1
|
Ghaznavi H, Afzalipour R, Khoei S, Sargazi S, Shirvalilou S, Sheervalilou R. New insights into targeted therapy of glioblastoma using smart nanoparticles. Cancer Cell Int 2024; 24:160. [PMID: 38715021 PMCID: PMC11077767 DOI: 10.1186/s12935-024-03331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
In recent times, the intersection of nanotechnology and biomedical research has given rise to nanobiomedicine, a captivating realm that holds immense promise for revolutionizing diagnostic and therapeutic approaches in the field of cancer. This innovative fusion of biology, medicine, and nanotechnology aims to create diagnostic and therapeutic agents with enhanced safety and efficacy, particularly in the realm of theranostics for various malignancies. Diverse inorganic, organic, and hybrid organic-inorganic nanoparticles, each possessing unique properties, have been introduced into this domain. This review seeks to highlight the latest strides in targeted glioblastoma therapy by focusing on the application of inorganic smart nanoparticles. Beyond exploring the general role of nanotechnology in medical applications, this review delves into groundbreaking strategies for glioblastoma treatment, showcasing the potential of smart nanoparticles through in vitro studies, in vivo investigations, and ongoing clinical trials.
Collapse
Affiliation(s)
- Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Reza Afzalipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Samideh Khoei
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sakine Shirvalilou
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
2
|
Miyakoshi A, Ubukata N, Miyake H, Shoji-Asahina A, Dote H, Ohata E, Funaki D, Ichikawa Y, Imaichi Y, Oshima M, Hawke P, Nakatani E. Risk factors for glioblastoma in adults in Japan: an exploratory cohort study based on the Shizuoka Kokuho Database, the Shizuoka study. J Neurooncol 2024; 166:341-349. [PMID: 38206510 DOI: 10.1007/s11060-024-04566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/08/2024] [Indexed: 01/12/2024]
Abstract
PURPOSE To elucidate the risk factors associated with the onset of glioblastoma (GBM) utilizing a comprehensive administrative claims database from a major governmental district in Japan. METHODS Using the Shizuoka Kokuho Database (SKDB) for the period from April 2012 to September 2021, we conducted a retrospective analysis of 1,465,353 participants, identifying GBM cases using specific Japanese disease codes in conjunction with associated treatments. Risk factors were assessed using both univariable and multivariable Cox proportional hazards models. RESULTS Within the cohort, 182 participants (0.012%) received a GBM diagnosis during the study period, resulting in an incidence rate of 2.1 per 100,000 person-years. The multivariable analysis revealed that older age, male sex, and peripheral vascular disease (PVD) significantly influenced the risk of GBM onset. No clear link was found between allergic conditions and GBM risk, in contrast to some previous research. CONCLUSION Employing a robust health insurance database, this study revealed significant associations between GBM and factors such as age, male sex, and PVD within the Japanese population. It provides key insights into GBM epidemiology and underscores the potential of health insurance databases for large-scale oncological research.
Collapse
Affiliation(s)
- Akinori Miyakoshi
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, 4-27-2 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan
- Department of Neurosurgery, Shizuoka General Hospital, Shizuoka, Japan
| | - Nanako Ubukata
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, 4-27-2 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan
| | - Hiromu Miyake
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, 4-27-2 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan
| | - Aya Shoji-Asahina
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, 4-27-2 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan
| | - Hisashi Dote
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, 4-27-2 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan
| | - Emi Ohata
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, 4-27-2 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan
| | - Daito Funaki
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, 4-27-2 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan
| | - Yoshikazu Ichikawa
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, 4-27-2 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan
| | - Yutaro Imaichi
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, 4-27-2 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan
| | - Michiko Oshima
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, 4-27-2 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan
| | - Philip Hawke
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Eiji Nakatani
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, 4-27-2 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan.
