1
|
Serebrovska Z, Xi L, Fedoriuk M, Dosenko V, Shysh A, Khetsuriani M, Porkhalo D, Savchenko A, Goncharov S, Utko N, Virko S, Kholin V, Egorov E, Koval R, Maksymchuk O. Intermittent hypoxia-hyperoxia training ameliorates cognitive impairment and neuroinflammation in a rat model of Alzheimer's disease. Brain Res 2025; 1847:149301. [PMID: 39476996 DOI: 10.1016/j.brainres.2024.149301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/02/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Alzheimer's disease (AD), characterized by severe and progressive cognitive decline, stands as one of the most prevalent and devastating forms of dementia. Based on our recent findings showing intermittent hypoxic conditioning improved neuronal function in patients with mild cognitive impairment, the present study aimed at investigating whether the neuroprotective effects of intermittent hypoxia can be replicated in a rat model of AD, which allows us to explore the underlying cellular mechanisms involving neuroinflammation, hypoxia inducible factor 1α (HIF1α), and cytochrome P450 family 2 subfamily E member 1 (CYP2E1). Forty-one adult male Wistar rats were randomly assigned to three groups: 1) Control group: received intracerebroventricular (ICV) injection of saline; 2) STZ group: received ICV injection of streptozotocin (STZ) to induce AD-like pathology; and 3) STZ + IHHT group received ICV injection of STZ as well as 15 daily sessions of intermittent hypoxia-hyperoxia training (IHHT). We observed that ICV injection of STZ inhibited spatial learning and memory in the rats assessed with Morris Water Maze test. The cognitive function declines were accompanied by increased expression of amyloid β peptide (Aβ), HIF1α, CYP2E1, and TNFα in hippocampus. Interestingly, IHHT significantly restored the STZ-induced cognitive dysfunction, while reduced expression of Aβ, CYP2E1, HIF1α and TNFα. We conclude that IHHT with mild hypoxia-hyperoxia can enhance spatial learning and memory and reduce the AD-like pathologic changes in rats. The neuroprotective outcome of IHHT may be related to anti-inflammatory effects in hippocampus.
Collapse
Affiliation(s)
- Zoya Serebrovska
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine.
| | - Lei Xi
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0204, USA.
| | - Mykhailo Fedoriuk
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine
| | - Victor Dosenko
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine
| | - Angela Shysh
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine
| | - Michael Khetsuriani
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine
| | - Denys Porkhalo
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine
| | - Anton Savchenko
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine
| | - Serhii Goncharov
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine
| | - Natalie Utko
- Chebotarev Institute of Gerontology, National Academy of Sciences of Ukraine, Kyiv 04114, Ukraine
| | - Sergii Virko
- Lashkariov Institute of Semiconductor Physics, National Academy of Sciences, Kyiv 02000, Ukraine
| | - Victor Kholin
- Chebotarev Institute of Gerontology, National Academy of Sciences of Ukraine, Kyiv 04114, Ukraine
| | - Egor Egorov
- Institute for Preventive and Antiaging Medicine, Berlin 10789, Germany
| | - Roman Koval
- National Cancer Institute, Kyiv 03022, Ukraine
| | - Oksana Maksymchuk
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| |
Collapse
|
2
|
Khoramipour K, Soltany A, Khosravi P, Rezaei MH, Madadizadeh E, García-Chico C, Maroto-Izquierdo S, Khoramipour K. High intensity interval training as a therapy: Mitophagy restoration in breast cancer. Arch Biochem Biophys 2024; 762:110213. [PMID: 39515549 DOI: 10.1016/j.abb.2024.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Recent studies have highlighted the role of mitophagy in tumorigenesis. This study aimed to investigate the effects of high-intensity interval training (HIIT) on mitophagy in tumor tissues of mice with breast cancer. Twenty-eight female BALB/c mice were randomly assigned to four groups: Healthy Control (CO), Cancer (CA), Exercise (EX), and Cancer + Exercise (CA + EX). Mammary tumors were induced in the CA and CA + EX groups via 4T1 cell injections. Upon confirmation of tumor formation, the EX and CA + EX groups underwent 8 weeks (40 sessions) of HIIT, comprising 4-10 intervals of running at 80-100 % of maximum speed. The expression levels of mitophagy-related proteins, including parkin, PTEN-induced putative kinase 1 (PINK1), NIP3-like protein X (NIX), BCL2 interacting protein-3 (BINP3), microtubule-associated protein light chain 3-I (LC3-I), microtubule-associated protein light chain 3-II (LC3-II), AMP-activated protein kinase (AMPK), Unc-51 like autophagy activating kinase-1 (ULK1), and sirtuin-1 (SIRT1), were measured in breast and tumor tissues. Tumor volume relative to body weight was assessed weekly during the eight-week HIIT intervention. Protein expression of parkin, PINK1, NIX, BINP3, LC3-II, LC3-I, AMPK, ULK1, and SIRT1 was reduced in the breast tissue of the CA group, while HIIT restored expression levels across all measured variables (P < 0.01). Additionally, tumor volume relative to body weight was significantly lower in the CA + EX group compared to the CA group from weeks 3-8 (P < 0.01). These findings suggest that breast cancer suppresses mitophagy, yet HIIT effectively reverses this suppression, potentially reducing tumor burden. HIIT may thus represent a promising therapeutic strategy for managing breast cancer.
