1
|
Lorin C, Guiet R, Chiaruttini N, Ambrosini G, Boci E, Abdellah M, Markram H, Keller D. Structural and molecular characterization of astrocyte and vasculature connectivity in the mouse hippocampus and cortex. Glia 2024; 72:2001-2021. [PMID: 39007459 DOI: 10.1002/glia.24594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
The relation of astrocytic endfeet to the vasculature plays a key functional role in the neuro-glia-vasculature unit. We characterize the spatial organization of astrocytes and the structural aspects that facilitate their involvement in molecular exchanges. Using double transgenic mice, we performed co-immunostaining, confocal microscopy, and three-dimensional digital segmentation to investigate the biophysical and molecular organization of astrocytes and their intricate endfoot network at the micrometer level in the isocortex and hippocampus. The results showed that hippocampal astrocytes had smaller territories, reduced endfoot dimensions, and fewer contacts with blood vessels compared with those in the isocortex. Additionally, we found that both connexins 43 and 30 have a higher density in the endfoot and the former is overexpressed relative to the latter. However, due to the limitations of the method, further studies are needed to determine the exact localization on the endfoot. The quantitative information obtained in this study will be useful for modeling the interactions of astrocytes with the vasculature.
Collapse
Affiliation(s)
- Charlotte Lorin
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Romain Guiet
- Bioimaging and Optics Platform, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolas Chiaruttini
- Bioimaging and Optics Platform, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Giovanna Ambrosini
- Bioinformatics Competence Center, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Elvis Boci
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Marwan Abdellah
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Daniel Keller
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| |
Collapse
|
2
|
Bretová K, Svobodová V, Dubový P. Changes in Cx43 and AQP4 Proteins, and the Capture of 3 kDa Dextran in Subpial Astrocytes of the Rat Medial Prefrontal Cortex after Both Sham Surgery and Sciatic Nerve Injury. Int J Mol Sci 2024; 25:10989. [PMID: 39456773 PMCID: PMC11507206 DOI: 10.3390/ijms252010989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
A subpopulation of astrocytes on the brain's surface, known as subpial astrocytes, constitutes the "glia limitans superficialis" (GLS), which is an interface between the brain parenchyma and the cerebrospinal fluid (CSF) in the subpial space. Changes in connexin-43 (Cx43) and aquaporin-4 (AQP4) proteins in subpial astrocytes were examined in the medial prefrontal cortex at postoperative day 1, 3, 7, 14, and 21 after sham operation and sciatic nerve compression (SNC). In addition, we tested the altered uptake of TRITC-conjugated 3 kDa dextran by reactive subpial astrocytes. Cellular immunofluorescence (IF) detection and image analysis were used to examine changes in Cx43 and AQP4 protein levels, as well as TRITC-conjugated 3 kDa dextran, in subpial astrocytes. The intensity of Cx43-IF was significantly increased, but AQP4-IF decreased in subpial astrocytes of sham- and SNC-operated rats during all survival periods compared to naïve controls. Similarly, the uptake of 3 kDa dextran in the GLS was reduced following both sham and SNC operations. The results suggest that both sciatic nerve injury and peripheral tissue injury alone can induce changes in subpial astrocytes related to the spread of their reactivity across the cortical surface mediated by increased amounts of gap junctions. At the same time, water transport and solute uptake were impaired in subpial astrocytes.
Collapse
Affiliation(s)
| | | | - Petr Dubový
- Cellular and Molecular Neurobiology Research Group, Department of Anatomy, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic; (K.B.)
| |
Collapse
|
3
|
Su Y, Verkhratsky A, Yi C. Targeting connexins: possible game changer in managing neuropathic pain? Trends Mol Med 2024; 30:642-659. [PMID: 38594094 DOI: 10.1016/j.molmed.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Neuropathic pain is a chronic debilitating condition caused by nerve injury or a variety of diseases. At the core of neuropathic pain lies the aberrant neuronal excitability in the peripheral and/or central nervous system (PNS and CNS). Enhanced connexin expression and abnormal activation of connexin-assembled gap junctional channels are prominent in neuropathic pain along with reactive gliosis, contributing to neuronal hypersensitivity and hyperexcitability. In this review, we delve into the current understanding of how connexin expression and function contribute to the pathogenesis and pathophysiology of neuropathic pain and argue for connexins as potential therapeutic targets for neuropathic pain management.
