1
|
Bousquet E, Kerbage H, Purper-Ouakil D, Fongaro E. Experience of neurofeedback and methylphenidate in children with ADHD. L'ENCEPHALE 2024:S0013-7006(24)00202-1. [PMID: 39510871 DOI: 10.1016/j.encep.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 11/15/2024]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by inattention, hyperactivity, and impulsivity. ADHD is commonly treated with medication, such as methylphenidate, but some families and practitioners prefer psychosocial interventions as first line treatments. Many studies have investigated neurofeedback as a potential non-pharmacological treatment for ADHD yielding contradictory findings regarding its efficiency. Qualitative research on neurofeedback in ADHD is limited and can add valuable information on the acceptability and perceived efficacy among service users. This study aimed to explore the perceptions and experiences of children and adolescents with ADHD regarding the use of neurofeedback and methylphenidate. Eleven interviews with children and their parents explored their subjective experiences and perceived changes. Overall, neurofeedback was negatively experienced by those families: the intervention did not meet their expectations, and they reported minimal observed changes. The treatment with methylphenidate, however, was more manageable for families and was perceived to be more efficient despite its side effects.
Collapse
Affiliation(s)
- Elisa Bousquet
- Saint-Eloi Hospital, centre hospitalier universitaire de Montpellier, Hérault, France.
| | - Hala Kerbage
- Saint-Eloi Hospital, centre hospitalier universitaire de Montpellier, Hérault, France; CESP Inserm U 1018 UVSQ Psychiatry Development and Trajectories, Villejuif, France.
| | - Diane Purper-Ouakil
- Saint-Eloi Hospital, centre hospitalier universitaire de Montpellier, Hérault, France; CESP Inserm U 1018 UVSQ Psychiatry Development and Trajectories, Villejuif, France.
| | - Erica Fongaro
- Saint-Eloi Hospital, centre hospitalier universitaire de Montpellier, Hérault, France; CESP Inserm U 1018 UVSQ Psychiatry Development and Trajectories, Villejuif, France.
| |
Collapse
|
2
|
Faridi A, Taremian F, Thatcher RW. Comparative Analysis of LORETA Z Score Neurofeedback and Cognitive Rehabilitation on Quality of Life and Response Inhibition in Individuals with Opioid Addiction. Clin EEG Neurosci 2024:15500594241283069. [PMID: 39275813 DOI: 10.1177/15500594241283069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Background. Previous studies has shown that conventional neurofeedback and cognitive rehabilitation can improve psychological outcomes in people with opioid use disorders. However, the effectiveness of LORETA Z-score neurofeedback (LZNFB) and attention bias modification training on quality of life and inhibitory control of these people has not been investigated yet. LZNFB targets deeper brain structures with higher precision, compared to conventional neurofeedback that typically focuses on surface EEG activity. The present study aims to compare the effect of these two methods on quality of life and response inhibition in men with opioid use disorders under methadone maintenance therapy (MMT). Methods. In this randomized controlled clinical trial with a pre-test, post-test, follow-up design, 30 men with opioid use disorders under MMT were randomly assigned into three groups of LZNFB, attention bias modification training, and control (MMT alone). The LZNFB and Cognitive Rehabilitation groups received 20 and 15 sessions of treatment, respectively. The Persian versions WHO Quality of Life-BREEF questionnaire and the Go/No-Go test were completed by the participants before, immediately after, and one month after interventions. The collected data were analyzed in SPSS v.22 software. Results. Both intervention groups showed a significant improvement in quality-of-life score and a significant reduction in response time at the post-test phase (P < .05), where LZNFB group showed more improvement in quality of life and more reduction in response inhibition. After one month, the increase in quality of life continued in both groups, while the decrease in response time continued only in the LZNFB group. Conclusion. Both LZNFB and attention bias modification training are effective in improving quality of life and response inhibition of men with OUD under MMT, however, LZNFB is more effective.