Collapse
Affiliation(s)
- Kayvan Khoramipour
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain.
| | - Afsaneh Soltany
- Department of Biology, Faculty of Science, University of Shiraz, Shiraz, Iran.
| | - Pouria Khosravi
- Department of Sports Physiology, Faculty of Physical Education and Sports Sciences, Shahid Rajaei Teacher Training University, Tehran, Iran.
| | - Maryam Hossein Rezaei
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran.
| | - Elham Madadizadeh
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran.
| | - Celia García-Chico
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain.
| | - Sergio Maroto-Izquierdo
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain.
| | - Karen Khoramipour
- Department of Sport Sines, Faculty of Humanities and Social Sciences, University of Kurdistan, Kurdistan, Iran.
| |
Collapse
|
3
|
Pereira RRDS, Castro GBD, Magalhães CODE, Costa KB, Garcia BCC, Silva G, Carvalho JDCL, Machado ART, Vieira ER, Cassilhas RC, Pereira LJ, Dias-Peixoto MF, Andrade EF. High-intensity interval training mitigates the progression of periodontitis and improves behavioural aspects in rats. J Clin Periodontol 2024; 51:1222-1235. [PMID: 38798054 DOI: 10.1111/jcpe.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
AIM To investigate the effects of high-intensity interval training (HIIT) on periodontitis (PD) progression and behavioural outcomes. MATERIALS AND METHODS Forty-eight Wistar rats were divided into four groups: non-trained (NT); non-trained with PD; HIIT with PD; and HIIT. The HIIT protocol, involving daily treadmill sessions, spanned 8 weeks, with PD induced by ligature after the 6th week. Behavioural tests were conducted to assess anxiety and memory. Post euthanasia, we evaluated the systemic inflammatory profile and oxidative stress markers in the hippocampus and amygdala. A morphological evaluation and elemental composition analysis of the mandibular alveolar bone were performed. RESULTS PD exacerbated alveolar bone level, bone surface damage and alterations in calcium and phosphorus percentages on the bone surface (p < .05), while HIIT attenuated these changes (p < .05). HIIT improved systemic inflammatory markers altered by PD (tumour necrosis factor [TNF]-α, interleukin [IL]-10, TNF-α/IL-10 and IL-1β/IL-10 ratios, p < .05). PD animals exhibited lower total antioxidant capacity and levels of thiobarbituric acid reactive substances in the amygdala and hippocampus, respectively (p < .05). HIIT maintained these parameters at levels similar to those in NT animals. HIIT improved anxiety and memory outcomes altered by PD (p < .05). CONCLUSIONS HIIT attenuates systemic inflammation, anxiety and memory outcomes promoted by PD.
Collapse
Affiliation(s)
| | - Giselle Bicalho de Castro
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | - Karine Beatriz Costa
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | - Gabriela Silva
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | | | - Etel Rocha Vieira
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Ricardo Cardoso Cassilhas
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Luciano José Pereira
- Department of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Marco Fabrício Dias-Peixoto
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Eric Francelino Andrade
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Department of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais, Brazil
| |
Collapse
|
4
|
Shah J, Orosz T, Singh A, Laxma SP, Gross RE, Smith N, Vroegop S, Sudler S, Porter JT, Colon M, Jun L, Babu JR, Shim M, Broderick TL, Al-Nakkash L. Influence of Exercise and Genistein to Mitigate the Deleterious Effects of High-Fat High-Sugar Diet on Alzheimer's Disease-Related Markers in Male Mice. Int J Mol Sci 2024; 25:9019. [PMID: 39201705 PMCID: PMC11354341 DOI: 10.3390/ijms25169019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The prevalence of obesity and related consequences, including insulin resistance and Alzheimer's-like neuropathology, has increased dramatically. Contributing to this prevalence is the shift in lifestyle preference away from wholesome foods and exercise to the Western-style diet and sedentarism. Despite advances in drug development, a healthy diet and regular exercise remain the most effective approaches to mitigating the unwanted sequelae of diet-induced obesity on brain health. In this study, we used the high-fat high-sugar (HFHS) mouse model of neurodegeneration to examine the effects of exercise training (HFHS+Ex), genistein treatment (HFHS+Gen), and combination treatment (HFHS+Ex+Gen) on proteins relating to neurodegeneration in the brain of male mice. After a period of 12 weeks, as expected, HFHS feeding increased body weight, adipose tissue weight, and systemic plasma inflammation (TNF-α) compared to lean mice fed a standard diet. HFHS feeding also increased protein expression of brain markers of insulin resistance (pGSK-3β, p-IR), apoptosis (caspase 3), early neurofibrillary tangles (CP13), and amyloid-beta precursor (CT20). Compared to HFHS mice, Ex decreased body weight, plasma TNF-α, and expression of pGSK-3β, caspase 3, CP13, amyloid-β precursor (22c11), and ADAM10. Treatment with Gen was equally protective on these markers and decreased the expression of p-IR. Combination treatment with Ex and Gen afforded the greatest overall benefits, and this group exhibited the greatest reduction in body and adipose tissue weight and all brain markers, except for 22c11 and ADAM10, which were decreased compared to mice fed an HFHS diet. In addition, levels of 4G8, which detects protein levels of amyloid-β, were decreased with combination treatment. Our results indicate that exercise training, genistein supplementation, or combination treatment provide varying degrees of neuroprotection from HFHS feeding-induced Alzheimer's pathology. Future perspectives could include evaluating moderate exercise regimens in combination with dietary supplementation with genistein in humans to determine whether the same benefits translate clinically.
Collapse
Affiliation(s)
- Juhi Shah
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA (T.O.); (S.P.L.); (R.E.G.); (S.V.); (S.S.)
| | - Tyler Orosz
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA (T.O.); (S.P.L.); (R.E.G.); (S.V.); (S.S.)
| | - Avneet Singh
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA (T.O.); (S.P.L.); (R.E.G.); (S.V.); (S.S.)
| | - Savan Parameshwar Laxma
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA (T.O.); (S.P.L.); (R.E.G.); (S.V.); (S.S.)
| | - Rachel E. Gross
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA (T.O.); (S.P.L.); (R.E.G.); (S.V.); (S.S.)
| | - Nicholas Smith
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA (T.O.); (S.P.L.); (R.E.G.); (S.V.); (S.S.)
| | - Spencer Vroegop
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA (T.O.); (S.P.L.); (R.E.G.); (S.V.); (S.S.)
| | - Sydney Sudler
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA (T.O.); (S.P.L.); (R.E.G.); (S.V.); (S.S.)
| | - James T. Porter
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce 00732, Puerto Rico; (J.T.P.); (M.C.)
| | - Maria Colon
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce 00732, Puerto Rico; (J.T.P.); (M.C.)
| | - Lauren Jun
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan R. Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Minsub Shim
- Department of Biochemistry, College of Graduate Studies, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
| | - Thomas L. Broderick
- Department of Physiology, College of Graduate Studies, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
| | - Layla Al-Nakkash
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA (T.O.); (S.P.L.); (R.E.G.); (S.V.); (S.S.)