Collapse
Affiliation(s)
- Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China; Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen, China.
| |
Collapse
|
4
|
Shiadeh SMJ, Goretta F, Svedin P, Jansson T, Mallard C, Ardalan M. Long-term impact of maternal obesity on the gliovascular unit and ephrin signaling in the hippocampus of adult offspring. J Neuroinflammation 2024; 21:39. [PMID: 38308309 PMCID: PMC10837922 DOI: 10.1186/s12974-024-03030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Children born to obese mothers are at increased risk of developing mood disorders and cognitive impairment. Experimental studies have reported structural changes in the brain such as the gliovascular unit as well as activation of neuroinflammatory cells as a part of neuroinflammation processing in aged offspring of obese mothers. However, the molecular mechanisms linking maternal obesity to poor neurodevelopmental outcomes are not well established. The ephrin system plays a major role in a variety of cellular processes including cell-cell interaction, synaptic plasticity, and long-term potentiation. Therefore, in this study we determined the impact of maternal obesity in pregnancy on cortical, hippocampal development, vasculature and ephrin-A3/EphA4-signaling, in the adult offspring in mice. METHODS Maternal obesity was induced in mice by a high fat/high sugar Western type of diet (HF/HS). We collected brain tissue (prefrontal cortex and hippocampus) from 6-month-old offspring of obese and lean (control) dams. Hippocampal volume, cortical thickness, myelination of white matter, density of astrocytes and microglia in relation to their activity were analyzed using 3-D stereological quantification. mRNA expression of ephrin-A3, EphA4 and synaptic markers were measured by qPCR in the brain tissue. Moreover, expression of gap junction protein connexin-43, lipocalin-2, and vascular CD31/Aquaporin 4 were determined in the hippocampus by immunohistochemistry. RESULTS Volume of hippocampus and cortical thickness were significantly smaller, and myelination impaired, while mRNA levels of hippocampal EphA4 and post-synaptic density (PSD) 95 were significantly lower in the hippocampus in the offspring of obese dams as compared to offspring of controls. Further analysis of the hippocampal gliovascular unit indicated higher coverage of capillaries by astrocytic end-feet, expression of connexin-43 and lipocalin-2 in endothelial cells in the offspring of obese dams. In addition, offspring of obese dams demonstrated activation of microglia together with higher density of cells, while astrocyte cell density was lower. CONCLUSION Maternal obesity affects brain size, impairs myelination, disrupts the hippocampal gliovascular unit and decreases the mRNA expression of EphA4 and PSD-95 in the hippocampus of adult offspring. These results indicate that the vasculature-glia cross-talk may be an important mediator of altered synaptic plasticity, which could be a link between maternal obesity and neurodevelopmental/neuropsychiatric disorders in the offspring.
Collapse
Affiliation(s)
- Seyedeh Marziyeh Jabbari Shiadeh
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Fanny Goretta
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Svedin
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of OB/GYN, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maryam Ardalan
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
5
|
Panchenko PE, Hippauf L, Konsman JP, Badaut J. Do astrocytes act as immune cells after pediatric TBI? Neurobiol Dis 2023; 185:106231. [PMID: 37468048 PMCID: PMC10530000 DOI: 10.1016/j.nbd.2023.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023] Open
Abstract
Astrocytes are in contact with the vasculature, neurons, oligodendrocytes and microglia, forming a local network with various functions critical for brain homeostasis. One of the primary responders to brain injury are astrocytes as they detect neuronal and vascular damage, change their phenotype with morphological, proteomic and transcriptomic transformations for an adaptive response. The role of astrocytic responses in brain dysfunction is not fully elucidated in adult, and even less described in the developing brain. Children are vulnerable to traumatic brain injury (TBI), which represents a leading cause of death and disability in the pediatric population. Pediatric brain trauma, even with mild severity, can lead to long-term health complications, such as cognitive impairments, emotional disorders and social dysfunction later in life. To date, the underlying pathophysiology is still not fully understood. In this review, we focus on the astrocytic response in pediatric TBI and propose a potential immune role of the astrocyte in response to trauma. We discuss the contribution of astrocytes in the local inflammatory cascades and secretion of various immunomodulatory factors involved in the recruitment of local microglial cells and peripheral immune cells through cerebral blood vessels. Taken together, we propose that early changes in the astrocytic phenotype can alter normal development of the brain, with long-term consequences on neurological outcomes, as described in preclinical models and patients.
