1
|
Yang Y, Wang C, Shi J, Zou Z. Joyful growth vs. compulsive hedonism: A meta-analysis of brain activation on romantic love and addictive disorders. Neuropsychologia 2024; 204:109003. [PMID: 39293637 DOI: 10.1016/j.neuropsychologia.2024.109003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Due to the similarities in behavioral characteristics between romantic love and addictive disorders, the concept of being "addicted to someone" transcends mere literary metaphor, expanding perspectives on the study of romantic love and inspiring interventions for addiction. However, there has been a lack of studies systematically exploring the similarities and differences between romantic love and addiction at the neural level. In this study, we conducted an extensive literature search, incorporating 21 studies on romantic love and 28 on addictive disorders, focusing on fMRI research utilizing the cue reactivity paradigm. Using Activation Likelihood Estimation, we examined the similarities and differences in the neural mechanisms underlying love and addiction. The results showed that the anterior cingulate cortex (ACC) exhibited both shared and distinct activation clusters between romantic love and addictive disorders. Furthermore, ventromedial prefrontal cortex (VMPFC) was more frequently activated in romantic love than in addictive disorders, while greater activation within the posterior cingulate cortex (PCC) was found in addictive disorder compared with romantic love. We discussed that the activation of ACC and VMPFC may symbolize self-expansion, a process that characterizes the development of romantic love, contributing to a more enriched self. Our study suggests that while romantic love and addictive disorders share a common neural foundation, the discernible differences in their neural representations distinguish them as joyful growth versus compulsive hedonism.
Collapse
Affiliation(s)
- Yuhang Yang
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Ministry of Education, Key Laboratory of Cognition and Personality (Southwest University), Chongqing, China
| | - Chuan Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannong Shi
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiling Zou
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Ministry of Education, Key Laboratory of Cognition and Personality (Southwest University), Chongqing, China.
| |
Collapse
|
2
|
Rinne P, Lahnakoski JM, Saarimäki H, Tavast M, Sams M, Henriksson L. Six types of loves differentially recruit reward and social cognition brain areas. Cereb Cortex 2024; 34:bhae331. [PMID: 39183646 PMCID: PMC11345515 DOI: 10.1093/cercor/bhae331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Feelings of love are among the most significant human phenomena. Love informs the formation and maintenance of pair bonds, parent-offspring attachments, and influences relationships with others and even nature. However, little is known about the neural mechanisms of love beyond romantic and maternal types. Here, we characterize the brain areas involved in love for six different objects: romantic partner, one's children, friends, strangers, pets, and nature. We used functional magnetic resonance imaging (fMRI) to measure brain activity, while we induced feelings of love using short stories. Our results show that neural activity during a feeling of love depends on its object. Interpersonal love recruited social cognition brain areas in the temporoparietal junction and midline structures significantly more than love for pets or nature. In pet owners, love for pets activated these same regions significantly more than in participants without pets. Love in closer affiliative bonds was associated with significantly stronger and more widespread activation in the brain's reward system than love for strangers, pets, or nature. We suggest that the experience of love is shaped by both biological and cultural factors, originating from fundamental neurobiological mechanisms of attachment.