- Department of Physiology, College of Graduate Studies, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
| |
Collapse
|
5
|
Khoramipour K, Rajizadeh MA, Akbari Z, Arjmand M. The effect of high-intensity interval training on type 2 diabetic muscle: A metabolomics-based study. Heliyon 2024; 10:e34917. [PMID: 39170342 PMCID: PMC11336285 DOI: 10.1016/j.heliyon.2024.e34917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Background This study aimed to investigate the effect of eight weeks of high-intensity interval training (HIIT) on muscle metabolism in rats with type 2 diabetes (T2D) using metabolomics approaches. Methods 20 male Wistar rats at the age of 8 weeks-were assigned to four groups of five, each in the group randomly: control (CTL), type 2 diabetes (DB), HIIT (EX), and type 2 diabetes + HIIT (DBX). T2D was induced by two months of a high-fat diet plus a single dose of streptozotocin (35 mg/kg). Rats in the EX and DBX groups performed eight weeks of HIIT (running at 80-100 % of Vmax, 4-10 intervals). NMR spectroscopy was used to determine the changes in the muscle metabolome profile after training. Results Changes in metabolite abundance following exercise revealed distinct clustering in multivariate analysis. The essential metabolite changes between the DB and CTL groups were arginine metabolism, purine metabolism, phosphate pathway, amino sugar metabolism, glutathione metabolism, and aminoacyl-tRNA biosynthesis. However, Arginine biosynthesis, pyrimidine metabolism, aminoacyl-tRNA biosynthesis, and alanine, aspartate, and glutamate metabolism were altered between the DBX and DB groups. Conclusion These results suggest that eight weeks of HIIT could reverse metabolic changes induced by T2D in rat muscles, contributing to reduced FBG and HOMA-IR levels.
Collapse
Affiliation(s)
- Kayvan Khoramipour
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences Kerman, Iran
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ziba Akbari
- Metabolomics Lab, Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Arjmand
- Metabolomics Lab, Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Rajabi A, Akbar Nezhad Gharehlo A, Madadizadeh E, Basereh A, Khoramipoor K, Pirani H, Khoramipour K, Moser O, Khoramipour K. The effect of 12 weeks of aerobic exercise training with or without saffron supplementation on diabetes-specific markers and inflammation in women with type 2 diabetes: A randomized double-blind placebo-controlled trial. Eur J Sport Sci 2024; 24:899-906. [PMID: 38874882 PMCID: PMC11235750 DOI: 10.1002/ejsc.12125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024]
Abstract
This study was conducted to investigate the effects of 12 weeks of aerobic exercise (AT) and saffron supplementation on hemostasis, inflammatory markers, and insulin resistance in obese women diagnosed with type 2 diabetes (T2D). A total of 44 women with T2D (mean age: 54.12 ± 5.63 years, mean BMI: 31.15 ± 1.50 kg/m2, HbA1c: 85 ± 4.2 mmol/mol) were included in a randomized, double-blind, placebo-controlled study. We were randomly assigned to one of four groups (n = 11 per group): saffron + training (ST), placebo + training (PT), saffron supplement (SS), and placebo (P). The ST and PT groups completed 12 weeks of AT (three sessions per week of mild to moderate intensity). The ST and SS groups were administered a daily dose of 200 mg of saffron powder for 12 weeks. Fasting blood samples were collected 48 h before the first AT session and/or nutritional supplementation and 48 h after the last AT session and/or nutritional supplementation. Post-evaluation, homeostatic model assessment of insulin resistance value (HOMA-IR, p < 0.001) and serum levels of glucose (p < 0.001), fibrinogen (FIB, p < 0.001), homocysteine (HCY, p < 0.001), interleukin-6 (IL-6, p < 0.001), and tumor necrosis factor α (TNFα, p < 0.001) showed significant reduction in the ST, PT, and SS groups compared to the P group (p < 0.05). In particular, the ST group showed a more significant reduction in all variables compared to the PT and SS groups (p < 0.05). Our results suggest that a 12-week intervention with AT and saffron supplementation can independently improve markers related to hemostasis, inflammation, and insulin resistance. However, their combination showed the greatest effectiveness on the above markers.
Collapse
Affiliation(s)
- Ali Rajabi
- Faculty of Educational Sciences and PsychologyDepartment of Exercise PhysiologyUniversity of Mohaghegh ArdabiliArdabilIran
| | - Ali Akbar Nezhad Gharehlo
- Faculty of Physical Education and Sport SciencesDepartment of Exercise PhysiologyUniversity of TehranTehranIran
| | - Elham Madadizadeh
- Faculty of Physical EducationDepartment of Exercise PhysiologyShahid Bahonar UniversityKermanIran
| | - Aref Basereh
- Department Exercise PhysiologyKharazmi UniversityTehranIran
| | - Kimya Khoramipoor
- Faculty of Nursing and MidwiferyDepartment of NursingKurdistan University of Medical SciencesKurdistanIran
| | - Hossein Pirani
- Faculty of Marine SciencesDepartment of ScienceMaritim University of ChabaharChabaharIran
| | - Karen Khoramipour
- Faculty of Humanities and Social SciencesDepartment of Sport ScienceKurdistan UniversityKurdistanIran
| | - Othmar Moser
- Exercise Physiology and Metabolism (Sports Medicine)BaySpo—Bayreuth Centre of Sports ScienceUniversity of BayreuthBayreuthGermany
- Interdisciplinary Metabolic Medicine Trials UnitMedical University of GrazGrazAustria
| | - Kayvan Khoramipour
- Neuroscience Research CenterInstitute of NeuropharmacologyKerman University of Medical SciencesKermanIran
| |
Collapse
|
7
|
Sadat Hosseini N, Shirazpour S, Zangiabadizadeh M, Bashiri H, Dabiri S, Sepehri G, Shamsi Meymandi M. High-Intensity Interval Training Ameliorates Tramadol-Induced Nephrotoxicity and Oxidative Stress in Experimental Rats. Cureus 2024; 16:e62518. [PMID: 39022473 PMCID: PMC11253577 DOI: 10.7759/cureus.62518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2024] [Indexed: 07/20/2024] Open
Abstract
INTRODUCTION Tramadol (TRA) is an opioid analgesic widely prescribed for moderate-to-severe pain; however, its abuse and chronic use have been associated with kidney damage. Considering the protective role of exercise training in reducing organ damage, this study aimed to assess the influence of high-intensity interval training (HIIT) on a male rat's kidney following chronic TRA administration. METHODS In this experimental study, 30 male Wistar rats were assigned to the following groups: control (CON; animals received normal saline five days a week in the first month and three days a week in the second month), exercise (EXE; animals conducted HIIT training according to exercise protocol five days a week for two months), TRA (animals received TRA 50 mg/kg (i.p.) as described for the CON group), EXE-TRA (animals received TRA and conducted exercise protocol), and EXE-SL (animals received normal saline and conducted exercise protocol). Then, serum IL-6 and IL-10 levels, tissue malondialdehyde (MDA), total antioxidant capacity (TAC), glutathione peroxidase (GPx), superoxide dismutase (SOD), and levels of albumin, urea, and creatinine (CR), along with pathological changes in the kidney, were measured. A p-value of <0.05 was considered significant using GraphPad Prism v.9 (GraphPad Software, La Jolla, California, USA). RESULTS The inflammatory cytokines IL-6 and IL-10 were significantly increased in