Collapse
Affiliation(s)
| | - Lea Hippauf
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France
| | | | - Jerome Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
6
|
Association Between Adenosine A 2A Receptors and Connexin 43 Regulates Hemichannels Activity and ATP Release in Astrocytes Exposed to Amyloid-β Peptides. Mol Neurobiol 2021; 58:6232-6248. [PMID: 34476674 DOI: 10.1007/s12035-021-02538-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022]
Abstract
Increasing evidence implicates astrocytes and the associated purinergic modulation in Alzheimer's disease (AD), characterized by cognitive deficits involving the extracellular amyloid-β peptides (Aβ) accumulation. Aβ can affect astrocytic gliotransmitters release, namely ATP, which is rapidly metabolized into adenosine by ecto-5'-nucleotidase, CD73, resulting in adenosine A2A receptors (A2AR) activation that bolsters neurodegeneration. AD's brains exhibit an upregulation of A2AR and of connexin 43 (Cx43), which in astrocytes forms hemichannels that can mediate ATP release. However, a coupling between astrocytic A2AR and Cx43 remains to be established. This was now investigated using astrocytic primary cultures exposed to Aβ1-42 peptides. Aβ triggered ATP release through Cx43 hemichannels, a process blocked by A2AR antagonists and mimicked by selective A2AR activation. A2AR directly regulated hemichannels activity and prevented Cx43 upregulation and phosphorylation observed in Aβ1-42-exposed astrocytes. Moreover, a proximity ligand assay revealed a physical association between astrocytic A2AR and Cx43. Finally, the blockade of CD73-mediated extracellular formation of ATP-derived adenosine prevented the Aβ-induced increase of Cx43 hemichannel activity and of ATP release. Overall, the data identify a feed-forward loop involving astrocytic A2AR and Cx43 hemichannels, whereby A2AR increase Cx43 hemichannel activity leading to increased ATP release, which is converted into adenosine by CD73, sustaining the increased astrocytic A2AR activity in AD-like conditions.
Collapse
|
7
|
Liu YD, Tang G, Qian F, Liu L, Huang JR, Tang FR. Astroglial Connexins in Neurological and Neuropsychological Disorders and Radiation Exposure. Curr Med Chem 2021; 28:1970-1986. [PMID: 32520676 DOI: 10.2174/0929867327666200610175037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 11/22/2022]
Abstract
Radiotherapy is a common treatment for brain and spinal cord tumors and also a risk factor for neuropathological changes in the brain leading to different neurological and neuropsychological disorders. Astroglial connexins are involved in brain inflammation, development of Alzheimer's Disease (AD), depressive, epilepsy, and amyotrophic lateral sclerosis, and are affected by radiation exposure. Therefore, it is speculated that radiation-induced changes of astroglial connexins may be related to the brain neuropathology and development of neurological and neuropsychological disorders. In this paper, we review the functional expression and regulation of astroglial connexins expressed between astrocytes and different types of brain cells (including oligodendrocytes, microglia, neurons and endothelial cells). The roles of these connexins in the development of AD, depressive, epilepsy, amyotrophic lateral sclerosis and brain inflammation have also been summarized. The radiation-induced astroglial connexins changes and development of different neurological and neuropsychological disorders are then discussed. Based on currently available data, we propose that radiation-induced astroglial connexins changes may be involved in the genesis of different neurological and neuropsychological disorders which depends on the age, brain regions, and radiation doses/dose rates. The abnormal astroglial connexins may be novel therapeutic targets for the prevention of radiation-induced cognitive impairment, neurological and neuropsychological disorders.