Collapse
Affiliation(s)
- Alireza Faridi
- Department of Addiction Studies, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farhad Taremian
- Substance Abuse and Dependence Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Robert W Thatcher
- EEG and Neuroimaging Laboratory, Applied Neuroscience Research Institute, St. Petersburg, FL, USA
| |
Collapse
|
3
|
Moffat R, Casale CE, Cross ES. Mobile fNIRS for exploring inter-brain synchrony across generations and time. FRONTIERS IN NEUROERGONOMICS 2024; 4:1260738. [PMID: 38234472 PMCID: PMC10790948 DOI: 10.3389/fnrgo.2023.1260738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024]
Abstract
While still relatively rare, longitudinal hyperscanning studies are exceptionally valuable for documenting changes in inter-brain synchrony, which may in turn underpin how behaviors develop and evolve in social settings. The generalizability and ecological validity of this experimental approach hinges on the selected imaging technique being mobile-a requirement met by functional near-infrared spectroscopy (fNIRS). fNIRS has most frequently been used to examine the development of inter-brain synchrony and behavior in child-parent dyads. In this position paper, we contend that dedicating attention to longitudinal and intergenerational hyperscanning stands to benefit the fields of social and cognitive neuroscience more broadly. We argue that this approach is particularly relevant for understanding the neural mechanisms underpinning intergenerational social dynamics, and potentially for benchmarking progress in psychological and social interventions, many of which are situated in intergenerational contexts. In line with our position, we highlight areas of intergenerational research that stand to be enhanced by longitudinal hyperscanning with mobile devices, describe challenges that may arise from measuring across generations in the real world, and offer potential solutions.
Collapse
Affiliation(s)
- Ryssa Moffat
- Social Brain Sciences, ETH Zurich, Zurich, Switzerland
| | - Courtney E. Casale
- School of Psychological Sciences, Macquarie University, Sydney, NSW, Australia
| | | |
Collapse
|
4
|
Phunruangsakao C, Achanccaray D, Bhattacharyya S, Izumi SI, Hayashibe M. Effects of visual-electrotactile stimulation feedback on brain functional connectivity during motor imagery practice. Sci Rep 2023; 13:17752. [PMID: 37853020 PMCID: PMC10584917 DOI: 10.1038/s41598-023-44621-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
The use of neurofeedback is an important aspect of effective motor rehabilitation as it offers real-time sensory information to promote neuroplasticity. However, there is still limited knowledge about how the brain's functional networks reorganize in response to such feedback. To address this gap, this study investigates the reorganization of the brain network during motor imagery tasks when subject to visual stimulation or visual-electrotactile stimulation feedback. This study can provide healthcare professionals with a deeper understanding of the changes in the brain network and help develop successful treatment approaches for brain-computer interface-based motor rehabilitation applications. We examine individual edges, nodes, and the entire network, and use the minimum spanning tree algorithm to construct a brain network representation using a functional connectivity matrix. Furthermore, graph analysis is used to detect significant features in the brain network that might arise in response to the feedback. Additionally, we investigate the power distribution of brain activation patterns using power spectral analysis and evaluate the motor imagery performance based on the classification accuracy. The results showed that the visual and visual-electrotactile stimulation feedback induced subject-specific changes in brain activation patterns and network reorganization in the [Formula: see text] band. Thus, the visual-electrotactile stimulation feedback significantly improved the integration of information flow between brain regions associated with motor-related commands and higher-level cognitive functions, while reducing cognitive workload in the sensory areas of the brain and promoting positive emotions. Despite these promising results, neither neurofeedback modality resulted in a significant improvement in classification accuracy, compared with the absence of feedback. These findings indicate that multimodal neurofeedback can modulate imagery-mediated rehabilitation by enhancing motor-cognitive communication and reducing cognitive effort. In future interventions, incorporating this technique to ease cognitive demands for participants could be crucial for maintaining their motivation to engage in rehabilitation.
Collapse
Affiliation(s)
- Chatrin Phunruangsakao
- Neuro-Robotics Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.
