1
|
Li D, Zong S, Yao Y, Molenaar PC, Damoiseaux JGMC, Li H, Rouhl RPW, Martinez-Martinez P. Anti-GABAB receptor encephalitis: clinical and laboratory characteristics, imaging, treatments and prognosis. Front Immunol 2024; 15:1442733. [PMID: 39445020 PMCID: PMC11496097 DOI: 10.3389/fimmu.2024.1442733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Anti-GABABR encephalitis is a rare disease reported to be often associated with tumors. The current study aims to summarize the clinical characteristics, imaging features, treatments, outcomes and explore the potential prognosis risk factors of patients with anti-GABABR encephalitis. Methods Patients tested positive for anti-GABABR were retrospective studied from a single medical center in China over a period of 3 years. They were followed up for a maximum period of 18 months. Clinical data were summarized and prognostic factors including demographic characteristics, laboratory tests, and neurological functions were compared between survived and deceased patients at 18 months follow-up. Results Twenty-six patients, 10 females (38.5%) and 16 males (61.5%), diagnosed with anti-GABABR encephalitis were studied. The median age was 58 years. Of the 23 cases with complete clinical data, their main manifestations were epileptic seizures (65%), mental and behavioral abnormalities (52%), and cognitive impairment (48%). 7 (30.4%) cases had tumors: 5 small cell lung cancer (SCLC), 1 rectum adenocarcinoma (moderately differentiated) and 1 esophageal squamous cell carcinoma. MRI showed 5 (22%) cases had T2 FLAIR increased signals in cortex but with different regions affected. One of the two patients scanned for PET-CT showed hypermetabolism in the left temporal lobe region. The disease course ranged from 5 days to 3 years. 2 patients (one had esophageal carcinoma) without immunotherapy and 3 patients (one had SCLC) that did not response to immunotherapy died soon after diagnosis. 18 patients improved after immunotherapy while 3 (all had SCLC) died after relapses. The prevalence of epileptic seizures and malignancies was significantly lower in the survival group than in the deceased group at 18-months follow-up, the same as the admission mRs score. Serum fibrinogen, cerebrospinal fluid immunoglobulin G quotient, and 24-hour intrathecal synthesis rate were significantly lower in the survival groups as well. Conclusions Cortex T2 FLAIR abnormalities were only observed in a small proportion of anti-GABABR encephalitis patients with heterogeneous MRI phenotypes. High mRS score at admission, epileptic seizures and the presence of a tumor indicated a poor prognosis, while the underlying mechanism of the later two factors should be investigated further.
Collapse
Affiliation(s)
- Dongrui Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Shenghua Zong
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
- Neuroimmunology Group, KingMed Diagnostic Laboratory, Guangzhou, China
| | - Yaobing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peter C. Molenaar
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Jan G. M. C. Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center (MUMC)+, Maastricht, Netherlands
| | - Hui Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rob P. W. Rouhl
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Neurology, Maastricht University Medical Center (MUMC +), Maastricht, Netherlands
- Academic Centre for Epileptology Kempenhaeghe/MUMC+, Maastricht, Netherlands
| | - Pilar Martinez-Martinez
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
2
|
Eisenbaum M, Pearson A, Ortiz C, Koprivica M, Cembran A, Mullan M, Crawford F, Ojo J, Bachmeier C. Repetitive head trauma and apoE4 induce chronic cerebrovascular alterations that impair tau elimination from the brain. Exp Neurol 2024; 374:114702. [PMID: 38301863 PMCID: PMC10922621 DOI: 10.1016/j.expneurol.2024.114702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Repetitive mild traumatic brain injuries (r-mTBI) sustained in the military or contact sports have been associated with the accumulation of extracellular tau in the brain, which may contribute to the pathogenesis of neurodegenerative tauopathies. The expression of the apolipoprotein E4 (apoE4) isoform has been associated with higher levels of tau in the brain, and worse clinical outcomes after r-mTBI, though the influence of apoE genotype on extracellular tau dynamics in the brain is poorly understood. We recently demonstrated that extracellular tau can be eliminated across blood-brain barrier (BBB), which is progressively impaired following r-mTBI. The current studies investigated the influence of repetitive mild TBI (r-mTBI) and apoE genotype on the elimination of extracellular solutes from the brain. Following intracortical injection of biotin-labeled tau into humanized apoE-Tr mice, the levels of exogenous tau residing in the brain of apoE4 mice were elevated compared to other isoforms, indicating reduced tau elimination. Additionally, we found exposure to r-mTBI increased tau residence in apoE2 mice, similar to our observations in E2FAD animals. Each of these findings may be the result of diminished tau efflux via LRP1 at the BBB, as LRP1 inhibition significantly reduced tau uptake in endothelial cells and decreased tau transit across an in vitro model of the BBB (basolateral-to-apical). Notably, we showed that injury and apoE status, (particularly apoE4) resulted in chronic alterations in BBB integrity, pericyte coverage, and AQP4 polarization. These aberrations coincided with an atypical reactive astrocytic gene signature indicative of diminished CSF-ISF exchange. Our work found that CSF movement was reduced in the chronic phase following r-mTBI (>18 months post injury) across all apoE genotypes. In summary, we show that apoE genotype strongly influences cerebrovascular homeostasis, which can lead to age-dependent deficiencies in the elimination of toxic proteins from the brain, like tau, particularly in the aftermath of head trauma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, USA; James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Joseph Ojo
- The Roskamp Institute, Sarasota, FL, USA
| | - Corbin Bachmeier
- The Roskamp Institute, Sarasota, FL, USA; Bay Pines VA Healthcare System, Bay Pines, FL, USA