Collapse
Affiliation(s)
- Yuan Duo Liu
- Medical School of Yangtze University, Jingzhou 434000, China
| | - Ge Tang
- Woodlands Health Campus, National Healthcare Group Singapore, Singapore
| | - Feng Qian
- Medical School of Yangtze University, Jingzhou 434000, China
| | - Lian Liu
- Medical School of Yangtze University, Jingzhou 434000, China
| | | | - Feng Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| |
Collapse
|
8
|
Seo JH, Dalal MS, Contreras JE. Pannexin-1 Channels as Mediators of Neuroinflammation. Int J Mol Sci 2021; 22:ijms22105189. [PMID: 34068881 PMCID: PMC8156193 DOI: 10.3390/ijms22105189] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is a major component of central nervous system (CNS) injuries and neurological diseases, including Alzheimer’s disease, multiple sclerosis, neuropathic pain, and brain trauma. The activation of innate immune cells at the damage site causes the release of pro-inflammatory cytokines and chemokines, which alter the functionality of nearby tissues and might mediate the recruitment of leukocytes to the injury site. If this process persists or is exacerbated, it prevents the adequate resolution of the inflammation, and ultimately enhances secondary damage. Adenosine 5′ triphosphate (ATP) is among the molecules released that trigger an inflammatory response, and it serves as a chemotactic and endogenous danger signal. Extracellular ATP activates multiple purinergic receptors (P2X and P2Y) that have been shown to promote neuroinflammation in a variety of CNS diseases. Recent studies have shown that Pannexin-1 (Panx1) channels are the principal conduits of ATP release from dying cells and innate immune cells in the brain. Herein, we review the emerging evidence that directly implicates Panx-1 channels in the neuroinflammatory response in the CNS.
Collapse
Affiliation(s)
- Joon Ho Seo
- Department of Neurology and Nash Family, Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA;
| | - Miloni S. Dalal
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA;
| | - Jorge E. Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA;
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
- Correspondence: ; Tel.: +1-530-754-2770
| |
Collapse
|
9
|
Yang TT, Qian F, Liu L, Peng XC, Huang JR, Ren BX, Tang FR. Astroglial connexins in epileptogenesis. Seizure 2020; 84:122-128. [PMID: 33348235 DOI: 10.1016/j.seizure.2020.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022] Open
Abstract
The astroglial network connected through gap junctions assembling from connexins physiologically balances the concentrations of ions and neurotransmitters around neurons. Astrocytic dysfunction has been associated with many neurological disorders including epilepsy. Dissociated gap junctions result in the increased activity of connexin hemichannels which triggers brain pathophysiological changes. Previous studies in patients and animal models of epilepsy indicate that the reduced gap junction coupling from assembled connexin hemichannels in the astrocytes may play an important role in epileptogenesis. This abnormal cell-to-cell communication is now emerging as an important feature of brain pathologies and being considered as a novel therapeutic target for controlling epileptogenesis. In particular, candidate drugs with ability of inhibition of connexin hemichannel activity and enhancement of gap junction formation in astrocytes should be explored to prevent epileptogenesis and control epilepsy.
Collapse
Affiliation(s)
- Ting-Ting Yang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Feng Qian
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China.
| | - Lian Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Xiao-Chun Peng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Jiang-Rong Huang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Bo-Xu Ren
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei Province, 434023, China
| | - Feng-Ru Tang
- Radiobiology Research Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore.
