1
|
Serranilla M, Pressey JC, Woodin MA. Restoring Compromised Cl - in D2 Neurons of a Huntington's Disease Mouse Model Rescues Motor Disability. J Neurosci 2024; 44:e0215242024. [PMID: 39500579 PMCID: PMC11638812 DOI: 10.1523/jneurosci.0215-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder with no cure, characterized by significant neurodegeneration of striatal GABAergic medium spiny neurons (MSNs). Early stages of the disease are characterized by the loss of dopamine 2 receptor-expressing MSNs (D2 MSNs) followed by degeneration of dopamine 1 receptor-expressing MSNs (D1 MSNs), leading to aberrant basal ganglia signaling. While the early degeneration of D2 MSNs and impaired GABAergic transmission are well-documented, potassium chloride cotransporter 2 (KCC2), a key regulator of intracellular chloride (Cl-), and therefore GABAergic signaling, has not been characterized in D1 and D2 MSNs in HD. We aimed to investigate whether Cl- regulation was differentially altered in D1 and D2 MSNs and may contribute to the early degeneration of D2 MSNs in male and female symptomatic R6/2 mice. We used electrophysiology to record the reversal potential for GABAA receptors (E GABA), a read-out for the efficacy of Cl- regulation, in striatal D1 and D2 MSNs and their corresponding output structures. During the early symptomatic phase (P55-P65), Cl- impairments were observed in D2 MSNs in R6/2 mice, with no change in D1 MSNs. Cl- regulation was also dysfunctional in the globus pallidus externa, resulting in GABA-mediated excitation. When we overexpressed KCC2 in D2 MSNs using AAV-mediated delivery, we delayed the onset of motor impairments in R6/2 mice. We demonstrate that Cl- homeostasis is differentially altered in D1 and D2 MSNs and may contribute to the enhanced susceptibility of D2 MSNs during HD progression.
Collapse
Affiliation(s)
- Melissa Serranilla
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
2
|
Kurzbuch AR, Cooper B, Lumsdon G, Idowu N, Gedrim H, Mulholland P, Tronnier V, Kumar R, Ellenbogen JR. Bilateral deep brain stimulation (DBS) of globus pallidus internus (GPi) for the treatment of benign hereditary chorea and other childhood onset choreas: a single-center experience. Neurosurg Rev 2024; 47:875. [PMID: 39604647 DOI: 10.1007/s10143-024-03124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/09/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE Chorea is a clinical sign characterized by involuntary, rapid, unpredictable, and irregular muscle movements that can affect various parts of the body. It can be seen in various medical conditions, both neurological and systemic, of genetic and acquired etiology. Deep brain stimulation (DBS) of the globus pallidus internus (GPi) has been used to treat various types of chorea. The aim of this study was to evaluate the efficacy of GPi DBS for chorea in pediatric patients. METHODS The authors undertook a single-center retrospective study of all pediatric patients who underwent DBS in the period from July 2017 to April 2024 to identify those presenting with chorea. RESULTS Three patients with chorea underwent bilateral posteroventral GPi DBS without surgical complications. The mean age at operation was 14.2 years (range: 1.5 years), and the mean follow-up was 49 months (range: 15 months). Two of the 3 patients experienced a positive effect on chorea with an improvement in functional status. In one patient, the pre- and postop Gross Motor Function Classification System (GMFCS) score was 4, while his Burke-Fahn-Marsden Dystonia Scale (BFMDS) score improved from 102/20 pre- to 53.5/20 postop. In the other patient the GMFCS score improved from 4 preop to 3 postop. His preop BFMDS score was not available, postop it was 83/120. In the patient who did not experience a positive effect on chorea the pre- and postop GMFCS score was 4, her BFMDS score was 84.5/120 pre- and 100/120 postop. CONCLUSION Bilateral GPi DBS can be safely administered to pediatric patients with choreiform movement disorders, and it could be an effective treatment option for managing chorea in certain patients.
Collapse
Affiliation(s)
- Arthur R Kurzbuch
- Department of Neurosurgery, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK.
| | - Ben Cooper
- Department of Neurosurgery, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK
| | - Gina Lumsdon
- Department of Neurosurgery, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK
| | - Nicola Idowu
- Therapies Department, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK
| | - Helen Gedrim
- Therapies Department, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK
| | - Philipa Mulholland
- Therapies Department, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK
| | - Volker Tronnier
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Campus Luebeck, Ratzeburger Alle 160, 23562, Luebeck, Germany
| | - Ram Kumar
- Department of Neurology, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK
| | - Jonathan R Ellenbogen
- Department of Neurosurgery, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK
| |
Collapse
|
3
|
Sahu M, Ambasta RK, Das SR, Mishra MK, Shanker A, Kumar P. Harnessing Brainwave Entrainment: A Non-invasive Strategy To Alleviate Neurological Disorder Symptoms. Ageing Res Rev 2024; 101:102547. [PMID: 39419401 DOI: 10.1016/j.arr.2024.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
From 1990-2019, the burden of neurological disorders varied considerably across countries and regions. Psychiatric disorders, often emerging in early to mid-adulthood, are linked to late-life neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. Individuals with conditions such as Major Depressive Disorder, Anxiety Disorder, Schizophrenia, and Bipolar Disorder face up to four times higher risk of developing neurodegenerative disorders. Contrarily, 65 % of those with neurodegenerative conditions experience severe psychiatric symptoms during their illness. Further, the limitation of medical resources continues to make this burden a significant global and local challenge. Therefore, brainwave entrainment provides therapeutic avenues for improving the symptoms of diseases. Brainwaves are rhythmic oscillations produced either spontaneously or in response to stimuli. Key brainwave patterns include gamma, beta, alpha, theta, and delta waves, yet the underlying physiological mechanisms and the brain's ability to shift between these dynamic states remain areas for further exploration. In neurological disorders, brainwaves are often disrupted, a phenomenon termed "oscillopathy". However, distinguishing these impaired oscillations from the natural variability in brainwave activity across different regions and functional states poses significant challenges. Brainwave-mediated therapeutics represents a promising research field aimed at correcting dysfunctional oscillations. Herein, we discuss a range of non-invasive techniques such as non-invasive brain stimulation (NIBS), neurologic music therapy (NMT), gamma stimulation, and somatosensory interventions using light, sound, and visual stimuli. These approaches, with their minimal side effects and cost-effectiveness, offer potential therapeutic benefits. When integrated, they may not only help in delaying disease progression but also contribute to the development of innovative medical devices for neurological care.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Suman R Das
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, and The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
4
|
Kim SY, Lim W. Break-up and recovery of harmony between direct and indirect pathways in the basal ganglia: Huntington's disease and treatment. Cogn Neurodyn 2024; 18:2909-2924. [PMID: 39555304 PMCID: PMC11564723 DOI: 10.1007/s11571-024-10125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 11/19/2024] Open
Abstract
The basal ganglia (BG) in the brain exhibit diverse functions for motor, cognition, and emotion. Such BG functions could be made via competitive harmony between the two competing pathways, direct pathway (DP) (facilitating movement) and indirect pathway (IP) (suppressing movement). As a result of break-up of harmony between DP and IP, there appear pathological states with disorder for movement, cognition, and psychiatry. In this paper, we are concerned about the Huntington's disease (HD), which is a genetic neurodegenerative disorder causing involuntary movement and severe cognitive and psychiatric symptoms. For the HD, the number of D2 SPNs ( N D 2 ) is decreased due to degenerative loss, and hence, by decreasing x D 2 (fraction of N D 2 ), we investigate break-up of harmony between DP and IP in terms of their competition degree C d , given by the ratio of strength of DP ( S DP ) to strength of IP ( S IP ) (i.e.,C d = S DP / S IP ). In the case of HD, the IP is under-active, in contrast to the case of Parkinson's disease with over-active IP, which results in increase in C d (from the normal value). Thus, hyperkinetic dyskinesia such as chorea (involuntary jerky movement) occurs. We also investigate treatment of HD, based on optogenetics and GP ablation, by increasing strength of IP, resulting in recovery of harmony between DP and IP. Finally, we study effect of loss of healthy synapses of all the BG cells on HD. Due to loss of healthy synapses, disharmony between DP and IP increases, leading to worsen symptoms of the HD. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-024-10125-w.