Collapse
Affiliation(s)
- Pärttyli Rinne
- Department of Neuroscience and Biomedical Engineering, Aalto University, Rakentajanaukio 2 C, 02150 Espoo, Finland
- AMI Centre, Aalto NeuroImaging, Aalto University, Magnet house, Otakaari 5 I, 02150 Espoo, Finland
| | - Juha M Lahnakoski
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Heini Saarimäki
- Faculty of Social Sciences, Tampere University, City Centre Campus Linna building, 6. floor., Kalevantie 5, 33014 Tampere, Finland
| | - Mikke Tavast
- Department of Neuroscience and Biomedical Engineering, Aalto University, Rakentajanaukio 2 C, 02150 Espoo, Finland
- Department of Computer Science, Aalto University, Computer science building, Konemiehentie 2, 02150 Espoo, Finland
| | - Mikko Sams
- Department of Neuroscience and Biomedical Engineering, Aalto University, Rakentajanaukio 2 C, 02150 Espoo, Finland
- MAGICS–Aalto, Aalto University, P.O. Box 11000 (Otakaari 1 B), Finland
| | - Linda Henriksson
- Department of Neuroscience and Biomedical Engineering, Aalto University, Rakentajanaukio 2 C, 02150 Espoo, Finland
| |
Collapse
|
3
|
Bortolini T, Laport MC, Latgé-Tovar S, Fischer R, Zahn R, de Oliveira-Souza R, Moll J. The extended neural architecture of human attachment: An fMRI coordinate-based meta-analysis of affiliative studies. Neurosci Biobehav Rev 2024; 159:105584. [PMID: 38367888 DOI: 10.1016/j.neubiorev.2024.105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Functional imaging studies and clinical evidence indicate that cortical areas relevant to social cognition are closely integrated with evolutionarily conserved basal forebrain structures and neighboring regions, enabling human attachment and affiliative emotions. The neural circuitry of human affiliation is continually being unraveled as functional magnetic resonance imaging (fMRI) becomes increasingly prevalent, with studies examining human brain responses to various attachment figures. However, previous fMRI meta-analyses on affiliative stimuli have encountered challenges, such as low statistical power and the absence of robustness measures. To address these issues, we conducted an exhaustive coordinate-based meta-analysis of 79 fMRI studies, focusing on personalized affiliative stimuli, including one's infants, family, romantic partners, and friends. We employed complementary coordinate-based analyses (Activation Likelihood Estimation and Signed Differential Mapping) and conducted a robustness analysis of the results. Findings revealed cluster convergence in cortical and subcortical structures related to reward and motivation, salience detection, social bonding, and cognition. Our study thoroughly explores the neural correlates underpinning affiliative responses, effectively overcoming the limitations noted in previous meta-analyses. It provides an extensive view of the neural substrates associated with affiliative stimuli, illuminating the intricate interaction between cortical and subcortical regions. Our findings significantly contribute to understanding the neurobiology of human affiliation, expanding the known human attachment circuitry beyond the traditional basal forebrain regions observed in other mammals to include uniquely human isocortical structures.
Collapse
Affiliation(s)
- Tiago Bortolini
- Cognitive Neuroscience and Neuroinformatics Unit, The D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; IDOR - Pioneer Science Initiative, São Paulo, Brazil.
| | - Maria Clara Laport
- Cognitive Neuroscience and Neuroinformatics Unit, The D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Sofia Latgé-Tovar
- Institute of Psychiatry, Center for Alzheimer's Disease, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ronald Fischer
- Cognitive Neuroscience and Neuroinformatics Unit, The D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; IDOR - Pioneer Science Initiative, São Paulo, Brazil; School of Psychology, PO Box 600, Victoria University of Wellington, Wellington 6021, New Zealand
| | - Roland Zahn
- Centre for Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Ricardo de Oliveira-Souza
- Cognitive Neuroscience and Neuroinformatics Unit, The D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; The Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge Moll
- Cognitive Neuroscience and Neuroinformatics Unit, The D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; IDOR - Pioneer Science Initiative, São Paulo, Brazil
| |
Collapse
|
4
|
Bode A, Kavanagh PS. Romantic Love and Behavioral Activation System Sensitivity to a Loved One. Behav Sci (Basel) 2023; 13:921. [PMID: 37998668 PMCID: PMC10669312 DOI: 10.3390/bs13110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Research investigating the mechanisms that contribute to romantic love is in its infancy. The behavioral activation system is one biopsychological system that has been demonstrated to play a role in several motivational outcomes. This study was the first to investigate romantic love and the behavioral activation system. In study 1, the Behavioral Activation System-Sensitivity to a Loved One (BAS-SLO) Scale was validated in a sample of 1556 partnered young adults experiencing romantic love. In study 2, hierarchical linear regression was used to identify BAS-SLO Scale associations with the intensity of romantic love in a subsample of 812 partnered young adults experiencing romantic love for two years or less. The BAS-SLO Scale explained 8.89% of the variance in the intensity of romantic love. Subject to further validation and testing, the BAS-SLO Scale may be useful in future neuroimaging and psychological studies. The findings are considered in terms of the mechanisms and evolutionary history of romantic love.
