band. Regarding clinical discharge progression, there were gradual increases in the parameter node strengths (S), clustering coefficients (C), and global efficiency (E) of the functional networks, while the path lengths (L) decreased. These changes were most prominent at the onset of discharges and followed by some recovery in the high-frequency bands, but no significant change in the low-frequency bands. Furthermore, connections within the DMN during the discharge period were significantly stronger for clinical discharge compared to subclinical discharges. CONCLUSIONS These findings suggest that a more regular network before abnormal discharges in clinical discharges contributes to SWD explosion and that the parahippocampal gyrus plays an important role in maintaining oscillations. An absence seizure is a gradual process and the emergence of SWDs may be accompanied by initiation of inhibitory mechanisms. Enhanced functional connectivity among DMN brain regions may indicate that patients have entered a state of introspection, and functional abnormalities in the parahippocampal gyrus may be associated with patients' transient memory loss.
Collapse
Affiliation(s)
- Fangling Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yingfan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yanzhang Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Siyi Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Fengyuan Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Nazlee N, Waiter GD, Sandu A. Age-associated sex and asymmetry differentiation in hemispheric and lobar cortical ribbon complexity across adulthood: A UK Biobank imaging study. Hum Brain Mapp 2023; 44:49-65. [PMID: 36574599 PMCID: PMC9783444 DOI: 10.1002/hbm.26076] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/28/2022] [Accepted: 08/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cortical morphology changes with ageing and age-related neurodegenerative diseases. Previous studies suggest that the age effect is more pronounced in the frontal lobe. However, our knowledge of structural complexity changes in male and female brains is still limited. We measured cortical ribbon complexity through fractal dimension (FD) analysis at the hemisphere and lobe level in 7010 individuals from the UK Biobank imaging cohort to study age-related sex differences (3332 males, age ranged 45-79 years). FD decreases significantly with age and sexual dimorphism exists. With correction for brain size, females showed higher complexity in the left hemisphere and left and right parietal lobes whereas males showed higher complexity in the right temporal and left and right occipital lobes. A nonlinear age effect was observed in the left and right frontal, and right temporal lobes. Differential patterns of age effects were observed in both sexes with relatively more age-affected regions in males. Significantly higher rightward asymmetries at hemisphere, frontal, parietal, and occipital lobe level and higher leftward asymmetry in temporal lobe were observed. There was no age-by-sex-by asymmetry interaction in any region. When controlling for brain size, the leftward hemispheric, and temporal lobe asymmetry decreased with age. Males had significantly lower asymmetry between hemispheres and higher asymmetry in the parietal and occipital lobes than females. This work provides distinct patterns of age-related sex and asymmetry differences that can aid in the future development of sex-specific models of the normal brain to ascribe cognitive functional significance of these patterns in ageing.
Collapse
Affiliation(s)
- Nafeesa Nazlee
- Aberdeen Biomedical Imaging CentreUniversity of AberdeenAberdeenScotland
| | - Gordon D. Waiter
- Aberdeen Biomedical Imaging CentreUniversity of AberdeenAberdeenScotland
| | - Anca‐Larisa Sandu
- Aberdeen Biomedical Imaging CentreUniversity of AberdeenAberdeenScotland
| |
Collapse
|
13
|
Chen Y, Zuo Y, Kang S, Pan L, Jiang S, Yan A, Li L. Using fractal dimension analysis to assess the effects of normal aging and sex on subregional cortex alterations across the lifespan from a Chinese dataset. Cereb Cortex 2022; 33:5289-5296. [PMID: 36300622 DOI: 10.1093/cercor/bhac417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Fractal dimension (FD) is used to quantify brain structural complexity and is more sensitive to morphological variability than other cortical measures. However, the effects of normal aging and sex on FD are not fully understood. In this study, age- and sex-related differences in FD were investigated in a sample of 448 adults age of 19–80 years from a Chinese dataset. The FD was estimated with the surface-based morphometry (SBM) approach, sex differences were analyzed on a vertex level, and correlations between FD and age were examined. Generalized additive models (GAMs) were used to characterize the trajectories of age-related changes in 68 regions based on the Desikan–Killiany atlas. The SBM results showed sex differences in the entire sample and 3 subgroups defined by age. GAM results demonstrated that the FD values of 51 regions were significantly correlated with age. The trajectories of changes can be classified into 4 main patterns. Our results indicate that sex differences in FD are evident across developmental stages. Age-related trajectories in FD are not homogeneous across the cerebral cortex. Our results extend previous findings and provide a foundation for future investigation of the underlying mechanism.