the EXE and EXE-TRA groups compared to the TRA group. Chronic administration of TRA in the TRA group decreased antioxidant indicators TAC, GPx, and SOD in kidney tissue while increasing oxidative stress MDA compared to the CON group (p<0.05). In contrast, the EXE-TRA group showed higher levels of TAC, GPx, and SOD, while MDA decreased compared to the TRA group. Additionally, serum levels of urea and CR were increased in the TRA group compared to the CON group, whereas these levels were decreased in the EXE-TRA group compared to the TRA group. The inflammatory effect of HIIT training, due to severe hyperemia and mild inflammatory cell infiltration, was seen in all EXE groups. Pathological findings confirmed TRA-induced kidney damage through moderate hyaline cast presence and severe apoptosis in the TRA group. Other findings were in line with the above results. CONCLUSION These findings confirm the nephrotoxicity of chronic use of TRA through biochemical and oxidative markers and pathological outcomes. In addition, the result suggests that HIIT has the potential to mitigate the detrimental effects of TRA through reversing biochemical and oxidative markers, including TRA-induced apoptosis. Consequently, considering its restorative properties, HIIT could be explored as a prospective nephroprotective approach for long-term TRA treatment.
Collapse
Affiliation(s)
- Najmeh Sadat Hosseini
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, IRN
| | - Sara Shirazpour
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, IRN
| | - Mahla Zangiabadizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, IRN
| | - Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, IRN
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, IRN
| | - Gholamreza Sepehri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, IRN
| | - Manzumeh Shamsi Meymandi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, IRN
| |
Collapse
|
8
|
Khoramipour K, Rezaei MH, Moslemizadeh A, Hosseini MS, Ebrahimnezhad N, Bashiri H. Changes in the hippocampal level of tau but not beta-amyloid may mediate anxiety-like behavior improvement ensuing from exercise in diabetic female rats. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:9. [PMID: 38702776 PMCID: PMC11067136 DOI: 10.1186/s12993-024-00235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/08/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND In the present study, we investigated the effect of high-intensity interval training (HIIT) on cognitive behaviors in female rats with a high-fat diet + streptozotocin (STZ)-induced type 2 diabetes. METHODS Twenty-four female rats were divided into four groups randomly (n = 6): control (C), control + exercise (Co + EX), diabetes mellitus (type 2) (T2D), and diabetes mellitus + exercise (T2D + EX). Diabetes was induced by a two-month high-fat diet and a single dose of STZ (35 mg/kg) in the T2D and T2D + EX groups. The Co + EX and T2D + EX groups performed HIIT for eight weeks (five sessions per week, running on a treadmill at 80-100% of VMax, 4-10 intervals). Elevated plus maze (EPM) and open field test (OFT) were used for assessing anxiety-like behaviors, and passive avoidance test (PAT) and Morris water maze (MWM) were applied for evaluating learning and memory. The hippocampal levels of beta-amyloid (Aβ) and Tau were also assessed using Western blot. RESULTS An increase in fasting blood glucose (FBG), hippocampal level of Tau, and a decrease in the percentage of open arm time (%OAT) as an index of anxiety-like behavior were seen in the female diabetic rats which could be reversed by HIIT. In addition, T2D led to a significant decrease in rearing and grooming in the OFT. No significant difference among groups was seen for the latency time in the PAT and learning and memory in the MWM. CONCLUSIONS HIIT could improve anxiety-like behavior at least in part through changes in hippocampal levels of Tau.
Collapse
MESH Headings
- Animals
- Female
- Hippocampus/metabolism
- tau Proteins/metabolism
- Rats
- Physical Conditioning, Animal/physiology
- Physical Conditioning, Animal/methods
- Physical Conditioning, Animal/psychology
- Anxiety/therapy
- Anxiety/psychology
- Anxiety/metabolism
- Amyloid beta-Peptides/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/psychology
- Diabetes Mellitus, Experimental/therapy
- High-Intensity Interval Training/methods
- Maze Learning/physiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/psychology
- Diabetes Mellitus, Type 2/therapy
- Behavior, Animal/physiology
- Diet, High-Fat/adverse effects
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Kayvan Khoramipour
- Student Research Committee, School of medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Hossein Rezaei
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | | | - Mahdieh Sadat Hosseini
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Narjes Ebrahimnezhad
- Department of Sports Science, Faculty of Educational Sciences and Psychology, Sistan and Baluchestan University, Zahedan, Iran
| | - Hamideh Bashiri
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
9
|
Moghazy HM, Abdelhaliem NG, Mohammed SA, Hassan A, Abdelrahman A. Liraglutide versus pramlintide in protecting against cognitive function impairment through affecting PI3K/AKT/GSK-3β/TTBK1 pathway and decreasing Tau hyperphosphorylation in high-fat diet- streptozocin rat model. Pflugers Arch 2024; 476:779-795. [PMID: 38536493 PMCID: PMC11033245 DOI: 10.1007/s00424-024-02933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
The American Diabetes Association guidelines (2021) confirmed the importance of raising public awareness of diabetes-induced cognitive impairment, highlighting the links between poor glycemic control and cognitive impairment. The characteristic brain lesions of cognitive dysfunction are neurofibrillary tangles (NFT) and senile plaques formed of amyloid-β deposition, glycogen synthase kinase 3 beta (GSK3β), and highly homologous kinase tau tubulin kinase 1 (TTBK1) can phosphorylate Tau proteins at different sites, overexpression of these enzymes produces extensive phosphorylation of Tau proteins making them insoluble and enhance NFT formation, which impairs cognitive functions. The current study aimed to investigate the potential contribution of liraglutide and pramlintide in the prevention of diabetes-induced cognitive dysfunction and their effect on the PI3K/AKT/GSK-3β/TTBK1 pathway in type 2 diabetic (T2D) rat model. T2D was induced by administration of a high-fat diet for 10 weeks, then injection of a single dose of streptozotocin (STZ); treatment was started with either pramlintide (200 μg/kg/day sc) or liraglutide (0.6 mg/kg/day sc) for 6 weeks in addition to the HFD. At the end of the study, cognitive functions were assessed by novel object recognition and T-maze tests. Then, rats were sacrificed for biochemical and histological assessment of the hippocampal tissue. Both pramlintide and liraglutide treatment revealed equally adequate control of diabetes, prevented the decline in memory function, and increased PI3K/AKT expression while decreasing GSK-3β/TTBK1 expression; however, liraglutide significantly decreased the number of Tau positive cells better than pramlintide did. This study confirmed that pramlintide and liraglutide are promising antidiabetic medications that could prevent associated cognitive disorders in different mechanisms.