| |
Collapse
|
3
|
Sulimai N, Brown J, Lominadze D. The Effect of Reduced Fibrinogen on Cerebrovascular Permeability during Traumatic Brain Injury in Fibrinogen Gene Heterozygous Knockout Mice. Biomolecules 2024; 14:385. [PMID: 38672403 PMCID: PMC11048347 DOI: 10.3390/biom14040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Vascular contribution to cognitive impairment and dementia (VCID) is a term referring to all types of cerebrovascular and cardiovascular disease-related cognitive decline, spanning many neuroinflammatory diseases including traumatic brain injury (TBI). This becomes particularly important during mild-to-moderate TBI (m-mTBI), which is characterized by short-term memory (STM) decline. Enhanced cerebrovascular permeability for proteins is typically observed during m-mTBI. We have previously shown that an increase in the blood content of fibrinogen (Fg) during m-mTBI results in enhanced cerebrovascular permeability. Primarily extravasated via a transcellular pathway, Fg can deposit into the parenchyma and exacerbate inflammatory reactions that can lead to neurodegeneration, resulting in cognitive impairment. In the current study, we investigated the effect of a chronic reduction in Fg concentration in blood on cerebrovascular permeability and the interactions of extravasated Fg with astrocytes and neurons. Cortical contusion injury (CCI) was used to generate m-mTBI in transgenic mice with a deleted Fg γ chain (Fg γ+/-), resulting in a low blood content of Fg, and in control C57BL/6J wild-type (WT) mice. Cerebrovascular permeability was tested in vivo. Interactions of Fg with astrocytes and neurons and the expression of neuronal nuclear factor-кB (NF-кB) were assessed via immunohistochemistry. The results showed that 14 days after CCI, there was less cerebrovascular permeability, lower extravascular deposition of Fg, less activation of astrocytes, less colocalization of Fg with neurons, and lower expression of neuronal pro-inflammatory NF-кB in Fg γ+/- mice compared to that found in WT mice. Combined, our data provide strong evidence that increased Fg extravasation, and its resultant extravascular deposition, triggers astrocyte activation and leads to potential interactions of Fg with neurons, resulting in the overexpression of neuronal NF-кB. These effects suggest that reduced blood levels of Fg can be beneficial in mitigating the STM reduction seen in m-mTBI.
Collapse
Affiliation(s)
- Nurul Sulimai
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA; (N.S.); (J.B.)
| | - Jason Brown
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA; (N.S.); (J.B.)
| | - David Lominadze
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA; (N.S.); (J.B.)
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| |
Collapse
|
4
|
He L, Zhang R, Yang M, Lu M. The role of astrocyte in neuroinflammation in traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166992. [PMID: 38128844 DOI: 10.1016/j.bbadis.2023.166992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Traumatic brain injury (TBI), a significant contributor to mortality and morbidity worldwide, is a devastating condition characterized by initial mechanical damage followed by subsequent biochemical processes, including neuroinflammation. Astrocytes, the predominant glial cells in the central nervous system, play a vital role in maintaining brain homeostasis and supporting neuronal function. Nevertheless, in response to TBI, astrocytes undergo substantial phenotypic alternations and actively contribute to the neuroinflammatory response. This article explores the multifaceted involvement of astrocytes in neuroinflammation subsequent to TBI, with a particular emphasis on their activation, release of inflammatory mediators, modulation of the blood-brain barrier, and interactions with other immune cells. A comprehensive understanding the dynamic interplay between astrocytes and neuroinflammation in the condition of TBI can provide valuable insights into the development of innovative therapeutic approaches aimed at mitigating secondary damage and fostering neuroregeneration.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China.
| | - Ruqiang Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Maiqiao Yang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Meilin Lu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
5
|
Sulimai N, Brown J, Lominadze D. Vascular Effects on Cerebrovascular Permeability and Neurodegeneration. Biomolecules 2023; 13:biom13040648. [PMID: 37189395 DOI: 10.3390/biom13040648] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/17/2023] Open
Abstract
Neurons and glial cells in the brain are protected by the blood brain barrier (BBB). The local regulation of blood flow is determined by neurons and signal conducting cells called astrocytes. Although alterations in neurons and glial cells affect the function of neurons, the majority of effects are coming from other cells and organs of the body. Although it seems obvious that effects beginning in brain vasculature would play an important role in the development of various neuroinflammatory and neurodegenerative pathologies, significant interest has only been directed to the possible mechanisms involved in the development of vascular cognitive impairment and dementia (VCID) for the last decade. Presently, the National Institute of Neurological Disorders and Stroke applies considerable attention toward research related to VCID and vascular impairments during Alzheimer's disease. Thus, any changes in cerebral vessels, such as in blood flow, thrombogenesis, permeability, or others, which affect the proper vasculo-neuronal connection and interaction and result in neuronal degeneration that leads to memory decline should be considered as a subject of investigation under the VCID category. Out of several vascular effects that can trigger neurodegeneration, changes in cerebrovascular permeability seem to result in the most devastating effects. The present review emphasizes the importance of changes in the BBB and possible mechanisms primarily involving fibrinogen in the development and/or progression of neuroinflammatory and neurodegenerative diseases resulting in memory decline.
