1
|
Auriti C, Mondì V, Piersigilli F, Timelli L, Del Pinto T, Prencipe G, Lucignani G, Longo D, Bersani I. Plasmatic profiles of cytokines/chemokines, glial fibrillary acidic protein (GFAP) and MRI brain damage in neonates with hypoxic ischemic encephalopathy (HIE). Cytokine 2024; 177:156565. [PMID: 38442443 DOI: 10.1016/j.cyto.2024.156565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Perinatal hypoxia triggers the release of cytokines and chemokines by neurons, astrocytes and microglia. In response to hypoxia-ischemia resting/ramified microglia proliferate and undergo activation, producing proinflammatory molecules. The brain damage extension seems to be related to both the severity of hypoxia and the balance between pro and anti-inflammatory response and can be explored with neuroimaging. AIMS The aim of this preliminary study was to explore possible relationships between plasma levels of inflammatory cytokines/chemokines and the severe brain damage detectable by Magnetic Resonance Imaging (MRI), performed during the hospitalization. METHODS In 10 full terms neonates with hypoxic ischemic encephalopathy (HIE) undergoing therapeutic hypothermia (TH), divided into cases and controls, according to MRI results, we measured and compared the plasma levels of CCL2/MCP-1, CXCL8, GFAP, IFN y, IL-10, IL-18, IL-6, CCL3, ENOLASE2, GM-CSF, IL-1b, IL-12p70, IL-33, TNFα, collected at four different time points during TH (24, 25-48, 49-72 h of life, and 7-10 days from birth). Five of enrolled babies had pathological brain MRI (cases) and 5 had a normal MRI examination (controls). Cytokines were measured by Magnetic Luminex Assay. MRI images were classified according to Barkovich's score. RESULTS Mean levels of all cytokines and molecules at time T1 were not significantly different in the two groups. Comparing samples paired by day of collection, the greatest differences between cases and controls were found at times T2 and T3, during TH. At T4, levels tended to get closer again (except for IL-6, IL10 and IL18). Infants with worse MRI showed higher plasmatic GFAP levels than those with normal MRI, while their IL-18 was lower. The mean levels of CCL3MIP1alpha, GMCSF, IL1BETA overlapped throughout the observation period in both groups. CONCLUSION In a small number of infants with worse brain MRI, we found higher levels of GFAP and of IL-10 at T4 and a trend toward low IL-18 levels than in infants with normal MRI, considered early biomarker of brain damage and a predictor of adverse outcome, respectively. The greatest, although not significant, difference between the levels of molecules was found in cases and controls at time points T2 and T3, during TH.
Collapse
Affiliation(s)
- Cinzia Auriti
- Unicamillus-Saint Camillus International University of Health Sciences, Rome, Italy; Villa Margherita Private Clinic, Rome, Italy.
| | - Vito Mondì
- Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino, Via Casilina 1049, Rome, Italy
| | - Fiammetta Piersigilli
- Section of Neonatology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Avenue Hippocrate 10, Bruxelles, Belgium
| | - Laura Timelli
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Tamara Del Pinto
- Unicamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Giusi Prencipe
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Giulia Lucignani
- Department of Imaging, "Bambino Gesù" Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Daniela Longo
- Department of Imaging, "Bambino Gesù" Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Iliana Bersani
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| |
Collapse
|
2
|