Collapse
Affiliation(s)
- Hoda M Moghazy
- Department of Physiology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | | | | | - Asmaa Hassan
- Department of Physiology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Amany Abdelrahman
- Department of Physiology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt.
| |
Collapse
|
10
|
Saberi S, Askaripour M, Khaksari M, Amin Rajizadeh M, Abbas Bejeshk M, Akhbari M, Jafari E, Khoramipour K. Exercise training improves diabetic renal injury by reducing fetuin-A, oxidative stress and inflammation in type 2 diabetic rats. Heliyon 2024; 10:e27749. [PMID: 38510054 PMCID: PMC10951597 DOI: 10.1016/j.heliyon.2024.e27749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Background Diabetic kidney disease (DKD) stands as a primary contributor to end-stage renal disease, associated with heightened mortality in cardiovascular diseases. This study aimed to explore the impact of an eight-week high-intensity interval training (HIIT) on renal injury in diabetic rats. Methods Twenty-eight male Wistar rats were randomly allocated into four groups: healthy control (CTL), diabetic control (DC), exercise (EX), and diabetes-exercise (D + EX). Induction of diabetes in the DC and D + EX groups occurred through a two-month high-fat diet followed by a single dose of 35 mg/kg streptozotocin (STZ). Rats in the EX and D + EX groups underwent 4-10 intervals of HIIT (80-100% Vmax) over 8 weeks. Subsequently, pathological and biochemical parameters were assessed in the serum and kidney tissue of the experimental groups. Results In the DC group, diabetes led to elevated kidney damage, glomerulosclerosis, fasting blood glucose (FBG), Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index, animal weight, kidney dysfunction, albuminuria, and glomerular filtration rate. Additionally, serum and kidney levels of fetuin-A increased, along with kidney levels of KIM-1. Mechanistically, diabetes induction resulted in kidney inflammation by elevating levels of tumor necrosis factor-alpha (TNF-α), transforming growth factor beta (TGF-β), and interleukin 6 (IL-6), while reducing IL-10 levels and increasing the IL-6/IL-10 ratio. Furthermore, diabetes triggered renal oxidative stress, evidenced by increased Malondialdehyde (MDA) levels and decreased levels of glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD). HIIT mitigated the adverse effects of diabetes in the D + EX group compared to the DC group. Conclusion Our findings suggest that HIIT ameliorates type 2 diabetes (T2D)-induced kidney damage by mitigating inflammation, lowering serum levels of fetuin-A, and bolstering antioxidant defenses. This study highlights the potential of HIIT as a time-efficient intervention for diabetic nephropathy.
Collapse
Affiliation(s)
- Shadan Saberi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Askaripour
- Department of Physiology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Akhbari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Department of Pathology, Pathology and Stem Cell Research Center, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Joukar S, Rajizadeh MA, Bejeshk MA, Alavi SS, Bagheri F, Rami M, Khoramipour K. ATP releasing channels and the ameliorative effects of high intensity interval training on diabetic heart: a multifaceted analysis. Sci Rep 2024; 14:7113. [PMID: 38532054 DOI: 10.1038/s41598-024-57818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Type 2 diabetes (T2D) can cause severe cardiac complications at functional, histologic and molecular levels. These pathological complications could be mediated by ATP-releasing channels such as Panx1 and ATP receptors, in particular P2X7. The aim of our study was to investigate the effect of high-intensity interval training (HIIT) on T2D-induced cardiac complications at the functional, histopathological and molecular levels, with a particular focus on ATP-releasing channels. 48 male Wistar rats at the age of 8 weeks were randomly allocated into four groups: control (Con), Diabetes (T2D), Training (TR), and Diabetes + Training (T2D + TR). T2D was induced by a high-fat diet plus a low dose (35 mg/kg) of STZ administration. Rats in the TR and T2D + TR groups underwent an 8-weeks training program involving intervals ranging from 80 to 100% of their maximum running speed (Vmax), with 4-10 intervals per session. Protein expression of Interleukin 1β (IL1β), Interleukin 10 (IL-10), Pannexin 1 (Panx1), P2X7R (purinergic P2X receptor 7), NLRP1 (NLR Family Pyrin Domain Containing 1), BAX, and Bcl2 were measured in the heart tissue. Additionally, we assessed heart function, histopathological changes, as well as insulin resistance using the homeostasis model assessment of insulin resistance (HOMA-IR). In contrast to the T2D group, HIIT led to increased protein expression of Bcl2 and IL-10 in the heart. It also resulted in improvements in systolic and diastolic blood pressures, heart rate, ± dp/dt (maximum and minimum changes in left ventricular pressure), while reducing protein expression of IL-1β, Panx1, P2X7R, NLRP1, and BAX levels in the heart. Furthermore, left ventricular diastolic pressure (LVDP) was reduced (P ≤ 0.05). Moreover, heart lesion scores increased with T2D but decreased with HIIT, along with a reduction in fibrosis percentage (P ≤ 0.05). The results of this study suggest that the cardioprotective effects of HIIT on the diabetic heart may be mediated by the modulation of ATP-releasing channels. This modulation may lead to a reduction in inflammation and apoptosis, improve cardiac function, and attenuate cardiac injury and fibrosis.