Collapse
Affiliation(s)
- Nurul Sulimai
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| | - Jason Brown
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| | - David Lominadze
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Kirsch D, Shah A, Dixon E, Kelley H, Cherry JD, Xia W, Daley S, Aytan N, Cormier K, Kubilus C, Mathias R, Alvarez VE, Huber BR, McKee AC, Stein TD. Vascular injury is associated with repetitive head impacts and tau pathology in chronic traumatic encephalopathy. J Neuropathol Exp Neurol 2023; 82:127-139. [PMID: 36617181 PMCID: PMC9852946 DOI: 10.1093/jnen/nlac122] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease linked to repetitive head impacts (RHI) and characterized by perivascular hyperphosphorylated tau (p-tau) deposits. The role of vascular injury, blood-brain barrier leakage, and neuroinflammation in CTE pathogenesis is not well understood. We performed quantitative immunoassays for intercellular adhesion molecule 1 (ICAM1), vascular cellular adhesion molecule 1 (VCAM1), and C-reactive protein (CRP) within the postmortem dorsolateral frontal cortex of participants with and without a history of RHI and CTE (n = 156), and tested for associations with RHI, microgliosis, and tau pathology measures. Levels of vascular injury-associated markers ICAM1, VCAM1, and CRP were increased in CTE compared to RHI-exposed and -naïve controls. ICAM1 and CRP increased with RHI exposure duration (p < 0.01) and were associated with increased microglial density (p < 0.001) and tau pathology (AT8, p-tau396, p-tau202; p < 0.05). Histologically, there was significantly increased ICAM1 staining of the microvasculature, extracellular space, and astrocytes at the sulcal depths in high stage CTE compared to both low stage CTE and controls. Multifocal perivascular immunoreactivity for serum albumin was present in all RHI-exposed individuals. These findings demonstrate that vascular injury markers are associated with RHI exposure, duration, and microgliosis, are elevated in CTE, and increase with disease severity.
Collapse
Affiliation(s)
- Daniel Kirsch
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Arsal Shah
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Erin Dixon
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Hunter Kelley
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Jonathan D Cherry
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Weiming Xia
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Sarah Daley
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Nurgul Aytan
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Kerry Cormier
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Carol Kubilus
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Rebecca Mathias
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Victor E Alvarez
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Bertrand R Huber
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ann C McKee
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Thor D Stein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| |
Collapse
|
7
|
Sulimai N, Brown J, Lominadze D. The Role of Nuclear Factor-Kappa B in Fibrinogen-Induced Inflammatory Responses in Cultured Primary Neurons. Biomolecules 2022; 12:1741. [PMID: 36551169 PMCID: PMC9775651 DOI: 10.3390/biom12121741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
Traumatic brain injury (TBI) is an inflammatory disease associated with a compromised blood-brain barrier (BBB) and neurodegeneration. One of the consequences of inflammation is an elevated blood level of fibrinogen (Fg), a protein that is mainly produced in the liver. The inflammation-induced changes in the BBB result in Fg extravasation into the brain parenchyma, creating the possibility of its contact with neurons. We have previously shown that interactions of Fg with the neuronal intercellular adhesion molecule-1 and cellular prion protein induced the upregulation of pro-inflammatory cytokines, oxidative damage, increased apoptosis, and cell death. However, the transcription pathway involved in this process was not defined. The association of Fg with the activation of the nuclear factor-κB (NF-κB) and the resultant expression of interleukin-6 (IL-6) and C-C chemokine ligand-2 (CCL2) were studied in cultured primary mouse brain cortex neurons. Fg-induced gene expression of CCL2 and IL-6 and the expression of NF-κB protein were increased in response to a specific interaction of Fg with neurons. These data suggest that TBI-induced neurodegeneration can involve the direct interaction of extravasated Fg with neurons, resulting in the overexpression of pro-inflammatory cytokines through the activation of transcription factor NF-κB. This may be a mechanism involved in vascular cognitive impairment during neuroinflammatory diseases.
Collapse
Affiliation(s)
- Nurul Sulimai
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Jason Brown
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - David Lominadze
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Sulimai NH, Brown J, Lominadze D. Fibrinogen, Fibrinogen-like 1 and Fibrinogen-like 2 Proteins, and Their Effects. Biomedicines 2022; 10:1712. [PMID: 35885017 PMCID: PMC9313381 DOI: 10.3390/biomedicines10071712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/05/2022] Open
Abstract
Fibrinogen (Fg) and its derivatives play a considerable role in many diseases. For example, increased levels of Fg have been found in many inflammatory diseases, such as Alzheimer's disease, multiple sclerosis, traumatic brain injury, rheumatoid arthritis, systemic lupus erythematosus, and cancer. Although associations of Fg, Fg chains, and its derivatives with various diseases have been established, their specific effects and the mechanisms of actions involved are still unclear. The present review is the first attempt to discuss the role of Fg, Fg chains, its derivatives, and other members of Fg family proteins, such as Fg-like protein 1 and 2, in inflammatory diseases and their effects in immunomodulation.