Ji Y, Chen Y, Tan X, Huang X, Gao Q, Ma Y, Yang S, Yin M, Yu M, Fang C, Wang Y, Shi Z, Chang J. Integrated transcriptomic and proteomic profiling reveals the key molecular signatures of brain endothelial reperfusion injury. CNS Neurosci Ther 2024; 30:e14483. [PMID: 37789643 PMCID: PMC11017417 DOI: 10.1111/cns.14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Reperfusion therapy after ischemic stroke often causes brain microvascular injury. However, the underlying mechanisms are unclear. METHODS Transcriptomic and proteomic analyses were performed on human cerebral microvascular endothelial cells following oxygen-glucose deprivation (OGD) or OGD plus recovery (OGD/R) to identify molecules and signaling pathways dysregulated by reperfusion. Major findings were further validated in a mouse model of cerebral ischemia and reperfusion. RESULTS Transcriptomic analysis identified 390 differentially expressed genes (DEGs) between the OGD/R and OGD group. Pathway analysis indicated that these genes were mostly associated with inflammation, including the TNF signaling pathway, TGF-β signaling pathway, cytokine-cytokine receptor interaction, NOD-like receptor signaling pathway, and NF-κB signaling pathway. Proteomic analysis identified 201 differentially expressed proteins (DEPs), which were primarily associated with extracellular matrix destruction and remodeling, impairment of endothelial transport function, and inflammatory responses. Six genes (DUSP1, JUNB, NFKBIA, NR4A1, SERPINE1, and THBS1) were upregulated by OGD/R at both the mRNA and protein levels. In mice with cerebral ischemia and reperfusion, brain TNF signaling pathway was activated by reperfusion, and inhibiting TNF-α with adalimumab significantly attenuated reperfusion-induced brain endothelial inflammation. In addition, the protein level of THBS1 was substantially upregulated upon reperfusion in brain endothelial cells and the peri-endothelial area in mice receiving cerebral ischemia. CONCLUSION Our study reveals the key molecular signatures of brain endothelial reperfusion injury and provides potential therapeutic targets for the treatment of brain microvascular injury after reperfusion therapy in ischemic stroke.
Collapse
Affiliation(s)
- Yabin Ji
- Department of NeurologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Yiman Chen
- Department of NeurologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Xixi Tan
- Department of NeurologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- Department of NeurologyYangjiang People's HospitalYangjiangChina
| | - Xiaowen Huang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Qiang Gao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Yinzhong Ma
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Shilun Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Meifang Yin
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Min Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Zhu Shi
- Department of Neurology10th Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)DongguanChina
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| |
Collapse
|
3
|
El-Mokhtar SA, Afifi NA, Abdel-Malek MO, Hassan WA, Hetta H, El-Badawy O. Aberrant cytokine and VCAM-1 expression in patients with viral and non-viral related liver cirrhosis. Cytokine 2023; 171:156385. [PMID: 37788510 DOI: 10.1016/j.cyto.2023.156385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/26/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
The study aim was to compare the alterations in the expression levels of proinflammatory and chemotactic cytokines as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-17A and IL-8, the down regulatory cytokine IL-10, in addition to the vascular cell adhesion molecule-1 (VCAM-1) gene in different groups of patients with cirrhosis due to various etiologies. This case-control study included 84 patients suffering from cirrhosis of viral and non-viral etiologies and 20 sex and age-matched healthy controls. All patients were subjected to detailed history taking, clinical examination, and liver function assessment. The expression levels of TNF-α, IL-17A, IL-8, IL-10, and VCAM-1 were assessed in peripheral blood mononuclear cells by real-time PCR. Patients with cirrhosis showed marked changes in the tested gene expression levels relative to the control group. Higher expression levels of all genes except IL-10 were seen in patients of the viral than in the non-viral groups. Most of the significant correlations of liver function parameters were observed with TNF-α in both the viral and non-viral groups, followed by IL-17A. Increased TNF-α and IL-17A presented potential risk factors for disease progression to cirrhosis of Child class C.