Collapse
Affiliation(s)
- Sang-Yoon Kim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| | - Woochang Lim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| |
Collapse
|
5
|
Gonzalez-Baez Ardisana P, Solís-Mata JS, Carrillo-Ruiz JD. Neurosurgical therapy possibilities in treatment of Huntington disease: An update. Parkinsonism Relat Disord 2024; 125:107048. [PMID: 38959686 DOI: 10.1016/j.parkreldis.2024.107048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Huntington's disease (HD) is a hereditary condition caused by the expansion of the CAG trinucleotide in the huntingtin gene on chromosome 4, resulting in motor, cognitive, and psychiatric disorders that significantly impact patients' quality of life. Despite the lack of effective treatments for the disease, various surgical strategies have been explored to alleviate symptoms and slow its progression. METHODOLOGY A comprehensive systematic literature review was conducted, including MeSH terms, yielding only 38 articles that were categorized based on the surgical procedure. The study aimed to describe the types of surgeries performed and their efficacy in HD patients. RESULTS Deep brain stimulation (DBS) involved 41 predominantly male patients with bilateral implantation in the globus pallidus, showing a preoperative Unified Huntington's Disease Rating Scale (UHDRS) score of 60.25 ± 16.13 and a marked postoperative value of 48.54 ± 13.93 with a p < 0.018 at one year and p < 0.040 at three years. Patients experienced improvement in hyperkinesia but worsening of bradykinesia. Additionally, cell transplantation in 119 patients resulted in a lower preoperative UHDRS score of 34.61 ± 14.61 and a significant postoperative difference of 32.93 ± 15.87 (p < 0.016), respectively, in the first to third years of following. Some now, less used procedures were crucial for understanding brain function, such as pallidotomies in 3 patients, showing only a 25 % difference from their baseline. CONCLUSION Despite advancements in technology, there is still no curative treatment, only palliative options. Promising treatments like trophic factor implantation offer new prospects for the future.
Collapse
Affiliation(s)
- Patricio Gonzalez-Baez Ardisana
- Center of Research in Science of Health (CICSA), Faculty of Science of Health of Anahuac University, Huixquilucan, México State, Mexico
| | - Juan Sebastián Solís-Mata
- Center of Research in Science of Health (CICSA), Faculty of Science of Health of Anahuac University, Huixquilucan, México State, Mexico
| | - José Damián Carrillo-Ruiz
- Stereotactic and Functional Neurosurgery and Radiosurgery at Hospital General de Mexico & Research Direction at Hospital General de Mexico, México City, Mexico; Neuroscience Coordination, Psychology Faculty of Anahuac University, Huixquilucan, México State, Mexico.
| |
Collapse
|
6
|
Steinhardt J, Zittel S, Tadic V, Tronnier V, Moll C, Bäumer T, Münchau A, Rasche D, Brüggemann N. GPi/GPe borderland- a potential sweet spot for deep brain stimulation for chorea in Huntington's disease? Neurol Res Pract 2024; 6:28. [PMID: 38778367 PMCID: PMC11112842 DOI: 10.1186/s42466-024-00316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/04/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Pallidal deep brain stimulation (GPi-DBS) has been considered as an effective treatment option for medication-refractory Huntington's disease (HD). OBJECTIVES To identify stimulation-dependent effects on motor symptoms and to determine if these alterations are associated with the local impact of DBS on different pallidal parcellations. METHODS We prospectively evaluated the effects of bilateral GPi-DBS within one year in 5 HD patients. We evaluated the effects of GPi-DBS on choreatic symptoms and UHDRS. Electrode placement in the pallidum was localized, and the local impact of DBS was estimated. RESULTS The chorea subscore (p < 0.001) and UHDRS total motor score was significantly reduced postoperatively (p = 0.019). Pallidal DBS did not improve other motor symptoms. Activation of the lateral GPi/GPe was associated with improvement in choreatic symptoms (p = 0.048; r = 0.90). CONCLUSIONS Our findings indicate that stimulation of the lateral GPi has a stable effect on choreatic symptoms. The modulation of the electrical field is relevant for motor outcome.
Collapse
Affiliation(s)
- Julia Steinhardt
- Department of Neurology and Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vera Tadic
- Department of Neurology and Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Volker Tronnier
- Department of Neurosurgery, University of Lübeck, Lübeck, Germany
| | - Christian Moll
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Bäumer
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- Institute of Systems Motor Sciences, University of Lübeck, Lübeck, Germany
| | - Alexander Münchau
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- Institute of Systems Motor Sciences, University of Lübeck, Lübeck, Germany
| | - Dirk Rasche
- Department of Neurosurgery, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology and Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany.
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
7
|
Barrett MJ, Negida A, Mukhopadhyay N, Kim JK, Nawaz H, Jose J, Testa C. Optimizing Screening for Intrastriatal Interventions in Huntington's Disease Using Predictive Models. Mov Disord 2024; 39:855-862. [PMID: 38465778 PMCID: PMC11102310 DOI: 10.1002/mds.29749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Intrastriatal delivery of potential therapeutics in Huntington's disease (HD) requires sufficient caudate and putamen volumes. Currently, volumetric magnetic resonance imaging is rarely done in clinical practice, and these data are not available in large research cohorts such as Enroll-HD. OBJECTIVE The objective of this study was to investigate whether predictive models can accurately classify HD patients who exceed caudate and putamen volume thresholds required for intrastriatal therapeutic interventions. METHODS We obtained and merged data for 1374 individuals across three HD cohorts: IMAGE-HD, PREDICT-HD, and TRACK-HD/TRACK-ON. We imputed missing data for clinical variables with >72% non-missing values and used the model-building algorithm BORUTA to identify the 10 most important variables. A random forest algorithm was applied to build a predictive model for putamen volume >2500 mm3 and caudate volume >2000 mm3 bilaterally. Using the same 10 predictors, we constructed a logistic regression model with predictors significant at P < 0.05. RESULTS The random forest model with 1000 trees and minimal terminal node size of 5 resulted in 83% area under the curve (AUC). The logistic regression model retaining age, CAG repeat size, and symbol digit modalities test-correct had 85.1% AUC. A probability cutoff of 0.8 resulted in 5.4% false positive and 66.7% false negative rates. CONCLUSIONS Using easily obtainable clinical data and machine learning-identified initial predictor variables, random forest, and logistic regression models can successfully identify people with sufficient striatal volumes for inclusion cutoffs. Adopting these models in prescreening could accelerate clinical trial enrollment in HD and other neurodegenerative disorders when volume cutoffs are necessary enrollment criteria. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Matthew J. Barrett
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Ahmed Negida
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Nitai Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jin K. Kim
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Huma Nawaz
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jefin Jose
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Claudia Testa
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
El Hajj R, Al Sagheer T, Ballout N. Optogenetics in chronic neurodegenerative diseases, controlling the brain with light: A systematic review. J Neurosci Res 2024; 102:e25321. [PMID: 38588013 DOI: 10.1002/jnr.25321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
Neurodegenerative diseases are progressive disorders characterized by synaptic loss and neuronal death. Optogenetics combines optical and genetic methods to control the activity of specific cell types. The efficacy of this approach in neurodegenerative diseases has been investigated in many reviews, however, none of them tackled it systematically. Our study aimed to review systematically the findings of optogenetics and its potential applications in animal models of chronic neurodegenerative diseases and compare it with deep brain stimulation and designer receptors exclusively activated by designer drugs techniques. The search strategy was performed based on the PRISMA guidelines and the risk of bias was assessed following the Systematic Review Centre for Laboratory Animal Experimentation tool. A total of 247 articles were found, of which 53 were suitable for the qualitative analysis. Our data revealed that optogenetic manipulation of distinct neurons in the brain is efficient in rescuing memory impairment, alleviating neuroinflammation, and reducing plaque pathology in Alzheimer's disease. Similarly, this technique shows an advanced understanding of the contribution of various neurons involved in the basal ganglia pathways with Parkinson's disease motor symptoms and pathology. However, the optogenetic application using animal models of Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis was limited. Optogenetics is a promising technique that enhanced our knowledge in the research of neurodegenerative diseases and addressed potential therapeutic solutions for managing these diseases' symptoms and delaying their progression. Nevertheless, advanced investigations should be considered to improve optogenetic tools' efficacy and safety to pave the way for their translatability to the clinic.