Collapse
Affiliation(s)
- Nurul H. Sulimai
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
| | - Jason Brown
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
| | - David Lominadze
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
- Departments of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Chen S, Li L, Peng C, Bian C, Ocak PE, Zhang JH, Yang Y, Zhou D, Chen G, Luo Y. Targeting Oxidative Stress and Inflammatory Response for Blood-Brain Barrier Protection in Intracerebral Hemorrhage. Antioxid Redox Signal 2022; 37:115-134. [PMID: 35383484 DOI: 10.1089/ars.2021.0072] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Blood-brain barrier (BBB) disruption is a major pathological change after intracerebral hemorrhage (ICH) and is both the cause and result of oxidative stress and of the immune response post-ICH. These processes contribute to ICH-induced brain injury. Recent Advances: After the breakdown of cerebral vessels, blood components, including erythrocytes and their metabolites, thrombin, and fibrinogen, can access the cerebral parenchyma through the compromised BBB, triggering oxidative stress and inflammatory cascades. These aggravate BBB disruption and contribute to further infiltration of blood components, resulting in a vicious cycle that exacerbates brain edema and neurological injury after ICH. Experimental and clinical studies have highlighted the role of BBB disruption in ICH-induced brain injury. Critical Issues: In this review, we focus on the strategies to protect the BBB in ICH. Specifically, we summarize the evidence and the underlying mechanisms, including the ICH-induced process of oxidative stress and inflammatory response, and we highlight the potential therapeutic targets to protect BBB integrity after ICH. Future Directions: Future studies should probe the mechanism of ferroptosis as well as oxidative stress-inflammation coupling in BBB disruption after ICH and investigate the effects of antioxidants and immunomodulatory agents in more ICH clinical trials. Antioxid. Redox Signal. 37, 115-134.
Collapse
Affiliation(s)
- Shengpan Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lingzhi Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chao Peng
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunjing Bian
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Pinar Eser Ocak
- Department of Neurosurgery, Uludag University School of Medicine, Bursa, Turkey
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California, USA
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Yong Yang
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guangzhong Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
10
|
Sulimai N, Brown J, Lominadze D. The Effects of Fibrinogen's Interactions with Its Neuronal Receptors, Intercellular Adhesion Molecule-1 and Cellular Prion Protein. Biomolecules 2021; 11:1381. [PMID: 34572594 PMCID: PMC8464854 DOI: 10.3390/biom11091381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
Neuroinflammatory diseases, such as Alzheimer's disease (AD) and traumatic brain injury (TBI), are associated with the extravascular deposition of the fibrinogen (Fg) derivative fibrin and are accompanied with memory impairment. We found that during the hyperfibrinogenemia that typically occurs during AD and TBI, extravasated Fg was associated with amyloid beta and astrocytic cellular prion protein (PrPC). These effects coincided with short-term memory (STM) reduction and neurodegeneration. However, the mechanisms of a direct Fg-neuron interaction and its functional role in neurodegeneration are still unclear. Cultured mouse brain neurons were treated with Fg in the presence or absence of function-blockers of its receptors, PrPC or intercellular adhesion molecule-1 (ICAM-1). Associations of Fg with neuronal PrPC and ICAM-1 were characterized. The expression of proinflammatory marker interleukin 6 (IL-6) and the generation of reactive oxygen species (ROS), mitochondrial superoxide, and nitrite in neurons were assessed. Fg-induced neuronal death was also evaluated. A strong association of Fg with neuronal PrPC and ICAM-1, accompanied with overexpression of IL-6 and enhanced generation of ROS, mitochondrial superoxide, and nitrite as well as the resulting neuronal death, was found. These effects were reduced by blocking the function of neuronal PrPC and ICAM-1, suggesting that the direct interaction of Fg with its neuronal receptors can induce overexpression of IL-6 and increase the generation of ROS, nitrite, and mitochondrial superoxide, ultimately leading to neuronal death. These effects can be a mechanism of neurodegeneration and the resultant memory reduction seen during TBI and AD.
Collapse
Affiliation(s)
- Nurul Sulimai
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (N.S.); (J.B.)
| | - Jason Brown
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (N.S.); (J.B.)
| | - David Lominadze
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (N.S.); (J.B.)
