1
|
Visser A, Piskin D, Büchel D, Baumeister J. Electrocortical activity during resistance exercises in healthy young adults-a systematic review. Front Sports Act Living 2024; 6:1466776. [PMID: 39664745 PMCID: PMC11631587 DOI: 10.3389/fspor.2024.1466776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/24/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Resistance training (RT) is known to induce both peripheral and central adaptations, resulting in enhanced strength, sports performance, and health benefits. These adaptations are specific to the training stimuli. The acute cortical mechanisms of single sessions resistance exercise (RE) are not yet understood. Therefore, this review investigates the electrocortical activity during acute RE regarding the specific RE stimuli. Methods A systematic literature search was conducted across three databases, focusing on the acute electrocortical activity associated with the muscle contraction type, load, and volume of RE in healthy young adults. Results Out of an initial 1,332 hits, 19 studies were included for data synthesis. The findings from these studies show that the RE load, contraction type, and volume during RE significantly affect brain activity. The current literature exhibits methodological heterogeneity attributed to variations in study quality, differences in the location of cortical sources, the cortical outcome parameter and the use of diverse training interventions. Discussion Despite inconsistencies in the current literature, this review highlights the need to investigate time and frequency-specific characteristics when examining electrocortical activity during RE. More research is necessary to further explore the acute cortical mechanisms related to resistance exercise. Future research could improve our understanding of acute neural responses to RE and provide insights into mechanism underlying more long-term neuroplastic adaptations to RT.
Collapse
Affiliation(s)
- Anton Visser
- Exercise Science and Neuroscience Unit, Department Exercise and Health, Paderborn University, Paderborn, Germany
| | | | | | | |
Collapse
|
2
|
Da Silva-Grigoletto ME, Pereira-Monteiro MR, Aragão-Santos JC, Vasconcelos ABS, Marcos-Pardo PJ, Fortes LDS. Brain functional training: a perspective article. FRONTIERS IN AGING 2024; 5:1368878. [PMID: 38974345 PMCID: PMC11224132 DOI: 10.3389/fragi.2024.1368878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024]
Abstract
Introduction: Physical exercise (PE) positively affects the nervous system, impacting morphology and physiology. It increases brain gray and white matter, improves cerebral blood flow, and stimulates neurogenesis, synaptogenesis, and angiogenesis, promoting brain function. Although exercise already affects cognition, some training modalities place greater demands on the cognitive aspects of physical exercise, such as perceptual-motor and visual-motor training. This type of approach aims to emphasize the cognitive adaptations that occur chronically. Specifically for older people, functional training, a multi-component approach, is a promising exercise modality that stimulates functionality using multi-joint, multi-planar exercises mirroring daily activities. However, applying a greater focus on cognitive adaptations in line with the functional training proposal for maximal benefits remains underexplored. Aim: Thus, this perspective article initially explores different exercise approaches emphasizing cognitive adaptations and proposes Brain Functional Training to improve older adult's functionality. Methods: Furthermore, we explain how brain functional training can be explored to emphasize cognitive aspects based on increasing complexity to stimulate the executive function and its subdomains. Conclusion: This proposal is one alternative to combining motor and cognitive stimuli to promote autonomy and health in older people.