Collapse
Affiliation(s)
- Sara A El-Mokhtar
- Microbiology & Immunology Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Noha A Afifi
- Medical Microbiology & Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed O Abdel-Malek
- Tropical Medicine & Gastroenterology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Waleed A Hassan
- Tropical Medicine & Gastroenterology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Helal Hetta
- Medical Microbiology & Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Omnia El-Badawy
- Medical Microbiology & Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
4
|
Guan Y, Cao YL, Liu JW, Liu LT, Zheng YJ, Ma XF, Zhai FG. Ginsenoside Rg1 attenuates cerebral ischemia-reperfusion injury through inhibiting the inflammatory activation of microglia. Exp Cell Res 2023; 426:113552. [PMID: 36914061 DOI: 10.1016/j.yexcr.2023.113552] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
It is recognized that the cerebral ischemia/reperfusion (I/R) injury triggers inflammatory activation of microglia and supports microglia-driven neuronal damage. Our previous studies have shown that ginsenoside Rg1 had a significant protective effect on focal cerebral I/R injury in middle cerebral artery occlusion (MCAO) rats. However, the mechanism still needs further clarification. Here, we firstly reported that ginsenoside Rg1 effectively suppressed the inflammatory activation of brain microglia cells under I/R conditions depending on the inhibition of Toll-likereceptor4 (TLR4) proteins. In vivo experiments showed that the ginsenoside Rg1 administration could significantly improve the cognitive function of MCAO rats, and in vitro experimental data showed that ginsenoside Rg1 significantly alleviated neuronal damage via inhibiting the inflammatory response in microglia cells co-cultured under oxygen and glucose deprivation/reoxygenation (OGD/R) condition in gradient dependent. The mechanism study showed that the effect of ginsenoside Rg1 depends on the suppression of TLR4/MyD88/NF-κB and TLR4/TRIF/IRF-3 pathways in microglia cells. In a word, our research shows that ginsenoside Rg1 has great application potential in attenuating the cerebral I/R injury by targeting TLR4 protein in the microglia cells.
Collapse
Affiliation(s)
- Yue Guan
- Department of Clinical Medicine, Heilongjiang Nursing College, Harbin, 150001, Heilongjiang Province, China
| | - Yan-Li Cao
- School of Pharmacy, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang Province, China
| | - Jia-Wei Liu
- School of Pharmacy, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang Province, China
| | - Lan-Tao Liu
- Graduate School of Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang Province, China
| | - Yu-Jia Zheng
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Xue-Fei Ma
- School of Pharmacy, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang Province, China; Department of Pharmacology, Baicheng Medical College, Baicheng, 137701, Jilin Province, China
| | - Feng-Guo Zhai
- Department of Pharmacology, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang Province, China; Institute of Natural Medicine, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang Province, China.
| |
Collapse
|
5
|
魏 思. Recent research on the effect of common treatments given in the perinatal period on neurodevelopment in offspring. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:332-338. [PMID: 35351267 PMCID: PMC8974644 DOI: 10.7499/j.issn.1008-8830.2111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The perinatal period is the key period for the development of brain and central nervous system, and different events in this period will have a profound influence on brain development. Glucocorticoids, antibiotics, magnesium sulfate, caffeine, pulmonary surfactant, and mild hypothermia treatment are commonly used drugs or treatment methods in the perinatal period and are closely associated with the prognosis of neonatal neurodevelopment. This article reviews the latest research on the effect of perinatal treatments on neonatal neurodevelopment, so as to provide a reference for clinical decision making.
Collapse
|
6
|
Wang X, Lu W, Liu B, Xu Y. Thrombin aggravates hypoxia/reoxygenation injury of astrocytes by activating the autophagy pathway mediated by SPRED2. Exp Ther Med 2021; 22:1107. [PMID: 34504561 PMCID: PMC8383739 DOI: 10.3892/etm.2021.10541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/24/2021] [Indexed: 11/06/2022] Open
Abstract
Autophagy plays an important role in ischemia/reperfusion brain injury, however, the signaling pathways involved in cell autophagy are not fully understood. The present study aimed to investigate the roles and molecular mechanisms of thrombin and Sprouty-related EVH1 domain-2 (SPRED2) on autophagy in hypoxia/reoxygenation (H/R) induced astrocytes. Reverse transcription-quantitative PCR and western blot analyses were performed to detect the expression levels of thrombin and SPRED2. Western blot analysis was also performed to detect the protein expression levels of Beclin 1, microtubule-associated protein light chain 3 (LC3)-II and LC3-I. The MTT assay was performed to assess cell viability, while ELISA was performed to determine the supernatant levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. The results demonstrated that the effects of H/R induction on inflammatory factor secretion, oxidative stress, autophagy and cell viability in astrocytes were aggravated by thrombin, the effects of which were reversed following SPRED2 knockdown. Taken together, the results of the present study suggest that thrombin aggravates H/R injury in astrocytes by activating the SPRED2-mediated autophagy.