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
11
|
Zhang R, Wang J, Huang L, Wang TJ, Huang Y, Li Z, He J, Sun C, Wang J, Chen X, Wang J. The pros and cons of motor, memory, and emotion-related behavioral tests in the mouse traumatic brain injury model. Neurol Res 2021; 44:65-89. [PMID: 34308784 DOI: 10.1080/01616412.2021.1956290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a medical emergency with high morbidity and mortality. Motor, memory, and emotion-related deficits are common symptoms following TBI, yet treatment is very limited. To develop new drugs and find new therapeutic avenues, a wide variety of TBI models have been established to mimic the heterogeneity of TBI. In this regard, along with histologic measures, behavioral functional outcomes provide valuable insight into the underlying neuropathology and guide neurorehabilitation efforts for neuropsychiatric impairment after TBI. Development, characterization, and application of behavioral tests that can assess functional neurologic deficits are essential to the development of translational therapies. This comprehensive review aims to summarize 19 common behavioral tests from three aspects (motor, memory, and emotion-related) that are associated with TBI pathology. Discussion covers the apparatus, the test steps, the evaluation indexes, data collection and analysis, animal performance and applications, advantages and disadvantages as well as precautions to eliminate bias wherever possible. We discussed recent studies on TBI-related preconditioning, biomarkers, and optimized behavioral protocols. The neuropsychologic tests employed in clinics were correlated with those used in mouse TBI models. In summary, this review provides a comprehensive, up-to-date reference for TBI researchers to choose the right neurobehavioral protocol according to the research objectives of their translational investigation.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junming Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Tom J Wang
- Winston Churchill High School, Potomac, Maryland, USA
| | - Yinrou Huang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zefu Li
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinxin He
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chen Sun
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jian Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Todd J, Bharadwaj VN, Nellenbach K, Nandi S, Mihalko E, Copeland C, Brown AC, Stabenfeldt SE. Platelet-like particles reduce coagulopathy-related and neuroinflammatory pathologies post-experimental traumatic brain injury. J Biomed Mater Res B Appl Biomater 2021; 109:2268-2278. [PMID: 34117693 DOI: 10.1002/jbm.b.34888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/03/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022]
Abstract
Coagulopathy may occur following traumatic brain injury (TBI), thereby negatively affecting patient outcomes. Here, we investigate the use of platelet-like particles (PLPs), poly(N-isopropylacrylamide-co-acrylic-acid) microgels conjugated with a fibrin-specific antibody, to improve hemostasis post-TBI. The objective of this study was to diminish coagulopathy in a mouse TBI model (controlled cortical impact) via PLP treatment, and subsequently decrease blood-brain barrier (BBB) permeability and neuroinflammation. Following an acute intravenous injection of PLPs post-TBI, we analyzed BBB permeability, ex vivo coagulation parameters, and neuroinflammation at 24 hr and 7 days post-TBI. Both PLP-treatment and control particle-treatment had significantly decreased BBB permeability and improved clot structure 24 hr post-injury. Additionally, no significant change in tissue sparing was observed between 24 hr and 7 days for PLP-treated cohorts compared to that observed in untreated cohorts. Only PLP-treatment resulted in significant reduction of astrocyte expression at 7 days and percent difference from 24 hr to 7 days. Finally, PLP-treatment significantly reduced the percent difference from 24 hr to 7 days in microglia/macrophage density compared to the untreated control. These results suggest that PLP-treatment addressed acute hypocoagulation and decreased BBB permeability followed by decreased neuroinflammation and fold-change tissue loss by 7 days post-injury. These promising results indicate that PLPs could be a potential therapeutic modality for TBI.
Collapse
Affiliation(s)
- Jordan Todd
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Vimala N Bharadwaj
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Kimberly Nellenbach
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Seema Nandi
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Emily Mihalko
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Connor Copeland
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
13
|
Sulimai N, Lominadze D. Fibrinogen and/or Fibrin as a Cause of Neuroinflammation. ONLINE JOURNAL OF NEUROLOGY AND BRAIN DISORDERS 2021; 5:217. [PMID: 34327331 PMCID: PMC8318361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Nurul Sulimai
- Department of Surgery, University of South Florida Morsani College of Medicine, USA
| | - David Lominadze
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, USA
| |
Collapse
|
14
|
Fibrinogen Interaction with Astrocyte ICAM-1 and PrP C Results in the Generation of ROS and Neuronal Death. Int J Mol Sci 2021; 22:ijms22052391. [PMID: 33673626 PMCID: PMC7957521 DOI: 10.3390/ijms22052391] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 11/25/2022] Open
Abstract
Many neuroinflammatory diseases, like traumatic brain injury (TBI), are associated with an elevated level of fibrinogen and short-term memory (STM) impairment. We found that during TBI, extravasated fibrinogen deposited in vasculo-astrocyte interfaces, which was associated with neurodegeneration and STM reduction. The mechanisms of this fibrinogen-astrocyte interaction and its functional role in neurodegeneration are still unclear. Cultured mouse brain astrocytes were treated with fibrinogen in the presence or absence of function-blocking antibody or peptide against its astrocyte receptors intercellular adhesion molecule-1 (ICAM-1) or cellular prion protein (PrPC), respectively. Fibrinogen interactions with astrocytic ICAM-1 and PrPC were characterized. The expression of pro-inflammatory markers, generations of reactive oxygen species (ROS) and nitric oxide (NO) in astrocytes, and neuronal death caused by astrocyte-conditioned medium were assessed. Data showed a strong association between fibrinogen and astrocytic ICAM-1 or PrPC, overexpression of pro-inflammatory cytokines and overproduction of ROS and NO, resulting in neuronal apoptosis and death. These effects were reduced by blocking the function of astrocytic ICAM-1 and PrPC, suggesting that fibrinogen association with its astrocytic receptors induce the release of pro-inflammatory cytokines, resulting in oxidative stress, and ultimately neuronal death. This can be a mechanism of neurodegeneration and the resultant STM reduction seen during TBI.
Collapse
|
15
|
Cao H, Seto SW, Bhuyan DJ, Chan HH, Song W. Effects of Thrombin on the Neurovascular Unit in Cerebral Ischemia. Cell Mol Neurobiol 2021; 42:973-984. [PMID: 33392917 DOI: 10.1007/s10571-020-01019-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia is a cerebrovascular disease with high morbidity and mortality that poses a significant burden on society and the economy. About 60% of cerebral ischemia is caused by thrombus, and the formation of thrombus proceeds from insoluble fibrin, following its transformation from liquid fibrinogen. In thrombus-induced ischemia, increased permeability of the blood-brain barrier (BBB), followed by the extravasation of blood components into the brain results in an altered brain microenvironment. Changes in the brain microenvironment affect brain function and the neurovascular unit (NVU), the working unit of the brain. Recent studies have reported that coagulation factors interact with the NVU and its components, but the specific function of this interaction is highly speculative and warrants further investigations. In this article, we reviewed the role of coagulation factors in cerebral ischemia and the role of coagulation factors in thrombosis. Additionally, the influence of thrombin on the NVU is introduced, as well as in the function of NVU, which may help to explore part of brain injury mechanism during ischemia. Lastly, we propose some novel therapeutic approaches on ischemic stroke by reducing the risk of coagulation.