Collapse
Affiliation(s)
- Marzo Edir Da Silva-Grigoletto
- Department of Physical Education, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Graduate Program in Health Sciences (PPGCS), Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | | | - José Carlos Aragão-Santos
- Graduate Program in Health Sciences (PPGCS), Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Alan Bruno Silva Vasconcelos
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Department of Health Education, Federal Univesity of Sergipe, Lagarto, Sergipe, Brazil
| | | | - Leonardo de Sousa Fortes
- Associate Graduate Program of Physical Education, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
3
|
Perrey S. The potential of fNIRS, EEG, and transcranial current stimulation to probe neural mechanisms of resistance training. Front Hum Neurosci 2023; 17:1295993. [PMID: 38098763 PMCID: PMC10720034 DOI: 10.3389/fnhum.2023.1295993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Affiliation(s)
- Stéphane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| |
Collapse
|
4
|
Kujawski S, Kujawska A, Kozakiewicz M, Jakovljevic DG, Stankiewicz B, Newton JL, Kędziora-Kornatowska K, Zalewski P. Effects of Sitting Callisthenic Balance and Resistance Exercise Programs on Cognitive Function in Older Participants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14925. [PMID: 36429644 PMCID: PMC9691233 DOI: 10.3390/ijerph192214925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Exercise training programs have the potential to improve cognitive function in older subjects. However, the majority of training programs are based on aerobic modality. In the current study, the influence of 3 months programs of sitting callisthenic balance (SCB) and resistance training (RT) on cognitive functioning and the mediating role that a change in the level of neurotrophic factors and strength in older, healthy participants plays were examined. MATERIAL AND METHODS Global cognitive function was examined using MoCA, short-term memory using Digit Span and Delayed Matching to Sample, set shifting using Trial Making Test Part B, speed of processing simple visual stimuli using Simple Reaction Time, decision making using Choice Reaction Time, visual attention with Visual Attention Test (VAT), tests. Strength of lower and upper limbs, neurotrophin level (irisin, brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), neurotrophin 4/5 (NT 4/5) were examined. RESULTS Improved scores in RT vs. SCB were noted in MoCA (p = 0.02), reaction time in SRT (p = 0.02), TMT B (p = 0.03), errors committed in CRT (p = 0.04) and VAT (p = 0.02) were observed. No significant changes in the level of neurotrophic factors were observed. Changes in upper limb strength were related to changes in the number of errors committed in the SRT (p = 0.03). Lower limb strength changes explained the dynamics of the number of correct answers (p = 0.002) and errors committed (p = 0.006) in VAT. CONCLUSIONS Both SCB and RT influenced multiple cognitive domains. The RT program improved global cognitive functioning, while no improvement was noticed in the SCB group. Decision making, visual attention and global cognitive function were improved after the RT program. Set-shifting, short-term visual memory processing speed of simple visual stimuli were improved after the SCB program, while a decrease in the processing speed of simple visual stimuli was noted in the RT group. Changes in irisin were related to set-shifting and short-term memory, while in BDNF to an improvement in the processing speed of simple visual stimuli. Resistance exercise training programs could be applied to prevent age related declines of cognitive function in healthy older subjects.
Collapse
Affiliation(s)
- Sławomir Kujawski
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Świętojańska 20, 85-077 Bydgoszcz, Poland
| | - Agnieszka Kujawska
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Świętojańska 20, 85-077 Bydgoszcz, Poland
| | - Mariusz Kozakiewicz
- Department of Geriatrics, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Dębowa 3, 85-626 Bydgoszcz, Poland
| | - Djordje G. Jakovljevic
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
- Research Centre [CSELS], Institute for Health and Wellbeing, Faculty of Health and Life Sciences, Coventry University, and University Hospitals, Coventry CV1 5FB, UK
| | - Błażej Stankiewicz
- Institute of Physical Education, Kazimierz Wielki University, Jana Karola Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Julia L. Newton
- Population Health Sciences Institute, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Kornelia Kędziora-Kornatowska
- Department of Geriatrics, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Dębowa 3, 85-626 Bydgoszcz, Poland
| | - Paweł Zalewski
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Świętojańska 20, 85-077 Bydgoszcz, Poland
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Warsaw Medical University, 1b Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
5
|
New Directions in Exercise Prescription: Is There a Role for Brain-Derived Parameters Obtained by Functional Near-Infrared Spectroscopy? Brain Sci 2020; 10:brainsci10060342. [PMID: 32503207 PMCID: PMC7348779 DOI: 10.3390/brainsci10060342] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
In the literature, it is well established that regular physical exercise is a powerful strategy to promote brain health and to improve cognitive performance. However, exact knowledge about which exercise prescription would be optimal in the setting of exercise–cognition science is lacking. While there is a strong theoretical rationale for using indicators of internal load (e.g., heart rate) in exercise prescription, the most suitable parameters have yet to be determined. In this perspective article, we discuss the role of brain-derived parameters (e.g., brain activity) as valuable indicators of internal load which can be beneficial for individualizing the exercise prescription in exercise–cognition research. Therefore, we focus on the application of functional near-infrared spectroscopy (fNIRS), since this neuroimaging modality provides specific advantages, making it well suited for monitoring cortical hemodynamics as a proxy of brain activity during physical exercise.