Collapse
Affiliation(s)
- Rojine El Hajj
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Tareq Al Sagheer
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Nissrine Ballout
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
9
|
Jiang A, Handley RR, Lehnert K, Snell RG. From Pathogenesis to Therapeutics: A Review of 150 Years of Huntington's Disease Research. Int J Mol Sci 2023; 24:13021. [PMID: 37629202 PMCID: PMC10455900 DOI: 10.3390/ijms241613021] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative genetic disorder caused by an expanded polyglutamine-coding (CAG) trinucleotide repeat in the huntingtin (HTT) gene. HD behaves as a highly penetrant dominant disorder likely acting through a toxic gain of function by the mutant huntingtin protein. Widespread cellular degeneration of the medium spiny neurons of the caudate nucleus and putamen are responsible for the onset of symptomology that encompasses motor, cognitive, and behavioural abnormalities. Over the past 150 years of HD research since George Huntington published his description, a plethora of pathogenic mechanisms have been proposed with key themes including excitotoxicity, dopaminergic imbalance, mitochondrial dysfunction, metabolic defects, disruption of proteostasis, transcriptional dysregulation, and neuroinflammation. Despite the identification and characterisation of the causative gene and mutation and significant advances in our understanding of the cellular pathology in recent years, a disease-modifying intervention has not yet been clinically approved. This review includes an overview of Huntington's disease, from its genetic aetiology to clinical presentation and its pathogenic manifestation. An updated view of molecular mechanisms and the latest therapeutic developments will also be discussed.
Collapse
Affiliation(s)
- Andrew Jiang
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand; (R.R.H.); (K.L.); (R.G.S.)
| | | | | | | |
Collapse
|
10
|
Martinez‐Horta S, Aracil‐Bolaños I, Perez‐Perez J, Perez‐Carasol L, Garcia‐Cornet J, Campolongo A, Aibar‐Duran JA, Rodriguez‐Rodriguez R, Pascual‐Sedano B, Kulisevsky J. Theta/Alpha Band Suppression and Clinical Outcomes During Globus Pallidus Internus Deep Brain Stimulation in Huntington's Disease. Mov Disord Clin Pract 2023; 10:518-520. [PMID: 36949795 PMCID: PMC10026271 DOI: 10.1002/mdc3.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/06/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Saul Martinez‐Horta
- Movement Disorders Unit, Department of NeurologyHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red—Enfermedades NeurodegenerativasMadridSpain
| | - Ignacio Aracil‐Bolaños
- Movement Disorders Unit, Department of NeurologyHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red—Enfermedades NeurodegenerativasMadridSpain
| | - Jesús Perez‐Perez
- Movement Disorders Unit, Department of NeurologyHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red—Enfermedades NeurodegenerativasMadridSpain
| | - Laura Perez‐Carasol
- Movement Disorders Unit, Department of NeurologyHospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Julia Garcia‐Cornet
- Movement Disorders Unit, Department of NeurologyHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
| | - Antonia Campolongo
- Movement Disorders Unit, Department of NeurologyHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red—Enfermedades NeurodegenerativasMadridSpain
| | | | | | - Berta Pascual‐Sedano
- Movement Disorders Unit, Department of NeurologyHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red—Enfermedades NeurodegenerativasMadridSpain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Department of NeurologyHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red—Enfermedades NeurodegenerativasMadridSpain
| |
Collapse
|
11
|
Williams D. Basal ganglia functional connectivity network analysis does not support the 'noisy signal' hypothesis of Parkinson's disease. Brain Commun 2023; 5:fcad123. [PMID: 37124947 PMCID: PMC10139445 DOI: 10.1093/braincomms/fcad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
The 'noisy signal' hypothesis of basal ganglia dysfunction in Parkinson's disease (PD) suggests that major motor symptoms of the disorder are caused by the development of abnormal basal ganglia activity patterns resulting in the propagation of 'noisy' signals to target systems. While such abnormal activity patterns might be useful biomarkers for the development of therapeutic interventions, correlation between specific changes in activity and PD symptoms has been inconsistently demonstrated, and raises questions concerning the accuracy of the hypothesis. Here, we tested this hypothesis by considering three nodes of the basal ganglia network, the subthalamus, globus pallidus interna, and cortex during self-paced and cued movements in patients with PD. Interactions between these regions were analyzed using measures that assess both linear and non-linear relationships. Marked changes in the network are observed with dopamine state. Specifically, we detected functional disconnection of the basal ganglia from the cortex and higher network variability in untreated PD, but various patterns of directed functional connectivity with lower network variability in treated PD. When we examine the system output, significant correlation is observed between variability in the cortico-basal ganglia network and muscle activity variability but only in the treated state. Rather than supporting a role of the basal ganglia in the transmission of noisy signals in patients with PD, these findings suggest that cortico-basal ganglia network interactions by fault or design, in the treated Parkinsonian state, are actually associated with improved cortical network output variability.