| | - David Achanccaray
- Presence Media Research Group, Hiroshi Ishiguro Laboratory, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Saugat Bhattacharyya
- School of Computing, Engineering and Intelligent Systems, Ulster University, Northland Road, Londonderry, BT48 7JL, UK
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Mitsuhiro Hayashibe
- Neuro-Robotics Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Brain-Computer Interface Training of mu EEG Rhythms in Intellectually Impaired Children with Autism: A Feasibility Case Series. Appl Psychophysiol Biofeedback 2023; 48:229-245. [PMID: 36607454 DOI: 10.1007/s10484-022-09576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 01/07/2023]
Abstract
Prior studies show that neurofeedback training (NFT) of mu rhythms improves behavior and EEG mu rhythm suppression during action observation in children with autism spectrum disorder (ASD). However, intellectually impaired persons were excluded because of their behavioral challenges. We aimed to determine if intellectually impaired children with ASD, who were behaviorally prepared to take part in a mu-NFT study using conditioned auditory reinforcers, would show improvements in symptoms and mu suppression following mu-NFT. Seven children with ASD (ages 6-8; mean IQ 70.6 ± 7.5) successfully took part in mu-NFT. Four cases demonstrated positive learning trends (hit rates) during mu-NFT (learners), and three cases did not (non-learners). Artifact-creating behaviors were present during tests of mu suppression for all cases, but were more frequent in non-learners. Following NFT, learners showed behavioral improvements and were more likely to show evidence of a short-term increase in mu suppression relative to non-learners who showed little to no EEG or behavior improvements. Results support mu-NFT's application in some children who otherwise may not have been able to take part without enhanced behavioral preparations. Children who have more limitations in demonstrating learning during NFT, or in providing data with relatively low artifact during task-dependent EEG tests, may have less chance of benefiting from mu-NFT. Improving the identification of ideal mu-NFT candidates, mu-NFT learning rates, source analyses, EEG outcome task performance, population-specific artifact-rejection methods, and the theoretical bases of NFT protocols, could aid future BCI-based, neurorehabilitation efforts.
Collapse
|
6
|
Perez TM, Glue P, Adhia DB, Navid MS, Zeng J, Dillingham P, Smith M, Niazi IK, Young CK, De Ridder D. Infraslow closed-loop brain training for anxiety and depression (ISAD): a protocol for a randomized, double-blind, sham-controlled pilot trial in adult females with internalizing disorders. Trials 2022; 23:949. [PMID: 36397122 PMCID: PMC9670077 DOI: 10.1186/s13063-022-06863-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/22/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The core intrinsic connectivity networks (core-ICNs), encompassing the default-mode network (DMN), salience network (SN) and central executive network (CEN), have been shown to be dysfunctional in individuals with internalizing disorders (IDs, e.g. major depressive disorder, MDD; generalized anxiety disorder, GAD; social anxiety disorder, SOC). As such, source-localized, closed-loop brain training of electrophysiological signals, also known as standardized low-resolution electromagnetic tomography (sLORETA) neurofeedback (NFB), targeting key cortical nodes within these networks has the potential to reduce symptoms associated with IDs and restore normal core ICN function. We intend to conduct a randomized, double-blind (participant and assessor), sham-controlled, parallel-group (3-arm) trial of sLORETA infraslow (<0.1 Hz) fluctuation neurofeedback (sLORETA ISF-NFB) 3 times per week over 4 weeks in participants (n=60) with IDs. Our primary objectives will be to examine patient-reported outcomes (PROs) and neurophysiological measures to (1) compare the potential effects of sham ISF-NFB to either genuine 1-region ISF-NFB or genuine 2-region ISF-NFB, and (2) assess for potential associations between changes in PRO scores and modifications of electroencephalographic (EEG) activity/connectivity within/between the trained regions of interest (ROIs). As part of an exploratory analysis, we will investigate the effects of additional training sessions and the potential for the potentiation of the effects over time. METHODS We will randomly assign participants who meet the criteria for MDD, GAD, and/or SOC per the MINI (Mini International Neuropsychiatric Interview for DSM-5) to one of three groups: (1) 12 sessions of posterior cingulate cortex (PCC) ISF-NFB up-training (n=15), (2) 12 sessions of concurrent PCC ISF up-training and dorsal anterior cingulate cortex (dACC) ISF-NFB down-training (n=15), or (3) 6 sessions of yoked-sham training followed by 6 sessions genuine ISF-NFB (n=30). Transdiagnostic PROs (Hospital Anxiety and Depression Scale, HADS; Inventory of Depression and Anxiety Symptoms - Second Version, IDAS-II; Multidimensional Emotional Disorder Inventory, MEDI; Intolerance of Uncertainty Scale - Short Form, IUS-12; Repetitive Thinking Questionnaire, RTQ-10) as well as resting-state neurophysiological measures (full-band EEG and ECG) will be collected from all subjects during two baseline sessions (approximately 1 week apart) then at post 6 sessions, post 12 sessions, and follow-up (1 month later). We will employ Bayesian methods in R and advanced source-localisation software (i.e. exact low-resolution brain electromagnetic tomography; eLORETA) in our analysis. DISCUSSION This protocol will outline the rationale and research methodology for a clinical pilot trial of sLORETA ISF-NFB targeting key nodes within the core-ICNs in a female ID population with the primary aims being to assess its potential efficacy via transdiagnostic PROs and relevant neurophysiological measures. TRIAL REGISTRATION Our study was prospectively registered with the Australia New Zealand Clinical Trials Registry (ANZCTR; Trial ID: ACTRN12619001428156). Registered on October 15, 2019.