Collapse
|
6
|
Abstract
This study aimed to investigate the fluctuations of muscle performance in the Smith machine half-squat exercise during three different phases of the menstrual cycle. Thirteen resistance-trained and eumenorrheic women volunteered to participate in the study (58.6 ± 7.8 kg, 31.1 ± 5.5 years). In a pre-experimental test, the half-squat one-repetition maximum (1RM) was measured. Body mass, tympanic temperature and urine concentration of the luteinizing hormone were estimated daily for ~30 days to determine the early follicular phase (EFP), the late follicular phase (LFP), and the mid-luteal phase (MLP) of the menstrual cycle. On the second day of each phase, performance of the Smith machine half-squats was assessed using 20, 40, 60 and 80% of one repetition maximum (1RM). In each load, force, velocity, and power output were measured during the concentric phase of the exercise by means of a rotatory encoder. The data were analyzed using one-way repeated measures ANOVA coupled with magnitude-based inferences. Overall, force, velocity and power output were very similar in all menstrual cycle phases with unclear differences in most of the pairwise comparisons and effect sizes >0.2. The results of this investigation suggest that eumenorrheic females have similar muscle strength and power performance in the Smith machine half-squat exercise during the EFP, LFP, and MLP phases of the menstrual cycle.
Collapse
|
7
|
Rahman M, Karwowski W, Fafrowicz M, Hancock PA. Neuroergonomics Applications of Electroencephalography in Physical Activities: A Systematic Review. Front Hum Neurosci 2019; 13:182. [PMID: 31214002 PMCID: PMC6558147 DOI: 10.3389/fnhum.2019.00182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/20/2019] [Indexed: 11/13/2022] Open
Abstract
Recent years have seen increased interest in neuroergonomics, which investigates the brain activities of people engaged in diverse physical and cognitive activities at work and in everyday life. The present work extends upon prior assessments of the state of this art. However, here we narrow our focus specifically to studies that use electroencephalography (EEG) to measure brain activity, correlates, and effects during physical activity. The review uses systematically selected, openly published works derived from a guided search through peer-reviewed journals and conference proceedings. Identified studies were then categorized by the type of physical activity and evaluated considering methodological and chronological aspects via statistical and content-based analyses. From the identified works (n = 110), a specific number (n = 38) focused on less mobile muscular activities, while an additional group (n = 22) featured both physical and cognitive tasks. The remainder (n = 50) investigated various physical exercises and sporting activities and thus were here identified as a miscellaneous grouping. Most of the physical activities were isometric exertions, moving parts of upper and lower limbs, or walking and cycling. These primary categories were sub-categorized based on movement patterns, the use of the event-related potentials (ERP) technique, the use of recording methods along with EEG and considering mental effects. Further information on subjects' gender, EEG recording devices, data processing, and artifact correction methods and citations was extracted. Due to the heterogeneous nature of the findings from various studies, statistical analyses were not performed. These were thus included in a descriptive fashion. Finally, contemporary research gaps were pointed out, and future research prospects to address those gaps were discussed.
Collapse
Affiliation(s)
- Mahjabeen Rahman
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Neurobiology Department, The Maloploska Center of Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Peter A Hancock
- Department of Psychology, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
8
|
|
9
|
Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training. BIOMED RESEARCH INTERNATIONAL 2015; 2015:193741. [PMID: 26543850 PMCID: PMC4620252 DOI: 10.1155/2015/193741] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/13/2015] [Accepted: 02/09/2015] [Indexed: 11/08/2022]
Abstract
Eccentric exercise is characterized by initial unfavorable effects such as subcellular muscle damage, pain, reduced fiber excitability, and initial muscle weakness. However, stretch combined with overload, as in eccentric contractions, is an effective stimulus for inducing physiological and neural adaptations to training. Eccentric exercise-induced adaptations include muscle hypertrophy, increased cortical activity, and changes in motor unit behavior, all of which contribute to improved muscle function. In this brief review, neuromuscular adaptations to different forms of exercise are reviewed, the positive training effects of eccentric exercise are presented, and the implications for training are considered.
Collapse
|