Collapse
Affiliation(s)
- Xiaoning Wang
- Department of Blood Transfusion, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weiwei Lu
- Department of Blood Transfusion, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bing Liu
- Department of Blood Transfusion, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yunhe Xu
- Department of Stomatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
7
|
Hatayama K, Chen RH, Hanson J, Teshigawara K, Qiu J, Santoso A, Disdier C, Nakada S, Chen X, Nishibori M, Lim YP, Stonestreet BS. High-mobility group box-1 and inter-alpha inhibitor proteins: In vitro binding and co-localization in cerebral cortex after hypoxic-ischemic injury. FASEB J 2021; 35:e21399. [PMID: 33559227 DOI: 10.1096/fj.202002109rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
The high-mobility group box-1 (HMGB1) protein is a transcription-regulating protein located in the nucleus. However, it serves as a damage-associated molecular pattern protein that activates immune cells and stimulates inflammatory cytokines to accentuate neuroinflammation after release from damaged cells. In contrast, Inter-alpha Inhibitor Proteins (IAIPs) are proteins with immunomodulatory effects including inhibition of pro-inflammatory cytokines. We have demonstrated that IAIPs exhibit neuroprotective properties in neonatal rats exposed to hypoxic-ischemic (HI) brain injury. In addition, previous studies have suggested that the light chain of IAIPs, bikunin, may exert its anti-inflammatory effects by inhibiting HMGB1 in a variety of different injury models in adult subjects. The objectives of the current study were to confirm whether HMGB1 is a target of IAIPs by investigating the potential binding characteristics of HMGB1 and IAIPs in vitro, and co-localization in vivo in cerebral cortices after exposure to HI injury. Solid-phase binding assays and surface plasmon resonance (SPR) were used to determine the physical binding characteristics between IAIPs and HMGB1. Cellular localizations of IAIPs-HMGB1 in neonatal rat cortex were visualized by double labeling with anti-IAIPs and anti-HMGB1 antibodies. Solid-phase binding and SPR demonstrated specific binding between IAIPs and HMGB1 in vitro. Cortical cytoplasmic and nuclear co-localization of IAIPs and HMGB1 were detected by immunofluorescent staining in control and rats immediately and 3 hours after HI. In conclusion, HMGB1 and IAIPs exhibit direct binding in vitro and co-localization in vivo in neonatal rats exposed to HI brain injury suggesting HMGB1 could be a target of IAIPs.
Collapse
Affiliation(s)
- Kazuki Hatayama
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI, USA
| | - Ray H Chen
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI, USA
| | - Jordan Hanson
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI, USA
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Joseph Qiu
- ProThera Biologics, Inc., Providence, RI, USA
| | | | - Clémence Disdier
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI, USA
| | - Sakura Nakada
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI, USA
| | - Xiaodi Chen
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI, USA
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI, USA.,Department Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Barbara S Stonestreet
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
8
|
Cao Y, Wang F, Wang Y, Long J. Agomelatine prevents macrophage infiltration and brain endothelial cell damage in a stroke mouse model. Aging (Albany NY) 2021; 13:13548-13559. [PMID: 33839700 PMCID: PMC8202857 DOI: 10.18632/aging.202836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/15/2020] [Indexed: 01/01/2023]
Abstract
Background and purpose: Ischemic/reperfusions are regarded as the clinical consensus for stroke treatment, which results in secondary injury of brain tissues. Increased blood-brain barrier (BBB) permeability and infiltration of inflammatory cells are responsible for the ischemic/reperfusion injury. In the present study, we aimed to investigate the effects of Agomelatine on brain ischemic/reperfusions injury and the underlying mechanism. Methods: MCAO model was established in mice. The expressions of CD68 and claudin-5 in the cerebral cortex were determined using an immunofluorescence assay. Brain permeability was evaluated using Evans blue staining assay. A two-chamber and two-cell trans-well assay was used to detect the migration ability of macrophages through endothelial cells. The expression levels of claudin-5 and MCP-1 in the endothelial cells were determined using qRT-PCR and ELISA. Results: CD68 was found to be up-regulated in the cerebral cortex of MCAO mice but was down-regulated by treatment with Agomelatine. The expression level of down-regulated claudin-5 in the cerebral cortex of MCAO mice was significantly suppressed by Agomelatine. Deeper staining of Evans blue was found in the MCAO group, which was however faded significantly in the Agomelatine treated MCAO mice. The migrated macrophages were significantly increased by hypoxia incubation but were greatly suppressed by the introduction of Agomelatine. The down-regulated claudin-5 by hypoxic incubation in endothelial cells was up-regulated by treatment with Agomelatine. Furthermore, the increased expression of MCP-1 in endothelial cells under hypoxic conditions was significantly inhibited by Agomelatine. Conclusion: Agomelatine prevents macrophage infiltration and brain endothelial cell damage in a stroke mouse model.