Collapse
Affiliation(s)
- Siyavash Joukar
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Samaneh Sadat Alavi
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Bagheri
- Legal Medicine Research Center, Legal Medicine Organization, Kerman, Iran
- Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour Medical Faculty, Kerman, Iran
| | - Mohammad Rami
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kayvan Khoramipour
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
12
|
Saheli M, Moshrefi M, Baghalishahi M, Mohkami A, Firouzi Y, Suzuki K, Khoramipour K. Cognitive Fitness: Harnessing the Strength of Exerkines for Aging and Metabolic Challenges. Sports (Basel) 2024; 12:57. [PMID: 38393277 PMCID: PMC10891799 DOI: 10.3390/sports12020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Addressing cognitive impairment (CI) represents a significant global challenge in health and social care. Evidence suggests that aging and metabolic disorders increase the risk of CI, yet promisingly, physical exercise has been identified as a potential ameliorative factor. Specifically, there is a growing understanding that exercise-induced cognitive improvement may be mediated by molecules known as exerkines. This review delves into the potential impact of aging and metabolic disorders on CI, elucidating the mechanisms through which various exerkines may bolster cognitive function in this context. Additionally, the discussion extends to the role of exerkines in facilitating stem cell mobilization, offering a potential avenue for improving cognitive impairment.
Collapse
Affiliation(s)
- Mona Saheli
- Department of Anatomical Sciences, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (M.S.); (M.B.)
| | - Mandana Moshrefi
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Masoumeh Baghalishahi
- Department of Anatomical Sciences, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (M.S.); (M.B.)
| | - Amirhossein Mohkami
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar 9617976487, Iran;
| | - Yaser Firouzi
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Bahonar University, Kerman 7616913439, Iran;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| |
Collapse
|
13
|
Pirani H, Soltany A, Hossein Rezaei M, Khodabakhshi Fard A, Nikooie R, Khoramipoor K, Chamari K, Khoramipour K. Lactate-induced autophagy activation: unraveling the therapeutic impact of high-intensity interval training on insulin resistance in type 2 diabetic rats. Sci Rep 2024; 14:1108. [PMID: 38212600 PMCID: PMC10784291 DOI: 10.1038/s41598-023-50589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024] Open
Abstract
Impaired autophagy is a hallmark of diabetes. The current study proposed to investigate if high intensity interval training (HIIT) induced lactate accumulation could stimulate autophagy in type 2 diabetic male rats. 28 male Wistar rats were randomly assigned into four groups: Healthy Control (CO), Diabetes Control (T2D), Exercise (EX), and Diabetes + Exercise (T2D + EX). Diabetes was induced by feeding high-fat diet and administrating single dose of streptozotocin (35 mg/kg). After becoming diabetic, the animals in the exercise groups (EX and T2D + EX) performed an eight-week HIIT (4-10 interval, 80-100% Vmax, 5 days per week). Serum levels of lactate, glucose and insulin as well as the levels of lactate, pyruvate, lactate transporter monocarboxylate transporter 1 (MCT1), phosphorylated mitogen-activated protein kinases (p-MAP 1 and 2), phosphorylated extracellular signal-regulated protein kinases 1 and 2 (p-ERK 1 and 2), mammalian target of rapamycin (p-mTOR), ribosomal protein S6 kinase beta-1 (p-70S6k), p90 ribosomal S6 kinases (p-90RSK), autophagy related 7 (ATG7), Beclin-1, microtubule-associated protein 1A/1B, and 2A/2B -light chain 3 levels (LC3-I), (LC3- II), (LC3I/LC3II) in soleus muscle were measured. Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) and serum glucose was lower in T2D + EX compared to T2D group (P < 0.0001). While serum and soleus muscle levels of lactate was not different between T2D and T2D + Ex, the levels of Pyruvate (P < 0.01), MCT1, p-ERK1/2, p-mTOR, p70S6k, P-90RSK, ATG7, LC3-II, and LC3-II/LC3I ratios were higher in T2D + EX compared to T2D group (P < 0.0001). We concluded that eight weeks of high-intensity interval training could activated ERK/P90SRK while inhibiting mTOR/P70S6K signaling pathway in lactate dependent manner. It means increased autophagy which resulted in improve insulin resistance (IR) and reduce blood glucose.
Collapse
Affiliation(s)
- Hossein Pirani
- Department of Basic Sciences, Chabahar Maritime University, Chabahar, Iran
| | - Afsaneh Soltany
- Department of Biology, Faculty of Science, University of Shiraz, Shiraz, Iran
| | - Maryam Hossein Rezaei
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University, Kerman, Iran
| | - Adeleh Khodabakhshi Fard
- Department on Nutrition, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Rohollah Nikooie
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Kimya Khoramipoor
- Department of Nursing, Faculty of Nursing and Midwifery, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Karim Chamari
- Higher Institute of Sport and Physical Education, ISSEP Ksar Said, Manouba University, Manouba, Tunisia
| | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
14
|
Khosravi P, Shahidi F, Eskandari A, Khoramipour K. High-intensity interval training reduces Tau and beta-amyloid accumulation by improving lactate-dependent mitophagy in rats with type 2 diabetes. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1430-1439. [PMID: 39386233 PMCID: PMC11459343 DOI: 10.22038/ijbms.2024.77038.16664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Objectives This study aimed to investigate the effect of 8-week high-intensity interval training (HIIT) on lactate-induced mitophagy in the hippocampus of rats with type 2 diabetes. Materials and Methods 28 Wistar male rats were divided into four groups randomly: (i) control (Co), (ii) exercise (EX), (iii) type 2 diabetes (T2D), and (iv) type 2 diabetes + exercise (T2D + Ex). The rats in the T2D and T2D + Ex groups were fed a high-fat diet for two months, then a single dose of STZ (35 mg/kg) was injected to induce diabetes. The EX and T2D + Ex groups performed 4-10 intervals of treadmill running at 80-100% of Vmax. Serum and hippocampal levels of lactate, as well as hippocampal levels of monocarboxylate transporter2 (MCT2), sirtuin1 (SIRT1), forkhead box protein O (FOXO3), light chain 3 (LC3), PTEN-induced kinase 1 (PINK1), parkin, beta-amyloid (Aβ), hyperphosphorylated tau protein (TAU), Malondialdehyde (MDA), and antioxidant enzymes were measured. One-way ANOVA and Tukey post-hoc tests were used to analyze the data. Results Serum and hippocampal levels of lactate as well as hippocampal levels of MCT2, SIRT1, FOXO3, LC3, PINK1, Parkin, and antioxidant enzymes were higher while hippocampal levels of Aβ, TAU, and MDA were lower in T2D+EX compared to T2D group (P-value<0.05). Conclusion HIIT could improve mitophagy through Lactate-SIRT1-FOXO3-PINK1/Parkin signaling in the hippocampus of rats with T2D reducing the accumulation of Tau and Aβ, which may reduce the risk of memory impairments.