Collapse
Affiliation(s)
- Tyson M Perez
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand.
- Department of Psychological Medicine, University of Otago, Dunedin, New Zealand.
| | - Paul Glue
- Department of Psychological Medicine, University of Otago, Dunedin, New Zealand
| | - Divya B Adhia
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Muhammad S Navid
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
- Donders Institute for Brain, Cognition and Behaviour, Radbout University Medical Center, Nijmegen, The Netherlands
| | - Jiaxu Zeng
- Department of Preventative & Social Medicine, Otago Medical School-Dunedin Campus, University of Otago, Dunedin, New Zealand
| | - Peter Dillingham
- Coastal People Southern Skies Centre of Research Excellence, Department of Mathematics & Statistics, University of Otago, Dunedin, New Zealand
| | - Mark Smith
- Neurofeedback Therapy Services of New York, New York, USA
| | - Imran K Niazi
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
| | - Calvin K Young
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Dirk De Ridder
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Hong J, Park JH. Efficacy of Neuro-Feedback Training for PTSD Symptoms: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13096. [PMID: 36293673 PMCID: PMC9603735 DOI: 10.3390/ijerph192013096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
If the negative emotions experienced in life become trauma, they affect daily life. Neuro-feedback technology has recently been introduced as a treatment, but many different neuro-feedback protocols and methods exits. This study conducted a meta-analysis of neuro-feedback training for post-traumatic stress disorder (PTSD) symptoms to evaluate the effects of functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG)-based neuro-feedback training. A search of PubMed, the Cochrane Library, Web of Science, Science Direct, and ClinicalTrials.gov was conducted from January 2011 to December 2021. The studies' quality was assessed using the Cochrane risk of bias tool and publication bias was assessed by Egger's regression test. Seven studies that met the inclusion criteria were used for the systematic review and meta-analysis. EEG was more effective than fMRI for PTSD symptoms, and the effect on PTSD symptoms was higher than on anxiety and depression. There was no difference in the effectiveness of the training sessions. Our findings showed that EEG-based neuro-feedback training was more helpful for training PTSD symptoms. Additionally, the methods were also shown to be valid for evaluating clinical PTSD diagnoses. Further research is needed to establish a gold standard protocol for the EEG-based neuro-feedback training (EEG-NFT) method for PTSD symptoms.
Collapse
Affiliation(s)
- Jian Hong
- Department of ICT Convergence, The Graduate School, Soonchunhyang University, Asan 31538, Korea
| | - Jin-Hyuck Park
- Department of Occupational Therapy, Soonchunhyang University, Asan 31538, Korea
| |
Collapse
|
8
|
A. Markovics J. Training the Conductor of the Brainwave Symphony: In Search of a Common Mechanism of Action for All Methods of Neurofeedback. ARTIF INTELL 2022. [DOI: 10.5772/intechopen.98343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are several different methods of neurofeedback, most of which presume an operant conditioning model whereby the subject learns to control their brain activity in particular regions of the brain and/or at particular brainwave frequencies based on reinforcement. One method, however, called infra-low frequency [ILF] neurofeedback cannot be explained through this paradigm, yet it has profound effects on brain function. Like a conductor of a symphony, recent evidence demonstrates that the primary ILF (typically between 0.01–0.1 Hz), which correlates with the fluctuation of oxygenated and deoxygenated blood in the brain, regulates all of the classic brainwave bands (i.e. alpha, theta, delta, beta, gamma). The success of ILF neurofeedback suggests that all forms of neurofeedback may work through a similar mechanism that does not fit the operant conditioning paradigm. This chapter focuses on the possible mechanisms of action for ILF neurofeedback, which may be generalized, based on current evidence.