| |
Collapse
|
10
|
de Waard DM, Bugiani M. Astrocyte-Oligodendrocyte-Microglia Crosstalk in Astrocytopathies. Front Cell Neurosci 2020; 14:608073. [PMID: 33328899 PMCID: PMC7710860 DOI: 10.3389/fncel.2020.608073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Defective astrocyte function due to a genetic mutation can have major consequences for microglia and oligodendrocyte physiology, which in turn affects the white matter integrity of the brain. This review addresses the current knowledge on shared and unique pathophysiological mechanisms of astrocytopathies, including vanishing white matter, Alexander disease, megalencephalic leukoencephalopathy with subcortical cysts, Aicardi-Goutières syndrome, and oculodentodigital dysplasia. The mechanisms of disease include protein accumulation, unbalanced secretion of extracellular matrix proteins, pro- and anti-inflammatory molecules, cytokines and chemokines by astrocytes, as well as an altered gap junctional network and a changed ionic and nutrient homeostasis. Interestingly, the extent to which astrogliosis and microgliosis are present in these astrocytopathies is highly variable. An improved understanding of astrocyte-microglia-oligodendrocyte crosstalk might ultimately lead to the identification of druggable targets for these, currently untreatable, severe conditions.
Collapse
Affiliation(s)
| | - Marianna Bugiani
- Department of Pathology, VU Medical center, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
11
|
Cohen-Salmon M, Slaoui L, Mazaré N, Gilbert A, Oudart M, Alvear-Perez R, Elorza-Vidal X, Chever O, Boulay AC. Astrocytes in the regulation of cerebrovascular functions. Glia 2020; 69:817-841. [PMID: 33058289 DOI: 10.1002/glia.23924] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Astrocytes are the most numerous type of neuroglia in the brain and have a predominant influence on the cerebrovascular system; they control perivascular homeostasis, the integrity of the blood-brain barrier, the dialogue with the peripheral immune system, the transfer of metabolites from the blood, and blood vessel contractility in response to neuronal activity. These regulatory processes occur in a specialized interface composed of perivascular astrocyte extensions that almost completely cover the cerebral blood vessels. Scientists have only recently started to study how this interface is formed and how it influences cerebrovascular functions. Here, we review the literature on the astrocytes' role in the regulation of the cerebrovascular system. We cover the anatomy and development of the gliovascular interface, the known gliovascular functions, and molecular factors, the latter's implication in certain pathophysiological situations, and recent cutting-edge experimental tools developed to examine the astrocytes' role at the vascular interface. Finally, we highlight some open questions in this field of research.
Collapse
Affiliation(s)
- Martine Cohen-Salmon
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Leila Slaoui
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Noémie Mazaré
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Alice Gilbert
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Marc Oudart
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Rodrigo Alvear-Perez
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Xabier Elorza-Vidal
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Oana Chever
- Normandie University, UNIROUEN, INSERM, DC2N, IRIB, Rouen, France
| | - Anne-Cécile Boulay
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| |
Collapse
|
12
|
Astrocyte and Oligodendrocyte Cross-Talk in the Central Nervous System. Cells 2020; 9:cells9030600. [PMID: 32138223 PMCID: PMC7140446 DOI: 10.3390/cells9030600] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/23/2022] Open
Abstract
Over the last decade knowledge of the role of astrocytes in central nervous system (CNS) neuroinflammatory diseases has changed dramatically. Rather than playing a merely passive role in response to damage it is clear that astrocytes actively maintain CNS homeostasis by influencing pH, ion and water balance, the plasticity of neurotransmitters and synapses, cerebral blood flow, and are important immune cells. During disease astrocytes become reactive and hypertrophic, a response that was long considered to be pathogenic. However, recent studies reveal that astrocytes also have a strong tissue regenerative role. Whilst most astrocyte research focuses on modulating neuronal function and synaptic transmission little is known about the cross-talk between astrocytes and oligodendrocytes, the myelinating cells of the CNS. This communication occurs via direct cell-cell contact as well as via secreted cytokines, chemokines, exosomes, and signalling molecules. Additionally, this cross-talk is important for glial development, triggering disease onset and progression, as well as stimulating regeneration and repair. Its critical role in homeostasis is most evident when this communication fails. Here, we review emerging evidence of astrocyte-oligodendrocyte communication in health and disease. Understanding the pathways involved in this cross-talk will reveal important insights into the pathogenesis and treatment of CNS diseases.