| |
Collapse
|
3
|
Vazifehmand R, Ali DS, Homaie FM, Jalalvand FM, Othman Z, Deming C, Stanslas J, Sekawi Z. Effects of HSV-G47Δ Oncolytic Virus on Telomerase and Telomere Length Alterations in Glioblastoma Multiforme Cancer Stem Cells Under Hypoxia and Normoxia Conditions. Curr Cancer Drug Targets 2024; 24:1262-1274. [PMID: 38357955 DOI: 10.2174/0115680096274769240115165344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/07/2023] [Accepted: 01/01/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Due to the existence of tumor stem cells with tumorigenicity properties and resistance patterns, treatment of glioblastoma is not easy. Hypoxia is a major concern in glioblastoma therapy. Telomerase activity and telomere length alterations have been known to play a critical role in glioblastoma progression and invasion. OBJECTIVE This study aimed to investigate the effects of HSV-G47Δ oncolytic virus on telomerase and telomere length alterations in U251GBMCSCs (U251-Glioblastoma cancer stem cells) under hypoxia and normoxia conditions. METHODS U251-CSCs were exposed to the HSV-G47Δ virus in optimized MOI (Multiplicity of infection= 1/14 hours). An absolute telomere length and gene expression of telomerase subunits were determined using an absolute human telomere length quantification PCR assay. Furthermore, a bioinformatics pathway analysis was carried out to evaluate physical and genetic interactions between dysregulated genes with other potential genes and pathways. RESULTS Data revealed that U251CSCs had longer telomeres when exposed to HSV-G47Δ in normoxic conditions but had significantly shorter telomeres in hypoxic conditions. Furthermore, hTERC, DKC1, and TEP1 genes were significantly dysregulated in hypoxic and normoxic microenvironments. The analysis revealed that the expression of TERF2 was significantly reduced in both microenvironments, and two critical genes from the MRN complex, MER11 and RAD50, were significantly upregulated in normoxic conditions. RAD50 showed a significant downregulation pattern in the hypoxic niche. Our results suggested that repair complex in the telomeric structure could be targeted by HSV-G47Δ in both microenvironments. CONCLUSION In the glioblastoma treatment strategy, telomerase and telomere complex could be potential targets for HSV-G47Δ in both microenvironments.
Collapse
Affiliation(s)
- Reza Vazifehmand
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Dhuha Saeed Ali
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | | | | | - Zulkefley Othman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Chau Deming
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
4
|
Pevná V, Huntošová V. Imaging of heterogeneity in 3D spheroids of U87MG glioblastoma cells and its implications for photodynamic therapy. Photodiagnosis Photodyn Ther 2023; 44:103821. [PMID: 37778715 DOI: 10.1016/j.pdpdt.2023.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND In recent years, pharmacology and toxicology have emphasised the intention to move from in vivo models to simplified 3D objects represented by spheroidal models of cancer. Mitochondria are one of the subcellular organelles responsible for cell metabolism and are often a lucrative target for cancer treatment including photodynamic therapy (PDT). METHODS Hanging droplet-grown glioblastoma cells were forced to form spheroids with heterogeneous environments that were characterised by fluorescence microscopy and flow cytometry using fluorescent probes sensitive to oxidative stress and apoptosis. PDT was induced with hypericin at 590 nm. RESULTS It was found that the metabolic activity of the cells in the periphery and core of the spheroid was different. Higher oxidative stress and induction of caspase-3 were observed in the peripheral layers after PDT. These parts were more destabilised and showed higher expression of LC3B, an autophagic marker. However, the response of the whole system to the treatment was controlled by the cells in the core of the spheroids, which were hardly affected by the treatment. It has been shown that the depth of penetration of hypericin into this system is an important limiting step for PDT and the induction of autophagy and apoptosis. CONCLUSIONS In this work, we have described the fluorescence imaging of vital mitochondria, caspase-3 production and immunostaining of autophagic LC3B in cells from glioblastoma spheroids before and after PDT. Overall, we can conclude that this model represents an in vitro and in vivo applicable alternative for the study of PDT in solid microtumours.