Collapse
Affiliation(s)
- David Williams
- Correspondence to: Dr David Williams. Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Khalifa Bin Zayed Street, Tawam, Next to Tawam Hospital, Al Ain, PO Box 15551, United Arab Emirates. E-mail:
| |
Collapse
|
12
|
He W, Li C, Dong H, Shao L, Yin B, Li D, Ye L, Hu P, Zhang C, Yi W. Pallidus Stimulation for Chorea-Acanthocytosis: A Systematic Review and Meta-Analysis of Individual Data. J Mov Disord 2022; 15:197-205. [PMID: 35880382 PMCID: PMC9536914 DOI: 10.14802/jmd.22003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
A significant proportion of patients with chorea-acanthocytosis (ChAc) fail to respond to standard therapies. Recent evidence suggests that globus pallidus internus (GPi) deep brain stimulation (DBS) is a promising treatment option; however, reports are few and limited by sample sizes. We conducted a systematic literature review to evaluate the clinical outcome of GPi-DBS for ChAc. PubMed, Embase, and Cochrane Library databases were searched for relevant articles published before August 2021. The improvement of multiple motor and nonmotor symptoms was qualitatively presented. Improvements in the Unified Huntington’s Disease Rating Scale motor score (UHDRS-MS) were also analyzed during different follow-up periods. A multivariate linear regression analysis was conducted to identify potential predictors of clinical outcomes. Twenty articles, including 27 patients, were eligible. Ninety-six percent of patients with oromandibular dystonia reported significant improvement. GPi-DBS significantly improved the UHDRS-motor score at < 6 months (p < 0.001) and ≥ 6 months (p < 0.001). The UHDRS-motor score improvement rate was over 25% in 75% (15/20 cases) of patients at long-term follow-up (≥ 6 months). The multiple linear regression analysis showed that sex, age at onset, course of disease, and preoperative movement score had no linear relationship with motor improvement at long-term follow-up (p > 0.05). GPi-DBS is an effective and safe treatment in most patients with ChAc, but no reliable predictor of efficacy has been found. Oromandibular dystonia-dominant patients might be the best candidates for GPi-DBS.
Collapse
Affiliation(s)
- Weibin He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chenhui Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongjuan Dong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lingmin Shao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Yin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dianyou Li
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ping Hu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chencheng Zhang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Yi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Ferguson MW, Kennedy CJ, Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A. Current and Possible Future Therapeutic Options for Huntington's Disease. J Cent Nerv Syst Dis 2022; 14:11795735221092517. [PMID: 35615642 PMCID: PMC9125092 DOI: 10.1177/11795735221092517] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is an autosomal neurodegenerative disease that is characterized by an excessive number of CAG trinucleotide repeats within the huntingtin gene (HTT). HD patients can present with a variety of symptoms including chorea, behavioural and psychiatric abnormalities and cognitive decline. Each patient has a unique combination of symptoms, and although these can be managed using a range of medications and non-drug treatments there is currently no cure for the disease. Current therapies prescribed for HD can be categorized by the symptom they treat. These categories include chorea medication, antipsychotic medication, antidepressants, mood stabilizing medication as well as non-drug therapies. Fortunately, there are also many new HD therapeutics currently undergoing clinical trials that target the disease at its origin; lowering the levels of mutant huntingtin protein (mHTT). Currently, much attention is being directed to antisense oligonucleotide (ASO) therapies, which bind to pre-RNA or mRNA and can alter protein expression via RNA degradation, blocking translation or splice modulation. Other potential therapies in clinical development include RNA interference (RNAi) therapies, RNA targeting small molecule therapies, stem cell therapies, antibody therapies, non-RNA targeting small molecule therapies and neuroinflammation targeted therapies. Potential therapies in pre-clinical development include Zinc-Finger Protein (ZFP) therapies, transcription activator-like effector nuclease (TALEN) therapies and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) therapies. This comprehensive review aims to discuss the efficacy of current HD treatments and explore the clinical trial progress of emerging potential HD therapeutics.
Collapse
Affiliation(s)
- Mackenzie W. Ferguson
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Connor J. Kennedy
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H. Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
14
|
Capato TTC, Cury RG, Tornai J, Fonoff ET, Guimarães R, Jacobsen MT, Haddad MS, Barbosa ER. Use of Objective Outcomes Measures to Verify the Effects of ICF-Based Gait Treatment in Huntington's Disease Patient on Globus Pallidus Deep Brain Stimulation: A Case Report. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:849333. [PMID: 36189041 PMCID: PMC9397791 DOI: 10.3389/fresc.2022.849333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022]
Abstract
In advanced stages of in Huntington's disease (HD) gait impairments and severe chorea are usually medication-refractory. The long-term effects on gait in HD of physiotherapy ICF-based management post- globus pallidus deep brain stimulation (GPi DBS) are not well-established. Physiotherapy has been recognized as an essential element in HD treatment. Here, we present a case report of a 56-year-old woman with HD on the advanced stage and severe chorea medication-refractory after GPi-DBS. We performed multidisciplinary motor assessments ICF-based to identify the disability at clinical and home-setting, including environmental and personal factors before and after GPi-DBS surgery and at 11-time points follow-up. The surgery was very successful and directly post GPi-DBS, there were a significant improvement in chorea and a substantial decrease in medication dose. A framework ICF- based physiotherapy protocol with external cues was developed to improve gait was delivered post-surgery and was continued three times/week during 18-months. Physiotherapy sessions consisted of a personalized protocol of exercises with functional movements, balance, and gait training with external cues. Improvements in gait were observed in 3-months post-intervention and were more expressive in 6-months follow-up. Our patient improved substantially HD motor symptoms and her quality of life after GPi-DBS intervention and a physiotherapy program ICF-based. The objective outcomes measures used to assess gait have served as endpoints to assessing the patient's motor profile during the pre-operative period. Assessments were helpful to verify the efficacy of the multidisciplinary intervention in long-term.ConclusionPeriodically assessing function and disability using outcome improvements may support clinicians' decisions about DBS, medication adjustments and guide physiotherapists to personalize the ICF-based intervention.
Collapse
Affiliation(s)
- Tamine T. C. Capato
- Department of Neurology, Movement Disorders Center, University of São Paulo, São Paulo, Brazil
- Radboud University Medical Centre, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
- Department of Neurology, Nijmegen, Netherlands
- Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, Netherlands
- *Correspondence: Tamine T. C. Capato
| | - Rubens G. Cury
- Department of Neurology, Movement Disorders Center, University of São Paulo, São Paulo, Brazil
| | - Juliana Tornai
- PHYSICAL Parkinson's Disease and Movement Disorders Rehabilitation Center, São Paulo, Brazil
| | - Erich T. Fonoff
- Department of Neurology, Movement Disorders Center, University of São Paulo, São Paulo, Brazil
| | - Renata Guimarães
- PHYSICAL Parkinson's Disease and Movement Disorders Rehabilitation Center, São Paulo, Brazil
| | - Manoel T. Jacobsen
- Neurosurgery Division, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mônica S. Haddad
- Radboud University Medical Centre, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
- Department of Neurology, Nijmegen, Netherlands
- Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, Netherlands
| | - Egberto R. Barbosa
- Radboud University Medical Centre, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
- Department of Neurology, Nijmegen, Netherlands
- Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, Netherlands
| |
Collapse
|
15
|
Serranilla M, Woodin MA. Striatal Chloride Dysregulation and Impaired GABAergic Signaling Due to Cation-Chloride Cotransporter Dysfunction in Huntington’s Disease. Front Cell Neurosci 2022; 15:817013. [PMID: 35095429 PMCID: PMC8795088 DOI: 10.3389/fncel.2021.817013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Intracellular chloride (Cl–) levels in mature neurons must be tightly regulated for the maintenance of fast synaptic inhibition. In the mature central nervous system (CNS), synaptic inhibition is primarily mediated by gamma-amino butyric acid (GABA), which binds to Cl– permeable GABAA receptors (GABAARs). The intracellular Cl– concentration is primarily maintained by the antagonistic actions of two cation-chloride cotransporters (CCCs): Cl–-importing Na+-K+-Cl– co-transporter-1 (NKCC1) and Cl– -exporting K+-Cl– co-transporter-2 (KCC2). In mature neurons in the healthy brain, KCC2 expression is higher than NKCC1, leading to lower levels of intracellular Cl–, and Cl– influx upon GABAAR activation. However, in neurons of the immature brain or in neurological disorders such as epilepsy and traumatic brain injury, impaired KCC2 function and/or enhanced NKCC1 expression lead to intracellular Cl– accumulation and GABA-mediated excitation. In Huntington’s disease (HD), KCC2- and NKCC1-mediated Cl–-regulation are also altered, which leads to GABA-mediated excitation and contributes to the development of cognitive and motor impairments. This review summarizes the role of Cl– (dys)regulation in the healthy and HD brain, with a focus on the basal ganglia (BG) circuitry and CCCs as potential therapeutic targets in the treatment of HD.