Collapse
Affiliation(s)
- Yiqiang Cao
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Fei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yonggang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Jiang Long
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| |
Collapse
|
9
|
Go H, Saito Y, Maeda H, Maeda R, Yaginuma K, Ogasawara K, Kashiwabara N, Kawasaki Y, Hosoya M. Serum cytokine profiling in neonates with hypoxic ischemic encephalopathy. J Neonatal Perinatal Med 2021; 14:177-182. [PMID: 33074195 DOI: 10.3233/npm-200431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND The fetal brain is vulnerable to severe and sustained hypoxia during and after birth, which can lead to hypoxic-ischemic encephalopathy (HIE). HIE is characterized by clinical and laboratory evidence of acute or subacute brain injury. The role of cytokines in the pathogenesis of brain injury and their relation to neurological outcomes of asphyxiated neonates are not fully understood. In this study, we investigated cytokine profile related to cerebral palsy (CP) with neonatal hypoxic ischemic encephalopathy (HIE) and HIE severity. METHODS Eligible subjects were HIE newborns with a gestational age between 36 and 42 weeks. We included newborns who was born at our NICU and did not admit to NICU as healthy controls. The study comprised 52 newborns, including 13 with mild to severe HIE and 39 healthy control. Serum cytokine profiles were performed using a LUMINEX cytokine kit (R&D Systems). RESULTS VEGF, MCP-1, IL-15, IL-12p70, IL-12p40, IL-1Ra, IL-2, IL-6, IL-7, IL-8, IL-10, IFN-γ, G-CSF and eotaxin in the HIE patients were significantly increased compared with the healthy neonates. In the subgroup analysis, IL-6 and G-CSF were significantly increased in CP infants (n = 5) compared with non-CP infants (n = 8). Five and eight HIE patients were classified into the mild HIE and moderate-severe HIE groups, respectively. IL-6, 10, 1Ra, and G-CSF in the moderate-severe HIE group were significantly higher than those in the mild HIE group. CONCLUSION We demonstrated that higher serum IL-6 and G-CSF at birth in HIE patients were associated with CP and moderate-severe HIE.
Collapse
Affiliation(s)
- H Go
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Y Saito
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - H Maeda
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - R Maeda
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - K Yaginuma
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - K Ogasawara
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - N Kashiwabara
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Y Kawasaki
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - M Hosoya
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
10
|
Ophelders DR, Gussenhoven R, Klein L, Jellema RK, Westerlaken RJ, Hütten MC, Vermeulen J, Wassink G, Gunn AJ, Wolfs TG. Preterm Brain Injury, Antenatal Triggers, and Therapeutics: Timing Is Key. Cells 2020; 9:E1871. [PMID: 32785181 PMCID: PMC7464163 DOI: 10.3390/cells9081871] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
With a worldwide incidence of 15 million cases, preterm birth is a major contributor to neonatal mortality and morbidity, and concomitant social and economic burden Preterm infants are predisposed to life-long neurological disorders due to the immaturity of the brain. The risks are inversely proportional to maturity at birth. In the majority of extremely preterm infants (<28 weeks' gestation), perinatal brain injury is associated with exposure to multiple inflammatory perinatal triggers that include antenatal infection (i.e., chorioamnionitis), hypoxia-ischemia, and various postnatal injurious triggers (i.e., oxidative stress, sepsis, mechanical ventilation, hemodynamic instability). These perinatal insults cause a self-perpetuating cascade of peripheral and cerebral inflammation that plays a critical role in the etiology of diffuse white and grey matter injuries that underlies a spectrum of connectivity deficits in survivors from extremely preterm birth. This review focuses on chorioamnionitis and hypoxia-ischemia, which are two important antenatal risk factors for preterm brain injury, and highlights the latest insights on its pathophysiology, potential treatment, and future perspectives to narrow the translational gap between preclinical research and clinical applications.