Collapse
|
13
|
Vignal N, Boulay AC, San C, Cohen-Salmon M, Rizzo-Padoin N, Sarda-Mantel L, Declèves X, Cisternino S, Hosten B. Astroglial Connexin 43 Deficiency Protects against LPS-Induced Neuroinflammation: A TSPO Brain µPET Study with [ 18F]FEPPA. Cells 2020; 9:cells9020389. [PMID: 32046185 PMCID: PMC7072124 DOI: 10.3390/cells9020389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 02/08/2023] Open
Abstract
Astroglial connexin 43 (Cx43) has been recognized as a crucial immunoregulating factor in the brain. Its inactivation leads to a continuous immune recruitment, cytokine expression modification and a specific humoral autoimmune response against the astrocytic extracellular matrix but without brain lesions or cell lysis. To assess the impact of Cx43 deletion on the brain’s inflammatory response, TSPO expression was studied by positron emission tomography (PET) imaging with a specific radioligand, [18F]FEPPA, in basal conditions or upon Lipopolysaccharides (LPS)-induced inflammatory challenge. Astroglial Cx43-deleted mice underwent [18F]FEPPA PET/CT dynamic imaging with or without LPS injection (5 mg/kg) 24 h before imaging. Quantification and pharmacokinetic data modelling with a 2TCM-1K compartment model were performed. After collecting the mice brains, TSPO expression was quantified and localized by Western blot and FISH analysis. We found that astroglial Cx43 deficiency does not significantly alter TSPO expression in the basal state as observed with [18F]FEPPA PET imaging, FISH and Western blot analysis. However, deletion of astrocyte Cx43 abolishes the LPS-induced TSPO increase. Autoimmune encephalopathy observed in astroglial Cx43-deleted mice does not involve TSPO overexpression. Consistent with previous studies showing a unique inflammatory status in the absence of astrocyte Cx43, we show that a deficient expression of astrocytic Cx43 protects the animals from LPS-induced neuroinflammation as addressed by TSPO expression.
Collapse
Affiliation(s)
- Nicolas Vignal
- Unité Claude Kellershohn, Institut de Recherche Saint-Louis, Faculté de Santé, Université de Paris, 75010 Paris, France; (N.V.); (N.R.-P.); (L.S.-M.)
- Therapeutic Optimisation in Neuropsychopharmacology, INSERM UMR-S 1144, 75005 Paris, France; (X.D.); (S.C.)
- Hôpital Lariboisière: Service de médecine nucléaire, Assistance Publique–Hôpitaux de Paris, 75010 Paris, France
| | - Anne-Cécile Boulay
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France; (A.-C.B.); (M.C.-S.)
| | - Carine San
- Hôpital Saint-Louis: Service Pharmacie, Assistance Publique–Hôpitaux de Paris, Unité Claude Kellershohn, 75010 Paris, France;
| | - Martine Cohen-Salmon
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France; (A.-C.B.); (M.C.-S.)
| | - Nathalie Rizzo-Padoin
- Unité Claude Kellershohn, Institut de Recherche Saint-Louis, Faculté de Santé, Université de Paris, 75010 Paris, France; (N.V.); (N.R.-P.); (L.S.-M.)
- Therapeutic Optimisation in Neuropsychopharmacology, INSERM UMR-S 1144, 75005 Paris, France; (X.D.); (S.C.)
- Hôpital Saint-Louis: Service Pharmacie, Assistance Publique–Hôpitaux de Paris, Unité Claude Kellershohn, 75010 Paris, France;
| | - Laure Sarda-Mantel
- Unité Claude Kellershohn, Institut de Recherche Saint-Louis, Faculté de Santé, Université de Paris, 75010 Paris, France; (N.V.); (N.R.-P.); (L.S.-M.)
- Hôpital Lariboisière: Service de médecine nucléaire, Assistance Publique–Hôpitaux de Paris, 75010 Paris, France
| | - Xavier Declèves
- Therapeutic Optimisation in Neuropsychopharmacology, INSERM UMR-S 1144, 75005 Paris, France; (X.D.); (S.C.)