Collapse
|
9
|
Perez TM, Mathew J, Glue P, Adhia DB, De Ridder D. Is There Evidence for the Specificity of Closed-Loop Brain Training in the Treatment of Internalizing Disorders? A Systematic Review. Front Neurosci 2022; 16:821136. [PMID: 35360168 PMCID: PMC8960197 DOI: 10.3389/fnins.2022.821136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Internalizing disorders (IDs), e.g., major depressive disorder (MDD), posttraumatic stress disorder (PTSD), obsessive-compulsive disorder (OCD) are the most prevalent psychopathologies experienced worldwide. Current first-line therapies (i.e., pharmacotherapy and/or psychotherapy) offer high failure rates, limited accessibility, and substantial side-effects. Electroencephalography (EEG) guided closed-loop brain training, also known as EEG-neurofeedback (EEG-NFB), is believed to be a safe and effective alternative, however, there is much debate in the field regarding the existence of specificity [i.e., clinical effects specific to the modulation of the targeted EEG variable(s)]. This review was undertaken to determine if there is evidence for EEG-NFB specificity in the treatment of IDs. Methods We considered only randomized, double-blind, sham-controlled trials. Outcomes of interest included self/parent/teacher reports and clinician ratings of ID-related symptomatology. Results Of the four reports (total participant number = 152) meeting our eligibility criteria, three had point estimates suggesting small to moderate effect sizes favoring genuine therapy over sham, however, due to small sample sizes, all 95% confidence intervals (CIs) were wide and spanned the null. The fourth trial had yet to post results as of the submission date of this review. The limited overall number of eligible reports (and participants), large degree of inter-trial heterogeneity, and restricted span of ID populations with published/posted outcome data (i.e., PTSD and OCD) precluded a quantitative synthesis. Discussion The current literature suggests that EEG-NFB may induce specific effects in the treatment of some forms of IDs, however, the evidence is very limited. Ultimately, more randomized, double-blind, sham-controlled trials encompassing a wider array of ID populations are needed to determine the existence and, if present, degree of EEG-NFB specificity in the treatment of IDs. Systematic Review Registration [https://www.crd.york.ac.uk/prospero], identifier [CRD42020159702].
Collapse
Affiliation(s)
- Tyson Michael Perez
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
- Department of Psychological Medicine, University of Otago, Dunedin, New Zealand
| | - Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research, University of Otago, Dunedin, New Zealand
| | - Paul Glue
- Department of Psychological Medicine, University of Otago, Dunedin, New Zealand
| | - Divya B. Adhia
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Dirk De Ridder
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Scott SM, Raftery C. Brain-Computer Interfaces and Creative Expression: Interface Considerations for Rehabilitative and Therapeutic Interactions. FRONTIERS IN COMPUTER SCIENCE 2021. [DOI: 10.3389/fcomp.2021.718605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
By translating brain signals into new kinds of outputs, Brain-Computer Interface (BCI) systems hold tremendous potential as both transformative rehabilitation and communication tools. BCIs can be considered a unique technology, in that they are able to provide a direct link between the brain and the external environment. By affording users with opportunities for communication and self-expression, BCI systems serve as a bridge between abled-bodied and disabled users, in turn reducing existing barriers between these groups. This perspective piece explores the complex shifting relationship between neuroadaptive systems and humans by foregrounding personal experience and embodied interaction as concepts through which to evaluate digital environments cultivated through the design of BCI interfaces. To underscore the importance of fostering human-centered experiences through technologically mediated interactions, this work offers a conceptual framework through which the rehabilitative and therapeutic possibilities of BCI user-system engagement could be furthered. By inviting somatic analysis towards the design of BCI interfaces and incorporating tenets of creative arts therapies practices into hybrid navigation paradigms for self-expressive applications, this work highlights the need for examining individual technological interactions as sites with meaning-making potentiality, as well as those conceived through unique exchanges based on user-specific needs for communication. Designing BCI interfaces in ways that afford users with increased options for navigation, as well as with the ability to share subjective and collective experiences, helps to redefine existing boundaries of digital and physical user-system interactions and encourages the reimagining of these systems as novel digital health tools for recovery.