Collapse
Affiliation(s)
- Adam Bode
- School of Archaeology and Anthropology, ANU College of Arts and Social Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | - Phillip S. Kavanagh
- Discipline of Psychology, Faculty of Health, University of Canberra, Bruce, ACT 2617, Australia;
- Justice and Society, University of South Australia, Magill, SA 5072, Australia
| |
Collapse
|
5
|
Bode A. Romantic love evolved by co-opting mother-infant bonding. Front Psychol 2023; 14:1176067. [PMID: 37915523 PMCID: PMC10616966 DOI: 10.3389/fpsyg.2023.1176067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023] Open
Abstract
For 25 years, the predominant evolutionary theory of romantic love has been Fisher's theory of independent emotion systems. That theory suggests that sex drive, romantic attraction (romantic love), and attachment are associated with distinct neurobiological and endocrinological systems which evolved independently of each other. Psychological and neurobiological evidence, however, suggest that a competing theory requires attention. A theory of co-opting mother-infant bonding sometime in the recent evolutionary history of humans may partially account for the evolution of romantic love. I present a case for this theory and a new approach to the science of romantic love drawing on human psychological, neurobiological, and (neuro)endocrinological studies as well as animal studies. The hope is that this theoretical review, along with other publications, will generate debate in the literature about the merits of the theory of co-opting mother-infant bonding and a new evolutionary approach to the science of romantic love.
Collapse
|
6
|
Swain JE, Ho SS. Brain circuits for maternal sensitivity and pain involving anterior cingulate cortex among mothers receiving buprenorphine treatment for opioid use disorder. J Neuroendocrinol 2023; 35:e13316. [PMID: 37491982 DOI: 10.1111/jne.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 07/27/2023]
Abstract
Opioid-induced deficits in maternal behaviors are well-characterized in rodent models. Amid the current epidemic of opioid use disorder (OUD), prevalence among pregnant women has risen sharply. Yet, the roles of buprenorphine replacement treatment for OUD (BT/OUD) in the brain functions of postpartum mothers are unclear. Using functional magnetic resonance imaging (fMRI), we have developed an evolutionarily conserved maternal behavior neurocircuit (MBN) model to study human maternal care versus defensive/aggressive behaviors critical to mother-child bonding. The anterior cingulate gyrus (ACC) is not only involved in the MBN for mother-child bonding and attachment, but also part of an opioid sensitive "pain-matrix". The literature suggests that prescription opioids produce physical and emotional "analgesic" effects by disrupting specific resting-state functional connectivity (rs-FC) of ACC to regions related to MBN. Thus, in this longitudinal study, we report findings of overlapping MBN and pain matrix circuits, for mothers with chronic exposure of BT/OUD. A total of 32 mothers were studied with 6 min rs-FC at 1 month (T1) and 4 months postpartum (T2), including seven on BT/OUD and 25 non-BT/OUD mothers as a comparison group. We analyzed rs-FC between the insula, putamen, and the dorsal anterior cingulate cortex (DACC) and rostral ACC (RACC), as the regions of interest that mediate opioid analgesia. BT/OUD mothers, as compared to non-BT/OUD mothers, showed less left insula-RACC rs-FC but greater right putamen-DACC rs-FC at T1, with these between-group differences diminished at T2. Some of these rs-FC results were correlated with the scores of postpartum parental bonding questionnaire. We found time-by-treatment interaction effects on DACC and RACC-dependent rs-FC, potentially identifying brain mechanisms for beneficial effects of BT, normalizing dysfunction of maternal brain and behavior over the first four months postpartum. This study complements recent studies to ascertain how BT/OUD affects maternal behaviors, mother-child bonding, and intersubjectivity and reveals potential MBN/pain-matrix targets for novel interventions.