- Faculté de Santé, Université de Paris, 75005 Paris, France
- Hôpital Cochin: Service de biologie du médicament et de toxicologie, Assistance Publique–Hôpitaux de Paris, 75014 Paris, France
| | - Salvatore Cisternino
- Therapeutic Optimisation in Neuropsychopharmacology, INSERM UMR-S 1144, 75005 Paris, France; (X.D.); (S.C.)
- Faculté de Santé, Université de Paris, 75005 Paris, France
- Hôpital Necker–Enfants Malades: Service de pharmacie, Assistance Publique–Hôpitaux de Paris, 75015 Paris, France
| | - Benoît Hosten
- Unité Claude Kellershohn, Institut de Recherche Saint-Louis, Faculté de Santé, Université de Paris, 75010 Paris, France; (N.V.); (N.R.-P.); (L.S.-M.)
- Therapeutic Optimisation in Neuropsychopharmacology, INSERM UMR-S 1144, 75005 Paris, France; (X.D.); (S.C.)
- Hôpital Saint-Louis: Service Pharmacie, Assistance Publique–Hôpitaux de Paris, Unité Claude Kellershohn, 75010 Paris, France;
- Correspondence: ; Tel.: +33-142-385-105
| |
Collapse
|
14
|
Gener Lahav T, Adler O, Zait Y, Shani O, Amer M, Doron H, Abramovitz L, Yofe I, Cohen N, Erez N. Melanoma‐derived extracellular vesicles instigate proinflammatory signaling in the metastatic microenvironment. Int J Cancer 2019; 145:2521-2534. [DOI: 10.1002/ijc.32521] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Tzlil Gener Lahav
- Department of Pathology, Sackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Omer Adler
- Department of Pathology, Sackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Yael Zait
- Department of Pathology, Sackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Ophir Shani
- Department of Pathology, Sackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Malak Amer
- Department of Pathology, Sackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Hila Doron
- Department of Pathology, Sackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Lilach Abramovitz
- Department of Pathology, Sackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Ido Yofe
- Department of ImmunologyWeizmann Institute of Science Rehovot Israel
| | - Noam Cohen
- Department of Pathology, Sackler School of MedicineTel Aviv University Tel Aviv Israel
| | - Neta Erez
- Department of Pathology, Sackler School of MedicineTel Aviv University Tel Aviv Israel
| |
Collapse
|
15
|
杨 幼, 杨 靓, 王 知. [Formation of gap junctions between adipose stem cells-derived Schwann cells in a rat model of dyskinesia induced by brain injury]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:685-691. [PMID: 31270047 PMCID: PMC6743910 DOI: 10.12122/j.issn.1673-4254.2019.06.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the formation of gap junctions between Schwann cells derived from differentiated adipose stem cells implanted in a rat model of dyskinesia induced by brain injury and its positive effect in promoting functional recovery of the rats. METHODS In a rat model of hemiplegia induced by motor cortex injury, adipose stem cells or Schwann cells differentiated from adipose stem cells, either with or without RNAi-mediated silencing of Cx43, were transplanted orthotopically in the lesion. The recovery of the motor function of the rats was observed and scored after the transplantation. Rat brain tissues were sampled to detect the expressions of nerve growth factor (NGF) using Western blotting and RT-PCR. RESULTS All the 3 cell transplantation therapies obviously improved the motor function scores of the rats as compared with the control rats. The expression of NGF in the brain tissue was significantly lower in the control group than in the cell transplantation groups. NGF expression in the brain tissues of rats receiving transplantation of Schwann cells with Cx43 gene silencing was lower than that in rats receiving Schwann cells without Cx43 silencing, and was similar with that in rats transplanted with adipose stem cells. The results of RT-PCR showed that NGF mRNA level in the control group was significantly lower than that in the other 3 groups. NGF mRNA expression was the highest in Schwann cell group without Cx43 silencing, followed by adipose stem cell group, and then by Schwann cell group with Cx43 silencing. CONCLUSIONS In the rat model of dyskinesia induced by brain injury, transplantations of adipose stem cells and adipose stem cells-derived Schwann cells both promote the functional recovery of brain damage, in which gap junction protein Cx43 plays an important role to promote functional gap junction formation possibly by enhancing NGF expression.