Collapse
Affiliation(s)
- Hui Cao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, 100091, China
| | - Sai Wang Seto
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China.,NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Hoi Huen Chan
- Hong Kong Community College, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wenting Song
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, 100091, China.
| |
Collapse
|
16
|
Muradashvili N, Charkviani M, Sulimai N, Tyagi N, Crosby J, Lominadze D. Effects of fibrinogen synthesis inhibition on vascular cognitive impairment during traumatic brain injury in mice. Brain Res 2020; 1751:147208. [PMID: 33248061 DOI: 10.1016/j.brainres.2020.147208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022]
Abstract
Traumatic brain injury (TBI) is associated with increased blood content of fibrinogen (Fg), called hyperfibrinogenemia (HFg), which results in enhanced cerebrovascular permeability and leads to short-term memory (STM) reduction. Previously, we showed that extravasated Fg was deposited in the vasculo-astrocyte interface and was co-localized with cellular prion protein (PrPC) during mild-to-moderate TBI in mice. These effects were accompanied by neurodegeneration and STM reduction. However, there was no evidence presented that the described effects were the direct result of the HFg during TBI. We now present data indicating that inhibition of Fg synthesis can ameliorate TBI-induced cerebrovascular permeability and STM reduction. Cortical contusion injury (CCI) was induced in C57BL/6J mice. Then mice were treated with either Fg antisense oligonucleotide (Fg-ASO) or with control-ASO for two weeks. Cerebrovascular permeability to fluorescently labeled bovine serum albumin was assessed in cortical venules following evaluation of STM with memory assessement tests. Separately, brain samples were collected in order to define the expression of PrPC via Western blotting while deposition and co-localization of Fg and PrPC, as well as gene expression of inflammatory marker activating transcription factor 3 (ATF3), were characterized with real-time PCR. Results showed that inhibition of Fg synthesis with Fg-ASO reduced overexpression of AFT3, ameliorated enhanced cerebrovascular permeability, decreased expression of PrPC and Fg deposition, decreased formation of Fg-PrPC complexes in brain, and improved STM. These data provide direct evidence that a CCI-induced inflammation-mediated HFg could be a triggering mechanism involved in vascular cognitive impairment seen previously in our studies during mild-to-moderate TBI.
Collapse
Affiliation(s)
- Nino Muradashvili
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA; Department of Basic Medicine, Caucasus International University, Tbilisi, Georgia
| | - Mariam Charkviani
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Nurul Sulimai
- Department of Surgery, USF Health-Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Neetu Tyagi
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Jeff Crosby
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - David Lominadze
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA; Department of Surgery, USF Health-Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Kentucky Spinal Cord Research Center, University of Louisville, School of Medicine, Louisville, KY, USA.
| |
Collapse
|
17
|
Sulimai N, Lominadze D. Fibrinogen and Neuroinflammation During Traumatic Brain Injury. Mol Neurobiol 2020; 57:4692-4703. [PMID: 32776201 DOI: 10.1007/s12035-020-02012-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Many neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis, and traumatic brain injury (TBI) are associated with systemic inflammation. Inflammation itself results in increased blood content of fibrinogen (Fg), called hyperfibrinogenemia (HFg). Fg is not only considered an acute phase protein and a marker of inflammation, but has been shown that it can cause inflammatory responses. Fibrin deposits have been associated with memory reduction in neuroinflammatory diseases such as AD and TBI. Reduction in short-term memory has been seen during the most common form of TBI, mild-to-moderate TBI. Fibrin deposits have been found in brains of patients with mild-to-moderate TBI. The vast majority of the literature emphasizes the role of fibrin-activated microglia as the mediator in the neuroinflammation pathway. However, the recent discovery that astrocytes, which constitute approximately 30% of the cells in the mammalian central nervous system, manifest different reactive states warrants further investigations in the causative role of HFg in astrocyte-mediated neuroinflammation. Our previous study showed that Fg deposited in the vasculo-astrocyte interface-activated astrocytes. However, little is known of how Fg directly affects astrocytes and neurons. In this review, we summarize studies that show the effect of Fg on different types of cells in the vasculo-neuronal unit. We will also discuss the possible mechanism of HFg-induced neuroinflammation during TBI.
Collapse
Affiliation(s)
- Nurul Sulimai
- Departments of Surgery, University of South Florida Morsani College of Medicine, MDC-4024, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - David Lominadze
- Departments of Surgery, University of South Florida Morsani College of Medicine, MDC-4024, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA.
- Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
18
|
Charkviani M, Muradashvili N, Sulimai N, Lominadze D. Fibrinogen-cellular prion protein complex formation on astrocytes. J Neurophysiol 2020; 124:536-543. [PMID: 32697670 DOI: 10.1152/jn.00224.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most common neurological disorders causing memory reduction, particularly short-term memory (STM). We showed that, during TBI-induced inflammation, increased blood content of fibrinogen (Fg) enhanced vascular protein transcytosis and deposition of extravasated Fg in vasculo-astrocyte interfaces. In addition, we found that deposition of cellular prion protein (PrPC) was also increased in the vasculo-astrocyte endfeet interface. However, association of Fg and PrPC was not confirmed. Presently, we aimed to define whether Fg can associate with PrPC on astrocytes and cause their activation. Cultured mouse brain astrocytes were treated with medium alone (control), Fg (2 mg/mL or 4 mg/mL), 4 mg/mL of Fg in the presence of a function-blocking anti-PrPC peptide or anti-mouse IgG, function-blocking anti-PrPC peptide, or anti-mouse IgG alone. After treatment, either cell lysates were collected and analyzed via Western blot or coimmunoprecipitation was performed, or astrocytes were fixed and their activation was assessed with immunohistochemistry. Results showed that Fg dose-dependently activated astrocytes, increased expressions of PrPC and tyrosine (tropomyosin) receptor kinase B (TrkB), and PrP gene. Blocking the function of PrPC reduced these effects. Coimmunoprecipitation demonstrated Fg and PrPC association. Since it is known that prion protein has a greater effect on memory reduction than amyloid beta, and that activation of TrkB is involved in neurodegeneration, our findings confirming the possible formation of Fg-PrPC and Fg-induced overexpression of TrkB on astrocytes suggest a possible triggering mechanism for STM reduction that was seen previously during mild-to-moderate TBI.NEW & NOTEWORTHY For the first time we showed that fibrinogen (Fg) can associate with cellular prion protein (PrPC) on the surface of cultured mouse brain astrocytes. At high levels, Fg causes upregulation of astrocyte PrPC and astrocyte activation accompanied with overexpression of tyrosine receptor kinase B (TrkB), which results in nitric oxide (NO) production and generation of reactive oxygen species (ROS). Fg/PrPC interaction can be a triggering mechanism for TrkB-NO-ROS axis activation and the resultant astrocyte-mediated neurodegeneration.
Collapse
Affiliation(s)
- Mariam Charkviani
- Department of Physiology, University of Louisville, School of Medicine, Louisville, Kentucky
| | - Nino Muradashvili
- Department of Physiology, University of Louisville, School of Medicine, Louisville, Kentucky.,Department of Basic Medicine, Caucasus International University, Tbilisi, Georgia
| | - Nurul Sulimai
- Department of Surgery, USF Health-Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - David Lominadze
- Department of Physiology, University of Louisville, School of Medicine, Louisville, Kentucky.,Department of Surgery, USF Health-Morsani College of Medicine, University of South Florida, Tampa, Florida.,Kentucky Spinal Cord Research Center, University of Louisville, School of Medicine, Louisville, Kentucky
| |
Collapse
|
19
|
Charkviani M, Muradashvili N, Lominadze D. Vascular and non-vascular contributors to memory reduction during traumatic brain injury. Eur J Neurosci 2019; 50:2860-2876. [PMID: 30793398 PMCID: PMC6703968 DOI: 10.1111/ejn.14390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 01/09/2023]
Abstract
Traumatic brain injury (TBI) is an increasing health problem. It is a complex, progressive disease that consists of many factors affecting memory. Studies have shown that increased blood-brain barrier (BBB) permeability initiates pathological changes in neuro-vascular network but the role of cerebrovascular dysfunction and its mediated mechanisms associated with memory reduction during TBI are still not well understood. Changes in BBB, inflammation, extravasation of blood plasma components, activation of neuroglia lead to neurodegeneration. Extravasated proteins such as amyloid-beta, fibrinogen, and cellular prion protein may form degradation resistant complexes that can lead to neuronal dysfunction and degeneration. They also have the ability to activate astrocytes, and thus, can be involved in memory impairment. Understanding the triggering mechanisms and the places they originate in vasculature or in extravascular tissue may help to identify potential therapeutic targets to ameliorate memory reduction during TBI. The goal of this review is to discuss conceptual mechanisms that lead to short-term memory reduction during non-severe TBI considering distinction between vascular and non-vascular effects on neurons. Some aspects of these mechanisms need to be confirmed further. Therefore, we hope that the discussion presented bellow may lead to experiments that may clarify the triggering mechanisms of memory reduction after head trauma.