Collapse
|
11
|
The Benefits of Music Listening for Induced State Anxiety: Behavioral and Physiological Evidence. Brain Sci 2021; 11:brainsci11101332. [PMID: 34679397 PMCID: PMC8533701 DOI: 10.3390/brainsci11101332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Some clinical studies have indicated that neutral and happy music may relieve state anxiety. However, the brain mechanisms by which these effective interventions in music impact state anxiety remain unknown. METHODS In this study, we selected music with clinical effects for therapy, and 62 subjects were included using the evoked anxiety paradigm. After evoking anxiety with a visual stimulus, all subjects were randomly divided into three groups (listening to happy music, neutral music and a blank stimulus), and EEG signals were acquired. RESULTS We found that different emotional types of music might have different mechanisms in state anxiety interventions. Neutral music had the effect of alleviating state anxiety. The brain mechanisms supported that neutral music ameliorating state anxiety was associated with decreased power spectral density of the occipital lobe and increased brain functional connectivity between the occipital lobe and frontal lobe. Happy music also had the effect of alleviating state anxiety, and the brain mechanism was associated with enhanced brain functional connectivity between the occipital lobe and right temporal lobe. CONCLUSIONS This study may be important for a deep understanding of the mechanisms associated with state anxiety music interventions and may further contribute to future clinical treatment using nonpharmaceutical interventions.
Collapse
|
12
|
Komatsu H, Watanabe E, Fukuchi M. Psychiatric Neural Networks and Precision Therapeutics by Machine Learning. Biomedicines 2021; 9:403. [PMID: 33917863 PMCID: PMC8068267 DOI: 10.3390/biomedicines9040403] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Learning and environmental adaptation increase the likelihood of survival and improve the quality of life. However, it is often difficult to judge optimal behaviors in real life due to highly complex social dynamics and environment. Consequentially, many different brain regions and neuronal circuits are involved in decision-making. Many neurobiological studies on decision-making show that behaviors are chosen through coordination among multiple neural network systems, each implementing a distinct set of computational algorithms. Although these processes are commonly abnormal in neurological and psychiatric disorders, the underlying causes remain incompletely elucidated. Machine learning approaches with multidimensional data sets have the potential to not only pathologically redefine mental illnesses but also better improve therapeutic outcomes than DSM/ICD diagnoses. Furthermore, measurable endophenotypes could allow for early disease detection, prognosis, and optimal treatment regime for individuals. In this review, decision-making in real life and psychiatric disorders and the applications of machine learning in brain imaging studies on psychiatric disorders are summarized, and considerations for the future clinical translation are outlined. This review also aims to introduce clinicians, scientists, and engineers to the opportunities and challenges in bringing artificial intelligence into psychiatric practice.
Collapse
Affiliation(s)
- Hidetoshi Komatsu
- Medical Affairs, Kyowa Pharmaceutical Industry Co., Ltd., Osaka 530-0005, Japan
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya City 464-8602, Japan
| | - Emi Watanabe
- Interactive Group, Accenture Japan Ltd., Tokyo 108-0073, Japan;
| | - Mamoru Fukuchi
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, Gunma 370-0033, Japan;
| |
Collapse
|
13
|
Ichikawa N, Lisi G, Yahata N, Okada G, Takamura M, Hashimoto RI, Yamada T, Yamada M, Suhara T, Moriguchi S, Mimura M, Yoshihara Y, Takahashi H, Kasai K, Kato N, Yamawaki S, Seymour B, Kawato M, Morimoto J, Okamoto Y. Primary functional brain connections associated with melancholic major depressive disorder and modulation by antidepressants. Sci Rep 2020; 10:3542. [PMID: 32103088 PMCID: PMC7044159 DOI: 10.1038/s41598-020-60527-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
The limited efficacy of available antidepressant therapies may be due to how they affect the underlying brain network. The purpose of this study was to develop a melancholic MDD biomarker to identify critically important functional connections (FCs), and explore their association to treatments. Resting state fMRI data of 130 individuals (65 melancholic major depressive disorder (MDD) patients, 65 healthy controls) were included to build a melancholic MDD classifier, and 10 FCs were selected by our sparse machine learning algorithm. This biomarker generalized to a drug-free independent cohort of melancholic MDD, and did not generalize to other MDD subtypes or other psychiatric disorders. Moreover, we found that antidepressants had a heterogeneous effect on the identified FCs of 25 melancholic MDDs. In particular, it did impact the FC between left dorsolateral prefrontal cortex (DLPFC)/inferior frontal gyrus (IFG) and posterior cingulate cortex (PCC)/precuneus, ranked as the second 'most important' FC based on the biomarker weights, whilst other eight FCs were normalized. Given that left DLPFC has been proposed as an explicit target of depression treatments, this suggest that the limited efficacy of antidepressants might be compensated by combining therapies with targeted treatment as an optimized approach in the future.