Collapse
Affiliation(s)
- Pouria Khosravi
- Department of Sports Physiology, Faculty of Physical Education and Sports Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Fereshte Shahidi
- Department of Sports Physiology, Faculty of Physical Education and Sports Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Arezoo Eskandari
- Department of Sports Physiology, Faculty of Physical Education and Sports Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Kayvan Khoramipour
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| |
Collapse
|
15
|
Khoramipour K, Rezaei MH, Madadizadeh E, Hosseini MS, Soltani Z, Schierbauer J, Moser O. High Intensity Interval Training can Ameliorate Hypothalamic Appetite Regulation in Male Rats with Type 2 Diabetes: The Role of Leptin. Cell Mol Neurobiol 2023; 43:4295-4307. [PMID: 37828299 DOI: 10.1007/s10571-023-01421-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Disruption of leptin (LEP) signaling in the hypothalamus caused by type 2 diabetes (T2D) can impair appetite regulation. The aim of this study was to investigate whether the improvement in appetite regulation induced by high-intensity interval training (HIIT) in rats with T2D can be mediated by LEP signaling. In this study, 20 male Wister rats were randomly assigned to one of four groups: CO (non-type 2 diabetes control), T2D (type 2 diabetes), EX (non-type 2 diabetes exercise), and T2D + EX (type 2 diabetes + exercise).To induce T2D, a combination of a high-fat diet for 2 months and a single dose of streptozotocin (35 mg/kg) was administered. Rats in the EX and T2D + EX groups performed 4-10 intervals of treadmill running at 80-100% of their maximum velocity (Vmax). Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), serum levels of insulin (INS) and LEP (LEPS) as well as hypothalamic expression of LEP receptors (LEP-R), Janus kinase 2 (JAK-2), signal transducer and activator of transcription 3 (STAT-3), neuropeptide Y (NPY), agouti-related protein (AGRP), pro-opiomelanocortin cocaine (POMC), amphetamine-related transcript (CART), suppressor of cytokine signaling (SOCS3), forkhead box protein O1 (FOXO1) were assessed. ANOVA and Tukey post hoc tests were used to compare the results between the groups. The levels of LEPS and INS, as well as the levels of LEP-R, JAK-2, STAT-3, POMC, and CART in the hypothalamus were found to be higher in the T2D + EX group compared to the T2D group. On the other hand, the levels of HOMA-IR, NPY, AGRP, SOCS3, and FOXO1 were lower in the T2D + EX group compared to the T2D group (P < 0.0001). The findings of this study suggest that HIIT may improve appetite regulation in rats with T2D, and LEP signaling may play a crucial role in this improvement. Graphical abstract (leptin signaling in the hypothalamus), Leptin (LEP), Leptin receptor (LEP-R), Janus kinase 2 (JAK2), Signal transducer and activator of transcription 3 (STAT3), expressing Neuropeptide Y (NPY), Agouti-related protein (AGRP), anorexigenic neurons (expressing pro-opiomelanocortin cocaine (POMC), Amphetamine-related transcript (CART), suppressor of cytokine signaling (SOCS3), forkhead box protein O1 (FOXO1).
Collapse
Affiliation(s)
- Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Maryam Hossein Rezaei
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Elham Madadizadeh
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Mahdieh Sadat Hosseini
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Janis Schierbauer
- Exercise Physiology and Metabolism (Sports Medicine), BaySpo-Bayreuth Centre of Sports Science, University of Bayreuth, Bayreuth, Germany
| | - Othmar Moser
- Exercise Physiology and Metabolism (Sports Medicine), BaySpo-Bayreuth Centre of Sports Science, University of Bayreuth, Bayreuth, Germany
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| |
Collapse
|
16
|
Rezaei MH, Madadizadeh E, Aminaei M, Abbaspoor M, Schierbauer J, Moser O, Khoramipour K, Chamari K. Leptin Signaling Could Mediate Hippocampal Decumulation of Beta-Amyloid and Tau Induced by High-Intensity Interval Training in Rats with Type 2 Diabetes. Cell Mol Neurobiol 2023; 43:3465-3478. [PMID: 37378849 DOI: 10.1007/s10571-023-01357-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/29/2023] [Indexed: 06/29/2023]
Abstract
Leptin (LEP) can cross the blood-brain barrier and facilitate cross-talk between the adipose tissue and central nerve system (CNS). This study aimed to investigate the effect of 8-week high-intensity interval training (HIIT) on the LEP signaling in the hippocampus of rats with type 2 diabetes. 20 rats were randomly divided into four groups: (i) control (Con), (ii) type 2 diabetes (T2D), (iii) exercise (EX), and (iv) type 2 diabetes + exercise (T2D + EX). The rats in the T2D and T2D + EX were fed a high-fat diet for two months, then a single dose of STZ (35 mg/kg) was injected to induce diabetes. The EX and T2D + EX groups performed 4-10 intervals of treadmill running at 80-100% of Vmax. Serum and hippocampal levels of LEP as well as hippocampal levels of LEP receptors (LEP-R), Janus kinase 2 (JAK-2), signal transducer and activator of transcription 3 (STAT-3), activated protein kinase (AMP-K), proxy zoster receptor α (PGC-1α), beta-secretase 1 (BACE1), Beta-Amyloid (Aβ), Phosphoinositide 3-kinases (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), Glycogen Synthase Kinase 3 Beta (GSK3β), and hyperphosphorylated tau proteins (TAU) were measured. One-way ONOVA and Tukey post-hoc tests were used to analyze the data. Serum and hippocampal levels of LEP as well as hippocampal levels of LEP-R, JAK-2, STAT-3, AMP-K, PGC1α, PI3K, AKT, and mTOR were increased while hippocampal levels of BACE1, GSK3B, TAU, and Aβ were decreased in T2D + EX compared with T2D group. Serum LEP and hippocampal levels of LEP, LEP-R, JAK-2, STAT-3, AMP-K, PGC1α, PI3K, AKT, and mTOR were decreased. Conversely hippocampal levels of BACE1, GSK3B, TAU, and Aβ were increased in T2D group compared with CON group. HIIT could improve LEP signaling in the hippocampus of rats with type 2 diabetes and decrease the accumulation of Tau and Aβ, which may reduce the risk of memory impairments.