Collapse
Affiliation(s)
- Viktória Pevná
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, Košice SK-041 54, Slovakia
| | - Veronika Huntošová
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, Košice SK-041 54, Slovakia; Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 840 05, Slovakia.
| |
Collapse
|
5
|
Yalamarty SSK, Filipczak N, Li X, Subhan MA, Parveen F, Ataide JA, Rajmalani BA, Torchilin VP. Mechanisms of Resistance and Current Treatment Options for Glioblastoma Multiforme (GBM). Cancers (Basel) 2023; 15:cancers15072116. [PMID: 37046777 PMCID: PMC10093719 DOI: 10.3390/cancers15072116] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive form of brain cancer that is difficult to treat due to its resistance to both radiation and chemotherapy. This resistance is largely due to the unique biology of GBM cells, which can evade the effects of conventional treatments through mechanisms such as increased resistance to cell death and rapid regeneration of cancerous cells. Additionally, the blood–brain barrier makes it difficult for chemotherapy drugs to reach GBM cells, leading to reduced effectiveness. Despite these challenges, there are several treatment options available for GBM. The standard of care for newly diagnosed GBM patients involves surgical resection followed by concurrent chemoradiotherapy and adjuvant chemotherapy. Emerging treatments include immunotherapy, such as checkpoint inhibitors, and targeted therapies, such as bevacizumab, that attempt to attack specific vulnerabilities in GBM cells. Another promising approach is the use of tumor-treating fields, a type of electric field therapy that has been shown to slow the growth of GBM cells. Clinical trials are ongoing to evaluate the safety and efficacy of these and other innovative treatments for GBM, intending to improve with outcomes for patients.
Collapse
Affiliation(s)
- Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Xiang Li
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Farzana Parveen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Pharmacy Services, DHQ Hospital, Jhang 35200, Pakistan
| | - Janaína Artem Ataide
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, Brazil
| | - Bharat Ashok Rajmalani
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
6
|
Simińska D, Korbecki J, Kojder K, Jeżewski D, Tarnowski M, Tomasiak P, Piotrowska K, Masztalewicz M, Kolasa A, Chlubek D, Baranowska-Bosiacka I. Androgen Receptor Expression in the Various Regions of Resected Glioblastoma Multiforme Tumors and in an In Vitro Model. Int J Mol Sci 2022; 23:13004. [PMID: 36361793 PMCID: PMC9655141 DOI: 10.3390/ijms232113004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 09/26/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant glioma, difficult to detect and with the lowest survival rates among gliomas. Its greater incidence among men and its higher survival rate among premenopausal women suggest that it may be associated with the levels of androgens. As androgens stimulate the androgen receptor (AR), which acts as a transcription factor, the aim of this study was the investigate the role of AR in the progression of GBM. The study was conducted on tissues collected from three regions of GBM tumors (tumor core, enhancing tumor region, and peritumoral area). In addition, an in vitro experiment was conducted on U-87 cells under various culture conditions (necrotic, hypoxic, and nutrient-deficient), mimicking the conditions in a tumor. In both of the models, androgen receptor expression was determined at the gene and protein levels, and the results were confirmed by confocal microscopy and immunohistochemistry. AR mRNA expression was higher under nutrient-deficient conditions and lower under hypoxic conditions in vitro. However, there were no differences in AR protein expression. No differences in AR mRNA expression were observed between the tested tumor structures taken from patients. No differences in AR mRNA expression were observed between the men and women. However, AR protein expression in tumors resected from patients was higher in the enhancing tumor region and in the peritumoral area than in the tumor core. In women, higher AR expression was observed in the peritumoral area than in the tumor core. AR expression in GBM tumors did not differ significantly between men and women, which suggests that the higher incidence of GBM in men is not associated with AR expression. In the group consisting of men and women, AR expression varied between the regions of the tumor: AR expression was higher in the enhancing tumor region and in the peritumoral area than in the tumor core, showing a dependence on tumor conditions (hypoxia and insufficient nutrient supply).