Collapse
Affiliation(s)
- Daan R.M.G. Ophelders
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ruth Gussenhoven
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
| | - Luise Klein
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Reint K. Jellema
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
| | - Rob J.J. Westerlaken
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Matthias C. Hütten
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jeroen Vermeulen
- Department of Pediatric Neurology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands;
| | - Guido Wassink
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland 1023, New Zealand; (G.W.); (A.J.G.)
| | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland 1023, New Zealand; (G.W.); (A.J.G.)
| | - Tim G.A.M. Wolfs
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
11
|
DISDIER C, STONESTREET BS. Hypoxic-ischemic-related cerebrovascular changes and potential therapeutic strategies in the neonatal brain. J Neurosci Res 2020; 98:1468-1484. [PMID: 32060970 PMCID: PMC7242133 DOI: 10.1002/jnr.24590] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
Perinatal hypoxic-ischemic (HI)-related brain injury is an important cause of morbidity and long-standing disability in newborns. The only currently approved therapeutic strategy available to reduce brain injury in the newborn is hypothermia. Therapeutic hypothermia can only be used to treat HI encephalopathy in full-term infants and survivors remain at high risk for a wide spectrum of neurodevelopmental abnormalities as a result of residual brain injury. Therefore, there is an urgent need for adjunctive therapeutic strategies. Inflammation and neurovascular damage are important factors that contribute to the pathophysiology of HI-related brain injury and represent exciting potential targets for therapeutic intervention. In this review, we address the role of each component of the neurovascular unit (NVU) in the pathophysiology of HI-related injury in the neonatal brain. Disruption of the blood-brain barrier (BBB) observed in the early hours after an HI-related event is associated with a response at the basal lamina level, which comprises astrocytes, pericytes, and immune cells, all of which could affect BBB function to further exacerbate parenchymal injury. Future research is required to determine potential drugs that could prevent or attenuate neurovascular damage and/or augment repair. However, some studies have reported beneficial effects of hypothermia, erythropoietin, stem cell therapy, anti-cytokine therapy and metformin in ameliorating several different facets of damage to the NVU after HI-related brain injury in the perinatal period.
Collapse
Affiliation(s)
- Clémence DISDIER
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Barbara S STONESTREET
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI 02905, USA
| |
Collapse
|
12
|
Chin PY, Dorian C, Sharkey DJ, Hutchinson MR, Rice KC, Moldenhauer LM, Robertson SA. Toll-Like Receptor-4 Antagonist (+)-Naloxone Confers Sexually Dimorphic Protection From Inflammation-Induced Fetal Programming in Mice. Endocrinology 2019; 160:2646-2662. [PMID: 31504393 PMCID: PMC6936318 DOI: 10.1210/en.2019-00493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022]
Abstract
Inflammation elicited by infection or noninfectious insults during gestation induces proinflammatory cytokines that can shift the trajectory of development to alter offspring phenotype, promote adiposity, and increase susceptibility to metabolic disease in later life. In this study, we use mice to investigate the utility of a small molecule Toll-like receptor (TLR)4 antagonist (+)-naloxone, the nonopioid isomer of the opioid receptor antagonist (-)-naloxone, for mitigating altered fetal metabolic programming induced by a modest systemic inflammatory challenge in late gestation. In adult progeny exposed to lipopolysaccharide (LPS) challenge in utero, male but not female offspring exhibited elevated adipose tissue, reduced muscle mass, and elevated plasma leptin at 20 weeks of age. Effects were largely reversed by coadministration of (+)-naloxone following LPS. When given alone without LPS, (+)-naloxone elicited accelerated postweaning growth and elevated muscle and fat mass in adult male but not female offspring. LPS induced expression of inflammatory cytokines Il1a, Il1b, Il6, Tnf, and Il10 in fetal brain, placental, and uterine tissues, and (+)-naloxone suppressed LPS-induced cytokine expression. Fetal sex-specific regulation of cytokine expression was evident, with higher Il1a, Il1b, Il6, and Il10 induced by LPS in tissues associated with male fetuses, and greater suppression by (+)-naloxone of Il6 in females. These data demonstrate that modulating TLR4 signaling with (+)-naloxone provides protection from inflammatory diversion of fetal developmental programming in utero, associated with attenuation of gestational tissue cytokine expression in a fetal sex-specific manner. The results suggest that pharmacologic interventions targeting TLR4 warrant evaluation for attenuating developmental programming effects of fetal exposure to maternal inflammatory mediators.