Collapse
Affiliation(s)
- Maryam Hossein Rezaei
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Elham Madadizadeh
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Mohsen Aminaei
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Mehdi Abbaspoor
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Janis Schierbauer
- Exercise Physiology and Metabolism (Sports Medicine), BaySpo-Bayreuth Centre of Sports Science, University of Bayreuht, Bayreuth, Germany
| | - Othmar Moser
- Exercise Physiology and Metabolism (Sports Medicine), BaySpo-Bayreuth Centre of Sports Science, University of Bayreuht, Bayreuth, Germany
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Karim Chamari
- Aspetar Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
17
|
Rajizadeh MA, Moslemizadeh A, Hosseini MS, Rafiei F, Soltani Z, Khoramipour K. Adiponectin receptor 1 could explain the sex differences in molecular basis of cognitive improvements induced by exercise training in type 2 diabetic rats. Sci Rep 2023; 13:16267. [PMID: 37758935 PMCID: PMC10533546 DOI: 10.1038/s41598-023-43519-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
Adipokines dysregulation, the main reason for cognitive impairments (CI) induced by diabetes, shows a sex-dependent pattern inherently and in response to exercise. This study aimed to compare the attenuating effect of 8-week high intensity-interval training (HIIT) on type 2 diabetes (T2D)-induced CI between male and female rats with a special focus on adiponectin and leptin. 28 male & 28 female Wistar rats with an average age of 8 weeks were randomly assigned into four groups: control (Con), exercise (EX), Diabetes (T2D), and Type 2 diabetes + exercise (T2D + Ex). Rats in EX and T2D + EX groups performed HIIT for eight weeks (80-100% Vmax, 4-10 intervals). T2D was induced by 2 months of a high-fat diet and a single dose of STZ (35 mg/kg) administration. Leptin and adiponectin levels in serum were measured along with hippocampal expression of leptin and adiponectin receptors, AMP-activated protein kinase (AMPK), dephosphorylated glycogen synthase kinase-3 beta (Dep-GSK3β), Tau, and beta-amyloid (Aβ). Homeostasis model assessments (HOMAs) and quantitative insulin-sensitivity check index (QUICKI) indices were calculated. Our results showed that following T2D, serum levels of APN, and hippocampal levels of adiponectin receptor 1 (APNR1) were higher and HOMA-IR was lower in female than male rats (P < 0.05). However, after 8 weeks of HIIT, hippocampal levels of APNR1 and AMPK as well as QUICKI were lower and hippocampal levels of GSK, Tau, and Aβ were higher in females compared to male rats (P < 0.05). While the risk of CI following T2D was more in male than female rats HIIT showed a more ameliorating effect in male animals with APN1 as the main player.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahdieh Sadat Hosseini
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Forouzan Rafiei
- Health Solutions, College of (CHS), Arizona State University, Phoenix, AZ, USA
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Kayvan Khoramipour
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
18
|
Khoramipour K, Bejeshk MA, Rajizadeh MA, Najafipour H, Dehghan P, Farahmand F. High-Intensity Interval Training Ameliorates Molecular Changes in the Hippocampus of Male Rats with the Diabetic Brain: the Role of Adiponectin. Mol Neurobiol 2023; 60:3486-3495. [PMID: 36877358 DOI: 10.1007/s12035-023-03285-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/10/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD) is closely related to type 2 diabetes (T2D). This study investigated the impact of high-intensity interval training (HIIT) on diabetes-induced disturbances in AD-related factors (including AMP-activated protein kinase (AMPK), glycogen synthase kinase-3β (GSK3β), and tau protein) in the hippocampus, with the main focus on adiponectin signaling.In total, 28 male Wistar rats at the age of 8 weeks were randomly assigned to four groups (n = 7 in each group): control (Con), type 2 diabetes (T2D), HIIT (Ex), and type 2 diabetes + HIIT (T2D + Ex). T2D was induced by a high-fat diet plus a single dose of streptozotocin (STZ). Rats in Ex and T2D + Ex groups performed 8 weeks of HIIT (running at 8-95% of Vmax, 4-10 intervals). Insulin and adiponectin levels in serum and hippocampus were measured along with hippocampal expression of insulin and adiponectin receptors, phosphorylated AMPK, dephosphorylated GSK3β, and phosphorylated tau. Homeostasis model assessment for insulin resistance (HOMA-IR), homeostasis model assessment for insulin resistance beta (HOMA-β), and quantitative insulin sensitivity check index (QUICKI) were calculated to assess insulin resistance and sensitivity. T2D decreased insulin and adiponectin levels in serum and hippocampus, as well as the hippocampal levels of insulin and adiponectin receptors and AMPK, but increased GSK3β and tau in the hippocampus. HIIT reversed diabetes-induced impairments and consequently decreased tau accumulation in the hippocampus of diabetic rats. HOMA-IR, HOMA-β, and QUICKI were improved in Ex and T2D + Ex groups. Overall, our results confirmed that T2D has undesirable effects on the levels of some Alzheimer's-related factors in the hippocampus, and HIIT could ameliorate these impairments in the hippocampus.
Collapse
Affiliation(s)
- Kayvan Khoramipour
- Physiology Research Center, Institute of Neuropharmacology and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Padideh Dehghan
- Department of Alternative Medicine, Resalat Hospital, Tehran, Iran
| | - Fattaneh Farahmand
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|