Collapse
|
16
|
Deep brain stimulation for chorea-acanthocytosis: a systematic review. Neurosurg Rev 2022; 45:1861-1871. [PMID: 35020105 DOI: 10.1007/s10143-022-01735-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 02/05/2023]
Abstract
Deep brain stimulation (DBS) is a reversible treatment for chorea-acanthocytosis (ChAc). Its safety and efficacy remain elusive due to the low prevalence of ChAc. We aimed to investigate the safety and efficacy of DBS for ChAc by systematically reviewing literature through PubMed and EMBASE. Inclusion criteria were reports on the efficacy or safety of DBS for ChAc and English language articles, and exclusion criteria were other movement disorders, non-human subjects, and studies without original data. Most studies were published as case reports, and we therefore pooled these cases in one cohort. Twenty studies with 34 patients were included. The mean age of symptom onset was 29.3 years (range, 17-48). The median follow-up was 12 months (range, 2-84). Twenty-nine patients underwent GPi-DBS, two received STN-DBS, and one underwent Vop-DBS. Electrodes were implanted into the ventralis oralis complex of the thalamus and the pallidal in two patients. Symptoms seemed to be easier relieved in chorea (88.5%) and dystonia (76.9%) but dysarthria of most patients (85.7%) was no response after DBS. The Unified Huntington's Disease Rating Scale-Motor Score was used to assess the efficacy of DBS in 25 patients; the mean score decreased from 43.2 to 22.3 and the median improvement rate was 46.7%. Of 24 patients with data on adverse events, complications occurred in 9 patients (37.5%; mostly transient and mild events). DBS is a promising treatment for ChAc with satisfactory efficacy and safety based on the review. Pallidal and thalamic DBS have been applied in ChAc; GPi-DBS seems to be more widely used.
Collapse
|
17
|
Kim C, Yousefian-Jazi A, Choi SH, Chang I, Lee J, Ryu H. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington's Disease. Int J Mol Sci 2021; 22:12499. [PMID: 34830381 PMCID: PMC8617801 DOI: 10.3390/ijms222212499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of CAG trinucleotide repeat located in the exon 1 of Huntingtin (HTT) gene in human chromosome 4. The HTT protein is ubiquitously expressed in the brain. Specifically, mutant HTT (mHTT) protein-mediated toxicity leads to a dramatic degeneration of the striatum among many regions of the brain. HD symptoms exhibit a major involuntary movement followed by cognitive and psychiatric dysfunctions. In this review, we address the conventional role of wild type HTT (wtHTT) and how mHTT protein disrupts the function of medium spiny neurons (MSNs). We also discuss how mHTT modulates epigenetic modifications and transcriptional pathways in MSNs. In addition, we define how non-cell autonomous pathways lead to damage and death of MSNs under HD pathological conditions. Lastly, we overview therapeutic approaches for HD. Together, understanding of precise neuropathological mechanisms of HD may improve therapeutic approaches to treat the onset and progression of HD.
Collapse
Affiliation(s)
- Chaebin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Ali Yousefian-Jazi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Seung-Hye Choi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Inyoung Chang
- Department of Biology, Boston University, Boston, MA 02215, USA;
| | - Junghee Lee
- Boston University Alzheimer’s Disease Research Center, Boston University, Boston, MA 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| |
Collapse
|
18
|
Tsanov M. Neurons under genetic control: What are the next steps towards the treatment of movement disorders? Comput Struct Biotechnol J 2020; 18:3577-3589. [PMID: 33304456 PMCID: PMC7708864 DOI: 10.1016/j.csbj.2020.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/23/2022] Open
Abstract
Since the implementation of deep-brain stimulation as a therapy for movement disorders, there has been little progress in the clinical application of novel alternative treatments. Movement disorders are a group of neurological conditions, which are characterised with impairment of voluntary movement and share similar anatomical loci across the basal ganglia. The focus of the current review is on Parkinson's disease and Huntington's disease as they are the most investigated hypokinetic and hyperkinetic movement disorders, respectively. The last decade has seen enormous advances in the development of laboratory techniques that control neuronal activity. The two major ways to genetically control the neuronal function are: 1) expression of light-sensitive proteins that allow for the optogenetic control of the neuronal spiking and 2) expression or suppression of genes that control the transcription and translation of proteins. However, the translation of these methodologies from the laboratories into the clinics still faces significant challenges. The article summarizes the latest developments in optogenetics and gene therapy. Here, I compare the physiological mechanisms of established electrical deep brain stimulation to the experimental optogenetical deep brain stimulation. I compare also the advantages of DNA- and RNA-based techniques for gene therapy of familial movement disorders. I highlight the benefits and the major issues of each technique and I discuss the translational potential and clinical feasibility of optogenetic stimulation and gene expression control. The review emphasises recent technical breakthroughs that could initiate a notable leap in the treatment of movement disorders.
Collapse
Affiliation(s)
- Marian Tsanov
- School of Medicine, University College Dublin, Ireland
| |
Collapse
|
19
|
Does pallidal neuromodulation influence cognitive decline in Huntington's disease? J Neurol 2020; 268:613-622. [PMID: 32886253 DOI: 10.1007/s00415-020-10206-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder associated with motor, psychiatric and cognitive deterioration over time. To date, Continuous Electrical Neuromodulation (CEN) of the globus pallidus internus (GPi) has been reported to improve chorea but little is known about cognitive progression in these patients. We propose to examine CEN impact on expected cognitive decline throughout long-term neuropsychological assessment of a cohort of HD patients. METHOD 13 consecutive HD patients underwent GPi neuromodulation between January 2008 and February 2019. Over a 5-year follow-up period, they received systematic pre- and post-operative assessment according to the existing protocol in our unit. The main outcome measure was the total score obtained on the Mattis Dementia Rating Scale (MDRS) as an indicator of global cognitive function. RESULTS Chorea decreased in all patients postoperatively with a mean improvement of 56% despite disease progression over time, according to previous studies. Moreover we found that the global cognitive profile of HD patients treated with CEN was stable during the first 3 years of treatment. CONCLUSION We report an unexpected positive influence of GPi continuous electrical neuromodulation on the progression of global cognitive functioning in operated HD patients. This is the most important group of patients treated with this method to our knowledge whatever the sample size remains small. This result provides promising evidence of GPi-CEN efficacy not only in reducing chorea, but also in delaying cognitive decline in HD patients operated at an early stage of the disease.