Collapse
Affiliation(s)
- Naho Ichikawa
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Giuseppe Lisi
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Noriaki Yahata
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryu-Ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Takashi Yamada
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Makiko Yamada
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tetsuya Suhara
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Sho Moriguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yujiro Yoshihara
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Youth Mental Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Shigeto Yamawaki
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Ben Seymour
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan. .,Computational and Biological Learning Lab, Cambridge University, Cambridge, UK.
| | - Mitsuo Kawato
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Jun Morimoto
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
14
|
Gandara V, Pineda JA, Shu IW, Singh F. A Systematic Review of the Potential Use of Neurofeedback in Patients With Schizophrenia. SCHIZOPHRENIA BULLETIN OPEN 2020; 1:sgaa005. [PMID: 32803157 PMCID: PMC7418870 DOI: 10.1093/schizbullopen/sgaa005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Schizophrenia (SCZ) is a neurodevelopmental disorder characterized by positive symptoms (hallucinations and delusions), negative symptoms (anhedonia, social withdrawal) and marked cognitive deficits (memory, executive function, and attention). Current mainstays of treatment, including medications and psychotherapy, do not adequately address cognitive symptoms, which are essential for everyday functioning. However, recent advances in computational neurobiology have rekindled interest in neurofeedback (NF), a form of self-regulation or neuromodulation, in potentially alleviating cognitive symptoms in patients with SCZ. Therefore, we conducted a systematic review of the literature for NF studies in SCZ to identify lessons learned and to identify steps to move the field forward. Our findings reveal that NF studies to date consist mostly of case studies and small sample, single-group studies. Despite few randomized clinical trials, the results suggest that NF is feasible and that it leads to measurable changes in brain function. These findings indicate early proof-of-concept data that needs to be followed up by larger, randomized clinical trials, testing the efficacy of NF compared to well thought out placebos. We hope that such an undertaking by the field will lead to innovative solutions that address refractory symptoms and improve everyday functioning in patients with SCZ.
Collapse
Affiliation(s)
- Veronica Gandara
- Department of Psychiatry, University of California at San Diego (UCSD), La Jolla, CA
| | - Jaime A Pineda
- Department of Cognitive Science, University of California at San Diego (UCSD), La Jolla, CA
| | - I-Wei Shu
- Department of Psychiatry, University of California at San Diego (UCSD), La Jolla, CA
| | - Fiza Singh
- Department of Psychiatry, University of California at San Diego (UCSD), La Jolla, CA
| |
Collapse
|
15
|
Papo D. Neurofeedback: Principles, appraisal, and outstanding issues. Eur J Neurosci 2019; 49:1454-1469. [PMID: 30570194 DOI: 10.1111/ejn.14312] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022]
Abstract
Neurofeedback is a form of brain training in which subjects are fed back information about some measure of their brain activity which they are instructed to modify in a way thought to be functionally advantageous. Over the last 20 years, neurofeedback has been used to treat various neurological and psychiatric conditions, and to improve cognitive function in various contexts. However, in spite of a growing popularity, neurofeedback protocols typically make (often covert) assumptions on what aspects of brain activity to target, where in the brain to act and how, which have far-reaching implications for the assessment of its potential and efficacy. Here we critically examine some conceptual and methodological issues associated with the way neurofeedback's general objectives and neural targets are defined. The neural mechanisms through which neurofeedback may act at various spatial and temporal scales, and the way its efficacy is appraised are reviewed, and the extent to which neurofeedback may be used to control functional brain activity discussed. Finally, it is proposed that gauging neurofeedback's potential, as well as assessing and improving its efficacy will require better understanding of various fundamental aspects of brain dynamics and a more precise definition of functional brain activity and brain-behaviour relationships.
Collapse
Affiliation(s)
- David Papo
- SCALab, CNRS, Université de Lille, Villeneuve d'Ascq, France
| |
Collapse
|