Collapse
Affiliation(s)
- James E Swain
- Department of Psychiatry and Behavioral Health, Renaissance School Of Medicine at Stony Brook University, Stony Brook, New York, USA
- Department of Psychology, Program in Public Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
- Department of Obstetrics, Gynecology and Reproductive Medicine, Program in Public Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - S Shaun Ho
- Department of Psychiatry and Behavioral Health, Renaissance School Of Medicine at Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
7
|
Blumenthal SA, Young LJ. The Neurobiology of Love and Pair Bonding from Human and Animal Perspectives. BIOLOGY 2023; 12:844. [PMID: 37372130 PMCID: PMC10295201 DOI: 10.3390/biology12060844] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Love is a powerful emotional experience that is rooted in ancient neurobiological processes shared with other species that pair bond. Considerable insights have been gained into the neural mechanisms driving the evolutionary antecedents of love by studies in animal models of pair bonding, particularly in monogamous species such as prairie voles (Microtus ochrogaster). Here, we provide an overview of the roles of oxytocin, dopamine, and vasopressin in regulating neural circuits responsible for generating bonds in animals and humans alike. We begin with the evolutionary origins of bonding in mother-infant relationships and then examine the neurobiological underpinnings of each stage of bonding. Oxytocin and dopamine interact to link the neural representation of partner stimuli with the social reward of courtship and mating to create a nurturing bond between individuals. Vasopressin facilitates mate-guarding behaviors, potentially related to the human experience of jealousy. We further discuss the psychological and physiological stress following partner separation and their adaptive function, as well as evidence of the positive health outcomes associated with being pair-bonded based on both animal and human studies.
Collapse
Affiliation(s)
- Sarah A. Blumenthal
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA
| | - Larry J. Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Stöhr EJ. The healthy heart does not control a specific cardiac output: a plea for a new interpretation of normal cardiac function. Am J Physiol Heart Circ Physiol 2022; 323:H1239-H1243. [PMID: 36269649 DOI: 10.1152/ajpheart.00535.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The current evidence suggests that the healthy heart does not sense the optimal cardiac output (Q̇) because the different organ systems that influence cardiac function do not interact to adjust their individual responses toward a specific Q̇. Consequently, it is conceivable that the complex cycle of cardiac contraction and relaxation must occur for reasons other than to produce a specific target Q̇ and that there is likely a yet undiscovered overarching principle in the cardiovascular system that explains the combined effects of the prevailing preload, afterload, and contractility. Future research should embrace the possibility of a different purpose to cardiac function than previously assumed and examine the biological capacity of this fascinating organ accordingly.
Collapse
Affiliation(s)
- Eric J Stöhr
- COR-HELIX (CardiOvascular Regulation and Human Exercise Laboratory - Integration and Xploration), Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
9
|
Zablocki-Thomas PB, Rogers FD, Bales KL. Neuroimaging of human and non-human animal emotion and affect in the context of social relationships. Front Behav Neurosci 2022; 16:994504. [PMID: 36338883 PMCID: PMC9633678 DOI: 10.3389/fnbeh.2022.994504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Long-term relationships are essential for the psychological wellbeing of humans and many animals. Positive emotions and affective experiences (e.g., romantic or platonic love) seem to be closely related to the creation and maintenance of social bonds. When relationships are threatened or terminated, other emotions generally considered to be negative can arise (e.g., jealousy or loneliness). Because humans and animals share (to varying degrees) common evolutionary histories, researchers have attempted to explain the evolution of affect and emotion through the comparative approach. Now brain imaging techniques allow the comparison of the neurobiological substrates of affective states and emotion in human and animal brains using a common methodology. Here, we review brain imaging studies that feature emotions characterized by the context of social bonding. We compare imaging findings associated with affective and emotional states elicited by similar social situations between humans and animal models. We also highlight the role of key neurohormones (i.e., oxytocin, vasopressin, and dopamine) that jointly support the occurrence of socially contextualized emotions and affect across species. In doing so, we seek to explore and clarify if and how humans and animals might similarly experience social emotion and affect in the context of social relationships.
Collapse
Affiliation(s)
| | - Forrest D. Rogers
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
- Psychology Graduate Group, University of California, Davis, Davis, CA, United States
| | - Karen L. Bales
- California National Primate Research Center, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| |
Collapse
|