Collapse
Affiliation(s)
- Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Neurosurgery and Pediatric Neurosurgery Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Marta Masztalewicz
- Department of Neurology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
7
|
Sachdeva P, Ghosh S, Ghosh S, Han S, Banerjee J, Bhaskar R, Sinha JK. Childhood Obesity: A Potential Key Factor in the Development of Glioblastoma Multiforme. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101673. [PMID: 36295107 PMCID: PMC9605119 DOI: 10.3390/life12101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 12/04/2022]
Abstract
Glioblastoma multiforme (GBM) is a malignant primary tumor type of the central nervous system (CNS). This type of brain tumor is rare and is responsible for 12-15% of all brain tumors. The typical survival rate of GBM is only 12 to 14 months. GBM has a poor and unsatisfactory prognosis despite advances in research and therapeutic interventions via neurosurgery, radiation, and chemotherapy. The molecular heterogeneity, aggressive nature, and occurrence of drug-resistant cancer stem cells in GB restricts the therapeutic efficacy. Interestingly, the CNS tumors in children are the second most usual and persistent type of solid tumor. Since numerous research studies has shown the association between obesity and cancer, childhood obesity is one of the potential reasons behind the development of CNS tumors, including GBM. Obesity in children has almost reached epidemic rates in both developed and developing countries, harming children's physical and mental health. Obese children are more likely to face obesity as adults and develop non-communicable diseases such as diabetes and cardiovascular disease as compared to adults with normal weight. However, the actual origin and cause of obesity are difficult to be pointed out, as it is assumed to be a disorder with numerous causes such as environmental factors, lifestyle, and cultural background. In this narrative review article, we discuss the various molecular and genetic drivers of obesity that can be targeted as potential contributing factors to fight the development of GBM in children.
Collapse
Affiliation(s)
- Punya Sachdeva
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
- ICMR—National Institute of Nutrition, Tarnaka, Hyderabad 500007, India
| | - Soumya Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | - Sungsoo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Juni Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar 382426, India
- Correspondence: (J.B.); (R.B.); (J.K.S.)
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (J.B.); (R.B.); (J.K.S.)
| | - Jitendra Kumar Sinha
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
- Correspondence: (J.B.); (R.B.); (J.K.S.)
| |
Collapse
|
8
|
CCL18 Expression Is Higher in a Glioblastoma Multiforme Tumor than in the Peritumoral Area and Causes the Migration of Tumor Cells Sensitized by Hypoxia. Int J Mol Sci 2022; 23:ijms23158536. [PMID: 35955670 PMCID: PMC9369326 DOI: 10.3390/ijms23158536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a brain tumor with a very poor prognosis. For this reason, researchers worldwide study the impact of the tumor microenvironment in GBM, such as the effect of chemokines. In the present study, we focus on the role of the chemokine CCL18 and its receptors in the GBM tumor. We measured the expression of CCL18, CCR8 and PITPNM3 in the GMB tumor from patients (16 men and 12 women) using quantitative real-time polymerase chain reaction. To investigate the effect of CCL18 on the proliferation and migration of GBM cells, experiments were performed using U-87 MG cells. The results showed that CCL18 expression was higher in the GBM tumor than in the peritumoral area. The women had a decreased expression of PITPNM3 receptor in the GBM tumor, while in the men a lower expression of CCR8 was observed. The hypoxia-mimetic agent, cobalt chloride (CoCl2), increased the expression of CCL18 and PITPNM3 and thereby sensitized U-87 MG cells to CCL18, which did not affect the proliferation of U-87 MG cells but increased the migration of the test cells. The results indicate that GBM cells migrate from hypoxic areas, which may be important in understanding the mechanisms of tumorigenesis.
Collapse
|
9
|
Aisa A, Tan Y, Li X, Zhang D, Shi Y, Yuan Y. Comprehensive Analysis of the Brain-Expressed X-Link Protein Family in Glioblastoma Multiforme. Front Oncol 2022; 12:911942. [PMID: 35860560 PMCID: PMC9289282 DOI: 10.3389/fonc.2022.911942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common, malignant, and deadly primary brain tumor in adults. Brain-expressed X-link (BEX) protein family is involved in tumorigenesis. Here, we have explored the biological function and the prognostic value of the BEX family in GBM. Differentially expressed BEX genes between GBM and normal tissue were screened by using The Cancer Genome Atlas (TCGA) database. Univariate and multivariate Cox regression analyses identified the prognosis‐related genes BEX1, BEX2, and BEX4, which were involved in the regulation of immune response. The results of correlation analysis and protein–protein interaction network (PPI network) showed that there was a significant correlation between the BEX family and TCEAL family in GBM. Furthermore, the expression of transcription elongation factor A (SII)-like (TCEAL) family is generally decreased in GBM and related to poor prognosis. With the use of the least absolute shrinkage and selection operator (LASSO) Cox regression, a prognostic model including the BEX family and TCEAL family was built to accurately predict the likelihood of overall survival (OS) in GBM patients. Therefore, we demonstrated that the BEX family and TCEAL family possessed great potential as therapeutic targets and prognostic biomarkers in GBM. Further investigations in large‐scale, multicenter, and prospective clinical cohorts are needed to confirm the prognostic model developed in our study.