Collapse
|
20
|
Mulcahy G, Atwood B, Kuznetsov A. Basal ganglia role in learning rewarded actions and executing previously learned choices: Healthy and diseased states. PLoS One 2020; 15:e0228081. [PMID: 32040519 PMCID: PMC7010262 DOI: 10.1371/journal.pone.0228081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 01/07/2020] [Indexed: 01/06/2023] Open
Abstract
The basal ganglia (BG) is a collection of nuclei located deep beneath the cerebral cortex that is involved in learning and selection of rewarded actions. Here, we analyzed BG mechanisms that enable these functions. We implemented a rate model of a BG-thalamo-cortical loop and simulated its performance in a standard action selection task. We have shown that potentiation of corticostriatal synapses enables learning of a rewarded option. However, these synapses became redundant later as direct connections between prefrontal and premotor cortices (PFC-PMC) were potentiated by Hebbian learning. After we switched the reward to the previously unrewarded option (reversal), the BG was again responsible for switching to the new option. Due to the potentiated direct cortical connections, the system was biased to the previously rewarded choice, and establishing the new choice required a greater number of trials. Guided by physiological research, we then modified our model to reproduce pathological states of mild Parkinson's and Huntington's diseases. We found that in the Parkinsonian state PMC activity levels become extremely variable, which is caused by oscillations arising in the BG-thalamo-cortical loop. The model reproduced severe impairment of learning and predicted that this is caused by these oscillations as well as a reduced reward prediction signal. In the Huntington state, the potentiation of the PFC-PMC connections produced better learning, but altered BG output disrupted expression of the rewarded choices. This resulted in random switching between rewarded and unrewarded choices resembling an exploratory phase that never ended. Along with other computational studies, our results further reconcile the apparent contradiction between the critical involvement of the BG in execution of previously learned actions and yet no impairment of these actions after BG output is ablated by lesions or deep brain stimulation. We predict that the cortico-BG-thalamo-cortical loop conforms to previously learned choice in healthy conditions, but impedes those choices in disease states.
Collapse
Affiliation(s)
- Garrett Mulcahy
- Department of Mathematics, Purdue University, West Lafayette, Indiana, United States of America
| | - Brady Atwood
- Departments of Psychiatry and Pharmacology & Toxicology, IUSM, Indianapolis, Indiana, United States of America
- Indiana Alcohol Research Center, IUSM, Indianapolis, Indiana, United States of America
| | - Alexey Kuznetsov
- Indiana Alcohol Research Center, IUSM, Indianapolis, Indiana, United States of America
- Department of Mathematical Sciences, IUPUI, Indianapolis, Indiana, United States of America
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW This article provides an overview of the approach to chorea in clinical practice, beginning with a discussion of the phenomenologic features of chorea and how to differentiate it from other movement disorders. The diagnostic approach, clinical features of important acquired and genetic choreas, and therapeutic principles are also discussed. Practical clinical points and caveats are included. RECENT FINDINGS C9orf72 disease is the most common Huntington disease phenocopy, according to studies in the European population. Anti-IgLON5 disease can present with chorea. The role of immunotherapies in Sydenham chorea has increased, and further clinical studies may be useful. Benign hereditary chorea is a syndrome or phenotype due to mutations in several genes, including NKX2-1, ADCY5, GNAO1, and PDE10A. New-generation presynaptic dopamine-depleting agents provide more options for symptomatic treatment of chorea with fewer adverse effects. Deep brain stimulation has been performed in several choreic disorders, but features other than chorea and the neurodegenerative nature should be taken into consideration. Studies on genetic interventions for Huntington disease are ongoing. SUMMARY Clinical features remain crucial in guiding the differential diagnosis and appropriate investigations in chorea. Given the complexity of most choreic disorders, treating only the chorea is not sufficient. A comprehensive and multidisciplinary approach is required.
Collapse
|
22
|
Cacciola A, Milardi D, Bertino S, Basile GA, Calamuneri A, Chillemi G, Rizzo G, Anastasi G, Quartarone A. Structural connectivity-based topography of the human globus pallidus: Implications for therapeutic targeting in movement disorders. Mov Disord 2019; 34:987-996. [PMID: 31077436 DOI: 10.1002/mds.27712] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/31/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Understanding the topographical organization of the cortico-basal ganglia circuitry is of pivotal importance because of the spreading of techniques such as DBS and, more recently, MR-guided focused ultrasound for the treatment of movement disorders. A growing body of evidence has described both direct cortico- and dento-pallidal connections, although the topographical organization in vivo of these pathways in the human brain has never been reported. OBJECTIVE To investigate the topographical organization of cortico- and dento-pallidal pathways by means of diffusion MRI tractography and connectivity based parcellation. METHODS High-quality data from 100 healthy subjects from the Human Connectome Project repository were utilized. Constrained spherical deconvolution-based tractography was used to reconstruct structural cortico- and dento-pallidal connectivity. Connectivity-based parcellation was performed with a hypothesis-driven approach at three different levels: functional regions (limbic, associative, sensorimotor, and other), lobes, and gyral subareas. RESULTS External globus pallidus segregated into a ventral associative cluster, a dorsal sensorimotor cluster, and a caudal "other" cluster on the base of its cortical connectivity. Dento-pallidal connections clustered only in the internal globus pallidus, where also associative and sensorimotor clusters were identified. Lobar parcellation revealed the presence in the external globus pallidus of dissociable clusters for each cortical lobe (frontal, parietal, temporal, and occipital), whereas in internal globus pallidus only frontal and parietal clusters were found out. CONCLUSION We mapped the topographical organization of both internal and external globus pallidus according to cortical and cerebellar connections. These anatomical data could be useful in DBS, radiosurgery and MR-guided focused ultrasound targeting for treating motor and nonmotor symptoms in movement disorders. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Salvatore Bertino
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gianpaolo Antonio Basile
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | | | - Giuseppina Rizzo
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giuseppe Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
23
|
Schönfeld LM, Wojtecki L. Beyond Emotions: Oscillations of the Amygdala and Their Implications for Electrical Neuromodulation. Front Neurosci 2019; 13:366. [PMID: 31057358 PMCID: PMC6482269 DOI: 10.3389/fnins.2019.00366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/01/2019] [Indexed: 01/18/2023] Open
Abstract
The amygdala is a structure involved in emotions, fear, learning and memory and is highly interconnected with other brain regions, for example the motor cortex and the basal ganglia that are often targets of treatments involving electrical stimulation. Deep brain stimulation of the basal ganglia is successfully used to treat movement disorders, but can carry along non-motor side effects. The origin of these non-motor side effects is not fully understood yet, but might be altered oscillatory communication between specific motor areas and the amygdala. Oscillations in various frequency bands have been detected in the amygdala during cognitive and emotional tasks, which can couple with oscillations in cortical regions or the hippocampus. However, data on oscillatory coupling between the amygdala and motor areas are still lacking. This review provides a summary of oscillation frequencies measured in the amygdala and their possible functional relevance in different species, followed by evidence for connectivity between the amygdala and motor areas, such as the basal ganglia and the motor cortex. We hypothesize that the amygdala could communicate with motor areas through coherence of low frequency bands in the theta-alpha range. Furthermore, we discuss a potential role of the amygdala in therapeutic approaches based on electrical stimulation.