Collapse
Affiliation(s)
- 幼萌 杨
- />中南大学湘雅三医院神经外科,湖南 长沙 410006Department of Neurosurgery, Third Xiangya Hospital, Central South University, Changsha 410006, China
| | - 靓 杨
- />中南大学湘雅三医院神经外科,湖南 长沙 410006Department of Neurosurgery, Third Xiangya Hospital, Central South University, Changsha 410006, China
| | - 知非 王
- />中南大学湘雅三医院神经外科,湖南 长沙 410006Department of Neurosurgery, Third Xiangya Hospital, Central South University, Changsha 410006, China
| |
Collapse
|
16
|
Mechanisms of Toxicity of Industrially Relevant Silicomanganese Dust on Human 1321N1 Astrocytoma Cells: An In Vitro Study. Int J Mol Sci 2019; 20:ijms20030740. [PMID: 30744184 PMCID: PMC6386893 DOI: 10.3390/ijms20030740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/27/2019] [Accepted: 02/02/2019] [Indexed: 12/19/2022] Open
Abstract
Tremendous efforts are applied in the ferroalloy industry to control and reduce exposure to dust generated during the production process, as inhalable Mn-containing particulate matter has been linked to neurodegenerative diseases. This study aimed to investigate the toxicity and biological effects of dust particles from laboratory-scale processes where molten silicomanganese (SiMn) was exposed to air, using a human astrocytoma cell line, 1321N1, as model system. Characterization of the dust indicated presence of both nano-sized and larger particles averaging between 100 and 300 nm. The dust consisted mainly of Si, Mn and O. Investigation of cellular mechanisms showed a dose- and time-dependent effect on cell viability, with only minor changes in the expression of proteins involved in apoptosis. Moreover, gene expression of the neurotoxic biomarker amyloid precursor protein (APP) increased, whereas APP protein expression decreased. Finally, induction of gap junctional intercellular communication (GJIC) increased with higher doses and correlated with the other endpoints. Thus, the effects of SiMn dust on 1321N1 cells are highly dependent on the dose of exposure and involves changes in APP, apoptosis-related proteins and intercellular communication.
Collapse
|
17
|
Festoff BW, Citron BA. Thrombin and the Coag-Inflammatory Nexus in Neurotrauma, ALS, and Other Neurodegenerative Disorders. Front Neurol 2019; 10:59. [PMID: 30804878 PMCID: PMC6371052 DOI: 10.3389/fneur.2019.00059] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
This review details our current understanding of thrombin signaling in neurodegeneration, with a focus on amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease) as well as future directions to be pursued. The key factors are multifunctional and involved in regulatory pathways, namely innate immune and the coagulation cascade activation, that are essential for normal nervous system function and health. These two major host defense systems have a long history in evolution and include elements and regulators of the coagulation pathway that have significant impacts on both the peripheral and central nervous system in health and disease. The clotting cascade responds to a variety of insults to the CNS including injury and infection. The blood brain barrier is affected by these responses and its compromise also contributes to these detrimental effects. Important molecules in signaling that contribute to or protect against neurodegeneration include thrombin, thrombomodulin (TM), protease activated receptor 1 (PAR1), damage associated molecular patterns (DAMPs), such as high mobility group box protein 1 (HMGB1) and those released from mitochondria (mtDAMPs). Each of these molecules are entangled in choices dependent upon specific signaling pathways in play. For example, the particular cleavage of PAR1 by thrombin vs. activated protein C (APC) will have downstream effects through coupled factors to result in toxicity or neuroprotection. Furthermore, numerous interactions influence these choices such as the interplay between HMGB1, thrombin, and TM. Our hope is that improved understanding of the ways that components of the coagulation cascade affect innate immune inflammatory responses and influence the course of neurodegeneration, especially after injury, will lead to effective therapeutic approaches for ALS, traumatic brain injury, and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Barry W Festoff
- pHLOGISTIX LLC, Fairway, KS, United States.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Bruce A Citron
- Laboratory of Molecular Biology Research & Development, VA New Jersey Health Care System, East Orange, NJ, United States.,Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|