Collapse
Affiliation(s)
- Adilai Aisa
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yinuo Tan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xinyu Li
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Ding Zhang
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yun Shi
- Nursing Department, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Ying Yuan,
| |
Collapse
|
10
|
Allopregnanolone Promotes Migration and Invasion of Human Glioblastoma Cells through the Protein Tyrosine Kinase c-Src Activation. Int J Mol Sci 2022; 23:ijms23094996. [PMID: 35563388 PMCID: PMC9105169 DOI: 10.3390/ijms23094996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastomas (GBs) are the most aggressive and common primary malignant brain tumors. Steroid hormone progesterone (P4) and its neuroactive metabolites, such as allopregnanolone (3α-THP) are synthesized by neural, glial, and malignant GB cells. P4 promotes cellular proliferation, migration, and invasion of human GB cells at physiological concentrations. It has been reported that 3α-THP promotes GB cell proliferation. Here we investigated the effects of 3α-THP on GB cell migration and invasion, the participation of the enzymes involved in its metabolism (AKR1C1-4), and the role of the c-Src kinase in 3α-THP effects in GBs. 3α-THP 100 nM promoted migration and invasion of U251, U87, and LN229 human-derived GB cell lines. We observed that U251, LN229, and T98G cell lines exhibited a higher protein content of AKR1C1-4 than normal human astrocytes. AKR1C1-4 silencing did not modify 3α-THP effects on migration and invasion. 3α-THP activated c-Src protein at 10 min (U251 cells) and 15 min (U87 and LN229 cells). Interestingly, the pharmacological inhibition of c-Src decreases the promoting effects of 3α-THP on cell migration and invasion. Together, these data indicate that 3α-THP promotes GB migration and invasion through c-Src activation.
Collapse
|
11
|
Simionescu N, Zonda R, Petrovici AR, Georgescu A. The Multifaceted Role of Extracellular Vesicles in Glioblastoma: microRNA Nanocarriers for Disease Progression and Gene Therapy. Pharmaceutics 2021; 13:988. [PMID: 34210109 PMCID: PMC8309075 DOI: 10.3390/pharmaceutics13070988] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive form of brain cancer in adults, characterized by poor survival rates and lack of effective therapies. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression post-transcriptionally through specific pairing with target messenger RNAs (mRNAs). Extracellular vesicles (EVs), a heterogeneous group of cell-derived vesicles, transport miRNAs, mRNAs and intracellular proteins, and have been shown to promote horizontal malignancy into adjacent tissue, as well as resistance to conventional therapies. Furthermore, GB-derived EVs have distinct miRNA contents and are able to penetrate the blood-brain barrier. Numerous studies have attempted to identify EV-associated miRNA biomarkers in serum/plasma and cerebrospinal fluid, but their collective findings fail to identify reliable biomarkers that can be applied in clinical settings. However, EVs carrying specific miRNAs or miRNA inhibitors have great potential as therapeutic nanotools in GB, and several studies have investigated this possibility on in vitro and in vivo models. In this review, we discuss the role of EVs and their miRNA content in GB progression and resistance to therapy, with emphasis on their potential as diagnostic, prognostic and disease monitoring biomarkers and as nanocarriers for gene therapy.
Collapse
Affiliation(s)
- Natalia Simionescu
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.S.); (R.Z.); (A.R.P.)
- “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 2 Ateneului Street, 700309 Iasi, Romania
| | - Radu Zonda
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.S.); (R.Z.); (A.R.P.)
| | - Anca Roxana Petrovici
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.S.); (R.Z.); (A.R.P.)
| | - Adriana Georgescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8 B.P. Hasdeu Street, 050568 Bucharest, Romania
| |
Collapse
|