Collapse
Affiliation(s)
- Lisa-Maria Schönfeld
- Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lars Wojtecki
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Neurology and Neurorehabilitation, Hospital zum Heiligen Geist, Kempen, Germany
| |
Collapse
|
24
|
Jakobs M, Fomenko A, Lozano AM, Kiening KL. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation-a systematic review on established indications and outlook on future developments. EMBO Mol Med 2019; 11:e9575. [PMID: 30862663 PMCID: PMC6460356 DOI: 10.15252/emmm.201809575] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/23/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) has been successfully used to treat movement disorders, such as Parkinson's disease, for more than 25 years and heralded the advent of electrical neuromodulation to treat diseases with dysregulated neuronal circuits. DBS is now superseding ablative techniques, such as stereotactic radiofrequency lesions. While serendipity has played a role in developing DBS as a therapy, research during the past two decades has shown that electrical neuromodulation is far more than a functional lesion that can be switched on and off. This understanding broadens the field to enable new types of stimulation, clinical indications, and research. This review highlights the complex effects of DBS from the single cell to the neuronal network. Specifically, we examine the electrical, cellular, molecular, and neurochemical mechanisms of DBS as applied to Parkinson's disease and other emerging applications.
Collapse
Affiliation(s)
- Martin Jakobs
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Anton Fomenko
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Karl L Kiening
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
25
|
Tsui C, Koss K, Churchward MA, Todd KG. Biomaterials and glia: Progress on designs to modulate neuroinflammation. Acta Biomater 2019; 83:13-28. [PMID: 30414483 DOI: 10.1016/j.actbio.2018.11.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/05/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023]
Abstract
Microglia are multi-functional cells that play a vital role in establishing and maintaining the function of the nervous system and determining the fate of neurons following injury or neuropathology. The roles of microglia are diverse and essential to the capacity of the nervous system to recover from injury, however sustained inflammation can limit recovery and drive chronic disease processes such as neurodegenerative disorders. When assessing implantable therapeutic devices in the central nervous system, an improved lifetime of the implant is considered achievable through the attenuation of microglial inflammation. Consequently, there is a tremendous underexplored potential in biomaterial and engineered design to modulate neuroinflammation for therapeutic benefit. Several strategies for improving device compatibility reviewed here include: biocompatible coatings, improved designs in finer and flexible shapes to reduce tissue shear-related scarring, and loading of anti-inflammatory drugs. Studies about microglial cell cultures in 3D hydrogels and nanoscaffolds to assess various injuries and disorders are also discussed. A variety of other microglia-targeting treatments are also reviewed, including nanoparticulate systems, cellular backpacks, and gold plinths, with the intention of delivering anti-inflammatory drugs by targeting the phagocytic nature of microglia. Overall, this review highlights recent advances in biomaterials targeting microglia and inflammatory function with the potential for improving implant rejection and biocompatibility studies. STATEMENT OF SIGNIFICANCE: Microglia are the resident immune cells of the central nervous system, and thus play a central role in the neuroinflammatory response against conditions than span acute injuries, neuropsychiatric disorders, and neurodegenerative disorders. This review article presents a summary of biomaterials research that target microglia and other glial cells in order to attenuate neuroinflammation, including but not limited to: design of mechanically compliant and biocompatible stimulation electrodes, hydrogels for high-throughput 3D modelling of nervous tissue, and uptake of nanoparticle drug delivery systems. The goal of this paper is to identify strengths and gaps in the relevant literature, and to promote further consideration of microglia behaviour and neuroinflammation in biomaterial design.
Collapse
Affiliation(s)
- C Tsui
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - K Koss
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - M A Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - K G Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
26
|
Testa CM, Jankovic J. Huntington disease: A quarter century of progress since the gene discovery. J Neurol Sci 2019; 396:52-68. [DOI: 10.1016/j.jns.2018.09.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 01/21/2023]
|
27
|
Abstract
In this edition of the Huntington's Disease Clinical Trials Corner we expand on the HD-DBS and on the TRIHEP3 trials, and we list all currently registered and ongoing clinical trials in Huntington's disease.
Collapse
Affiliation(s)
- Filipe B. Rodrigues
- UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, Lisbon, Portugal
| | - Joaquim J. Ferreira
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, Lisbon, Portugal
- CNS - Campus Neurológico Sénior, Torres Vedras, Portugal
| | - Edward J. Wild
- UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
28
|
Abstract
The 25 years since the identification of the gene responsible for Huntington disease (HD) have stood witness to profound discoveries about the nature of the disease and its pathogenesis. Despite this progress, however, the development of disease-modifying therapies has thus far been slow. Preclinical validation of the therapeutic potential of disrupted pathways in HD has led to the advancement of pharmacological agents, both novel and repurposed, for clinical evaluation. The most promising therapeutic approaches include huntingtin (HTT) lowering and modification as well as modulation of neuroinflammation and synaptic transmission. With clinical trials for many of these approaches imminent or currently ongoing, the coming years are promising not only for HD but also for more prevalent neurodegenerative disorders, such as Alzheimer and Parkinson disease, in which many of these pathways have been similarly implicated.
Collapse
|
29
|
Simmons DA. Modulating Neurotrophin Receptor Signaling as a Therapeutic Strategy for Huntington's Disease. J Huntingtons Dis 2018; 6:303-325. [PMID: 29254102 PMCID: PMC5757655 DOI: 10.3233/jhd-170275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG repeat expansions in the IT15 gene which encodes the huntingtin (HTT) protein. Currently, no treatments capable of preventing or slowing disease progression exist. Disease modifying therapeutics for HD would be expected to target a comprehensive set of degenerative processes given the diverse mechanisms contributing to HD pathogenesis including neuroinflammation, excitotoxicity, and transcription dysregulation. A major contributor to HD-related degeneration is mutant HTT-induced loss of neurotrophic support. Thus, neurotrophin (NT) receptors have emerged as therapeutic targets in HD. The considerable overlap between NT signaling networks and those dysregulated by mutant HTT provides strong theoretical support for this approach. This review will focus on the contributions of disrupted NT signaling in HD-related neurodegeneration and how targeting NT receptors to augment pro-survival signaling and/or to inhibit degenerative signaling may combat HD pathologies. Therapeutic strategies involving NT delivery, peptidomimetics, and the targeting of specific NT receptors (e.g., Trks or p75NTR), particularly with small molecule ligands, are discussed.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
30
|
Evers MM, Miniarikova J, Juhas S, Vallès A, Bohuslavova B, Juhasova J, Skalnikova HK, Vodicka P, Valekova I, Brouwers C, Blits B, Lubelski J, Kovarova H, Ellederova Z, van Deventer SJ, Petry H, Motlik J, Konstantinova P. AAV5-miHTT Gene Therapy Demonstrates Broad Distribution and Strong Human Mutant Huntingtin Lowering in a Huntington's Disease Minipig Model. Mol Ther 2018; 26:2163-2177. [PMID: 30007561 PMCID: PMC6127509 DOI: 10.1016/j.ymthe.2018.06.021] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Huntington’s disease (HD) is a fatal neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin gene. Previously, we showed strong huntingtin reduction and prevention of neuronal dysfunction in HD rodents using an engineered microRNA targeting human huntingtin, delivered via adeno-associated virus (AAV) serotype 5 vector with a transgene encoding an engineered miRNA against HTT mRNA (AAV5-miHTT). One of the challenges of rodents as a model of neurodegenerative diseases is their relatively small brain, making successful translation to the HD patient difficult. This is particularly relevant for gene therapy approaches, where distribution achieved upon local administration into the parenchyma is likely dependent on brain size and structure. Here, we aimed to demonstrate the translation of huntingtin-lowering gene therapy to a large-animal brain. We investigated the feasibility, efficacy, and tolerability of one-time intracranial administration of AAV5-miHTT in the transgenic HD (tgHD) minipig model. We detected widespread dose-dependent distribution of AAV5-miHTT throughout the tgHD minipig brain that correlated with the engineered microRNA expression. Both human mutant huntingtin mRNA and protein were significantly reduced in all brain regions transduced by AAV5-miHTT. The combination of widespread vector distribution and extensive huntingtin lowering observed with AAV5-miHTT supports the translation of a huntingtin-lowering gene therapy for HD from preclinical studies into the clinic.