Collapse
Affiliation(s)
- Mariam Charkviani
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Nino Muradashvili
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
- Department of Basic Medicine, Caucasus International University, Tbilisi, Georgia
| | - David Lominadze
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
- Kentucky Spinal Cord Research Center, University of Louisville, School of Medicine, Louisville, KY, USA
| |
Collapse
|
20
|
Clark VD, Layson A, Charkviani M, Muradashvili N, Lominadze D. Hyperfibrinogenemia-mediated astrocyte activation. Brain Res 2018; 1699:158-165. [PMID: 30153459 DOI: 10.1016/j.brainres.2018.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022]
Abstract
Fibrinogen (Fg)-containing plaques are associated with memory loss during various inflammatory neurodegenerative diseases such as Alzheimer's disease, multiple sclerosis, stroke, and traumatic brain injury. However, mechanisms of its action in neurovascular unit are not clear. As Fg is a high molecular weight blood protein and cannot translocate far from the vessel after extravasation, we hypothesized that it may interact with astrocytes first causing their activation. Cultured mouse cortical astrocytes were treated with Fg in the presence or absence of function-blocking anti-mouse intercellular adhesion molecule 1 (ICAM-1) antibody, or with medium alone (control). Expressions of ICAM-1 and tyrosine receptor kinase B (TrkB) as markers of astrocyte activation, and phosphorylation of TrkB (pTrkB) were assessed. Fg dose-dependently increased activation of astrocytes defined by their shape change, retraction of processes, and enhanced expressions of ICAM-1 and TrkB, and increased pTrkB. Blocking of ICAM-1 function ameliorated these Fg effects. Data suggest that Fg interacts with astrocytes causing overexpression of ICAM-1 and TrkB, and TrkB phosphorylation, and thus, astrocyte activation. Since TrkB is known to be involved in neurodegeneration, interaction of Fg with astrocytes and the resultant activation of TrkB can be a possible mechanism involved in memory reduction, which were observed in previous studies and were associated with formation of complexes of Fg deposited in extravascular space with proteins such as Amyloid beta or prion, the proteins involved in development of dementia.
Collapse
Affiliation(s)
- Vincent D Clark
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Ailey Layson
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Mariam Charkviani
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Nino Muradashvili
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA; Department of Basic Medicine, Caucasus International University, Tbilisi, Georgia
| | - David Lominadze
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA; Kentucky Spinal Cord Research Center, University of Louisville, School of Medicine, Louisville, KY, USA.
| |
Collapse
|
21
|
Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol 2018; 21:137-151. [PMID: 29764704 PMCID: PMC6034172 DOI: 10.1016/j.cjtee.2018.02.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) remains a major cause of death and disability worldwide. Increasing evidence indicates that TBI is an important risk factor for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. Despite improved supportive and rehabilitative care of TBI patients, unfortunately, all late phase clinical trials in TBI have yet to yield a safe and effective neuroprotective treatment. The disappointing clinical trials may be attributed to variability in treatment approaches and heterogeneity of the population of TBI patients as well as a race against time to prevent or reduce inexorable cell death. TBI is not just an acute event but a chronic disease. Among many mechanisms involved in secondary injury after TBI, emerging preclinical studies indicate that posttraumatic prolonged and progressive neuroinflammation is associated with neurodegeneration which may be treatable long after the initiating brain injury. This review provides an overview of recent understanding of neuroinflammation in TBI and preclinical cell-based therapies that target neuroinflammation and promote functional recovery after TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA; Department of Physics, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|
22
|
Sizemore G, Lucke-Wold B, Rosen C, Simpkins JW, Bhatia S, Sun D. Temporal Lobe Epilepsy, Stroke, and Traumatic Brain Injury: Mechanisms of Hyperpolarized, Depolarized, and Flow-Through Ion Channels Utilized as Tri-Coordinate Biomarkers of Electrophysiologic Dysfunction. OBM NEUROBIOLOGY 2018; 2:009. [PMID: 29951646 PMCID: PMC6018002 DOI: 10.21926/obm.neurobiol.1802009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The brain is an integrated network of multiple variables that when compromised create a diseased state. The neuropathology of temporal lobe epilepsy (TLE), stroke, and traumatic brain injury (TBI) demonstrate both similarity and complexity that reflects this integrated variability; TLE with its live human tissue resection provides opportunity for translational science to demonstrate scale equivalent experimentation between the macroscopic world of clinical disease and the microscopic world of basic science. The extended value of this research is that the neuroinflammatory abnormalities that occur throughout astrocytes with hippocampal sclerosis and damaged or even reversed signaling pathways (inhibition to excitation such as with gaba-aminobutyric acid) are similar to those seen in post-stroke and TBI models. In evaluation of the epilepsy population this interconnectedness of pathology warrants further evaluation with collaborative efforts. This review summarizes patterns that could shift experimentation closer to the macro level of humanity, but still represent the micro world of genetics, epigenetics, and neuro-injury across etiologies of physiologic dysfunction such as TLE, stroke, and TBI with evaluation of cell function using electrophysiology. In conclusion we demonstrate the plausibility of electrophysiologic voltage and current measurement of brain tissue by patch clamp analysis to specify actual electrophysiologic function for comparison to electroencephalography in order to aid neurologic evaluation. Finally, we discuss the opportunity with multiscale modeling to display integration of the hyperpolarization cyclic-nucleotide gated channel, the depolarized calcium channels, and sodium-potassium-chloride-one/potassium-chloride-two co-transporter channels as potential mechanisms utilized as tri-coordinate biomarkers with these three forms of neurologic disease at a molecular scale of electrophysiologic pathology.
Collapse
Affiliation(s)
- Gina Sizemore
- Department of Clinical and Translational Science, West Virginia School of Medicine, Morgantown, WV
| | - Brandon Lucke-Wold
- Department of Neurosurgery, West Virginia School of Medicine, Morgantown, WV
| | - Charles Rosen
- Department of Neurosurgery, West Virginia School of Medicine, Morgantown, WV
| | - James W. Simpkins
- Center for Basic and Translational Stroke Research, West Virginia School of Medicine, Morgantown, WV
| | - Sanjay Bhatia
- Department of Neurosurgery, West Virginia School of Medicine, Morgantown, WV
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|