Collapse
Affiliation(s)
- Yiyong Chen
- Ningbo University School of Medicine, , Ningbo, 315211, Zhejiang, PR China
| | - Yizhi Zuo
- Nanjing Medical University Human Anatomy Department, , Nanjing, 211166, Jiangsu, PR China
| | - Shaofang Kang
- Ningbo University College of Teacher Education, , Ningbo, 315211, Zhejiang, PR China
| | - Liliang Pan
- Ningbo University School of Medicine, , Ningbo, 315211, Zhejiang, PR China
| | - Siyu Jiang
- Ningbo University School of Medicine, , Ningbo, 315211, Zhejiang, PR China
| | - Aohui Yan
- Ningbo University School of Medicine, , Ningbo, 315211, Zhejiang, PR China
| | - Lin Li
- Nanjing Medical University Human Anatomy Department, , Nanjing, 211166, Jiangsu, PR China
| |
Collapse
|
14
|
Fractal dimension of the brain in neurodegenerative disease and dementia: A systematic review. Ageing Res Rev 2022; 79:101651. [PMID: 35643264 DOI: 10.1016/j.arr.2022.101651] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 12/25/2022]
Abstract
Sensitive and specific antemortem biomarkers of neurodegenerative disease and dementia are crucial to the pursuit of effective treatments, required both to reliably identify disease and to track its progression. Atrophy is the structural magnetic resonance imaging (MRI) hallmark of neurodegeneration. However in most cases it likely indicates a relatively advanced stage of disease less susceptible to treatment as some disease processes begin decades prior to clinical onset. Among emerging metrics that characterise brain shape rather than volume, fractal dimension (FD) quantifies shape complexity. FD has been applied in diverse fields of science to measure subtle changes in elaborate structures. We review its application thus far to structural MRI of the brain in neurodegenerative disease and dementia. We identified studies involving subjects who met criteria for mild cognitive impairment, Alzheimer's Disease, Vascular Dementia, Lewy Body Dementia, Frontotemporal Dementia, Amyotrophic Lateral Sclerosis, Parkinson's Disease, Huntington's Disease, Multiple Systems Atrophy, Spinocerebellar Ataxia and Multiple Sclerosis. The early literature suggests that neurodegenerative disease processes are usually associated with a decline in FD of the brain. The literature includes examples of disease-related change in FD occurring independently of atrophy, which if substantiated would represent a valuable advantage over other structural imaging metrics. However, it is likely to be non-specific and to exhibit complex spatial and temporal patterns. A more harmonious methodological approach across a larger number of studies as well as careful attention to technical factors associated with image processing and FD measurement will help to better elucidate the metric's utility.
Collapse
|
15
|
Meregalli V, Alberti F, Madan CR, Meneguzzo P, Miola A, Trevisan N, Sambataro F, Favaro A, Collantoni E. Cortical Complexity Estimation Using Fractal Dimension: A Systematic Review of the Literature on Clinical and Nonclinical Samples. Eur J Neurosci 2022; 55:1547-1583. [PMID: 35229388 PMCID: PMC9313853 DOI: 10.1111/ejn.15631] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 02/20/2022] [Indexed: 12/04/2022]
Abstract
Fractal geometry has recently been proposed as a useful tool for characterizing the complexity of the brain cortex, which is likely to derive from the recurrence of sulci–gyri convolution patterns. The index used to describe the cortical complexity is called fractal dimensional (FD) and was employed by different research exploring the neurobiological correlates of distinct pathological and nonpathological conditions. This review aims to describe the literature on the application of this index, summarize the heterogeneities between studies and inform future research on this topic. Sixty‐two studies were included in the systematic review. The main research lines concern neurodevelopment, aging and the neurobiology of specific psychiatric and neurological disorders. Overall, the included papers indicate that cortical complexity is likely to reduce during aging and in various pathological processes affecting the brain. Nevertheless, the high heterogeneity between studies strongly prevents the possibility of drawing conclusions. Further research considering this index besides other morphological values is needed to better clarify the role of FD in characterizing the cortical structure. Fractal dimension (FD) is a useful tool for the assessment of cortical complexity. In healthy controls, FD is associated with development, aging and cognition. Alterations in FD have been observed in different neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Valentina Meregalli
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | | | | | - Paolo Meneguzzo
- Department of Neurosciences, University of Padua, Padova, Italy
| | - Alessandro Miola
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Nicolò Trevisan
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Fabio Sambataro
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Angela Favaro
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | | |
Collapse
|