Collapse
Affiliation(s)
- Melvin M Evers
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands.
| | - Jana Miniarikova
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Astrid Vallès
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | | | - Jana Juhasova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | | | - Petr Vodicka
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Ivona Valekova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Cynthia Brouwers
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Bas Blits
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Jacek Lubelski
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Hana Kovarova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Zdenka Ellederova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Sander J van Deventer
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Harald Petry
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Pavlina Konstantinova
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| |
Collapse
|
31
|
Pallidal deep brain stimulation in juvenile Huntington's disease: local field potential oscillations and clinical data. J Neurol 2018; 265:1573-1579. [DOI: 10.1007/s00415-018-8880-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 11/25/2022]
|
32
|
Krishnan S, Pisharady KK, Divya KP, Shetty K, Kishore A. Deep brain stimulation for movement disorders. Neurol India 2018; 66:S90-S101. [PMID: 29503331 DOI: 10.4103/0028-3886.226438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Deep Brain Stimulation (DBS) was introduced into clinical practice nearly four decades ago and is currently the standard of care for patients with Parkinson's disease experiencing motor complications. Apart from this, it has several other established and emerging applications in movement disorders. The exact mechanisms by which DBS provides relief in movement disorders are still unclear; disruption of pathological neuronal synchrony and abnormal information flow through the neuronal circuits involved, are the most likely underlying mechanisms. DBS has been established to be a relatively safe procedure if patients are carefully selected and followed up by experienced multidisciplinary teams. Alternatives to the traditional stereotactic frame based techniques of lead implantation are emerging, and these, along with the other recent technological advances, are likely to extend the availability of this therapy to an increasing number of patients in the future.
Collapse
Affiliation(s)
- Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Krishnakumar Kesava Pisharady
- Comprehensive Care Centre for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - K P Divya
- Comprehensive Care Centre for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Kuldeep Shetty
- Comprehensive Care Centre for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Asha Kishore
- Comprehensive Care Centre for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
33
|
Miniarikova J, Evers MM, Konstantinova P. Translation of MicroRNA-Based Huntingtin-Lowering Therapies from Preclinical Studies to the Clinic. Mol Ther 2018; 26:947-962. [PMID: 29503201 DOI: 10.1016/j.ymthe.2018.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022] Open
Abstract
The single mutation underlying the fatal neuropathology of Huntington's disease (HD) is a CAG triplet expansion in exon 1 of the huntingtin (HTT) gene, which gives rise to a toxic mutant HTT protein. There have been a number of not yet successful therapeutic advances in the treatment of HD. The current excitement in the HD field is due to the recent development of therapies targeting the culprit of HD either at the DNA or RNA level to reduce the overall mutant HTT protein. In this review, we briefly describe short-term and long-term HTT-lowering strategies targeting HTT transcripts. One of the most advanced HTT-lowering strategies is a microRNA (miRNA)-based gene therapy delivered by a single administration of an adeno-associated viral (AAV) vector to the HD patient. We outline the outcome measures for the miRNA-based HTT-lowering therapy in the context of preclinical evaluation in HD animal and cell models. We highlight the strengths and ongoing queries of the HTT-lowering gene therapy as an HD intervention with a potential disease-modifying effect. This review provides a perspective on the fast-developing HTT-lowering therapies for HD and their translation to the clinic based on existing knowledge in preclinical models.
Collapse
Affiliation(s)
- Jana Miniarikova
- Department of Research and Development, uniQure, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Melvin M Evers
- Department of Research and Development, uniQure, Amsterdam, the Netherlands
| | | |
Collapse
|
34
|
Aoyagi K, Higuchi Y, Okahara Y, Yakufujiang M, Matsuda T, Yamanaka Y, Yamamoto T, Hirano S, Iwadate Y. Effects of bilateral pallidal deep brain stimulation on chorea after pulmonary thromboendarterectomy with deep hypothermia and circulatory arrest: a case report. Acta Neurochir (Wien) 2018; 160:393-395. [PMID: 29248962 DOI: 10.1007/s00701-017-3433-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
A 41-year-old man was diagnosed with chronic pulmonary thromboembolism and underwent pulmonary thromboendarterectomy (PTE) with deep hypothermia and circulatory arrest. Five days after the operation, chorea emerged in the lower extremities. The patient was referred to our hospital for disabling chorea 16 years after PTE. Neurological examination revealed choreatic movements in the four extremities. Brain magnetic resonance images indicated atrophy in the bilateral head of the caudate nuclei. The patient underwent deep brain stimulation (DBS) of the bilateral globus pallidus interna (GPi). Continuous GPi-DBS diminished the choreatic movements. GPi-DBS may be a treatment option for sustained choreatic movements after PTE.
Collapse
|
35
|
Budman E, Deeb W, Martinez-Ramirez D, Pilitsis JG, Peng-Chen Z, Okun MS, Ramirez-Zamora A. Potential indications for deep brain stimulation in neurological disorders: an evolving field. Eur J Neurol 2018; 25:434-e30. [PMID: 29266596 DOI: 10.1111/ene.13548] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
Abstract
Deep brain stimulation (DBS) is an established therapy for appropriately selected patients with movement disorders and neuropsychiatric conditions. Although the exact mechanisms and biology of DBS are not fully understood, it is a safe and well-tolerated therapy for many refractory cases of neuropsychiatric disease. Increasingly, DBS has been explored in other conditions with encouraging results. In this paper, available data is reviewed and new DBS targets, challenges and future directions in neurological disorders are explored. A detailed search of the medical literature discussing the potential use of DBS for neurological disorders excluding accepted indications was conducted. All reports were analyzed individually for content and redundant articles were excluded by examining individual abstracts. The level of evidence for each indication was summarized. Multiple studies report promising preliminary data regarding the safety and efficacy of DBS for a variety of neurological indications including chronic pain, tinnitus, epilepsy, Tourette syndrome, Huntington's disease, tardive dyskinesia and Alzheimer's disease. The initial results of DBS studies for diverse neurological disorders are encouraging but larger, controlled, prospective, homogeneous clinical trials are necessary to establish long-term safety and effectiveness. The field of neuromodulation continues to evolve and advances in DBS technology, stereotactic techniques, neuroimaging and DBS programming capabilities are shaping the present and future of DBS research and use in practice.
Collapse
Affiliation(s)
- E Budman
- Department of Neurology, Albany Medical College, Albany, NY, USA
| | - W Deeb
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - D Martinez-Ramirez
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - J G Pilitsis
- Department of Neurosurgery, Albany Medical College, Albany, NY, USA
| | - Z Peng-Chen
- Unidad de Neurología, Hospital Padre Hurtado, Santiago, Chile.,Unidad Movimientos Anormales, Centro Medico Clínica Dávila, Santiago, Chile
| | - M S Okun
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - A Ramirez-Zamora
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| |
Collapse
|
36
|
Muller S, Brun S, René F, de Sèze J, Loeffler JP, Jeltsch-David H. Autophagy in neuroinflammatory diseases. Autoimmun Rev 2017; 16:856-874. [DOI: 10.1016/j.autrev.2017.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/20/2017] [Indexed: 12/12/2022]
|