Collapse
Affiliation(s)
- Peck Yin Chin
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Camilla Dorian
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - David J Sharkey
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Mark R Hutchinson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, South Australia, Australia
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Lachlan M Moldenhauer
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Correspondence: Sarah A. Robertson, PhD, Robinson Research Institute and the Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia. E-mail:
| |
Collapse
|
13
|
Reiss J, Sinha M, Gold J, Bykowski J, Lawrence SM. Outcomes of Infants with Mild Hypoxic Ischemic Encephalopathy Who Did Not Receive Therapeutic Hypothermia. Biomed Hub 2019; 4:1-9. [PMID: 31993432 PMCID: PMC6985885 DOI: 10.1159/000502936] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Introduction Accurately diagnosing and treating infants with mild forms of hypoxic ischemic encephalopathy (HIE) is important, as the majority of neonates with signs and symptoms of HIE after birth do not meet clinical criteria for moderate or severe disease. Emerging evidence, however, suggests that infants with mild HIE (mHIE) have an increased risk for neurodevelopmental impairment (NDI). Methods This retrospective descriptive study examined all inborn infants ≥35 week's gestational age at a single, level III neonatal intensive care unit (NICU) in California between January 1, 2012, and December 31, 2015. International Classification of Diseases codes were used as a proxy to identify neonates with mHIE but who did not receive therapeutic hypothermia (TH). Short- and long-term neurodevelopmental outcomes were documented, including abnormal (1) brain magnetic resonance imaging within 10 days of birth suggestive of HIE, (2) electroencephalogram with electrographic seizures, (3) neurologic discharge examination, or (4) NDI following NICU discharge. Results Over the 4-year study period, 25 infants met inclusion criteria. Eight of 25 (32%) infants demonstrated neurologic impairment, defined by an abnormality in at least one of the four categories. The remaining 17 infants were without documented evidence for adverse outcomes. Conclusion Our results indicate that children with mHIE are at significant risk for neurologic injury and may benefit from more aggressive interventions. Further prospective studies should be completed to determine the efficacy of TH in this specific patient population.
Collapse
Affiliation(s)
- Jonathan Reiss
- Department of Pediatrics, School of Medicine, University of California, San Diego, San Diego, California, USA
| | - Mridu Sinha
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Jeffrey Gold
- Division of Pediatric Neurology, Department of Pediatrics, School of Medicine, University of California, San Diego, San Diego, California, USA
| | - Julie Bykowski
- Department of Radiology, School of Medicine, University of California, San Diego, San Diego, California, USA
| | - Shelley M Lawrence
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, School of Medicine, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
14
|
Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 2019; 16:142. [PMID: 31291966 PMCID: PMC6617684 DOI: 10.1186/s12974-019-1516-2] [Citation(s) in RCA: 819] [Impact Index Per Article: 163.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
Stroke, the third leading cause of death and disability worldwide, is undergoing a change in perspective with the emergence of new ideas on neurodegeneration. The concept that stroke is a disorder solely of blood vessels has been expanded to include the effects of a detrimental interaction between glia, neurons, vascular cells, and matrix components, which is collectively referred to as the neurovascular unit. Following the acute stroke, the majority of which are ischemic, there is secondary neuroinflammation that both promotes further injury, resulting in cell death, but conversely plays a beneficial role, by promoting recovery. The proinflammatory signals from immune mediators rapidly activate resident cells and influence infiltration of a wide range of inflammatory cells (neutrophils, monocytes/macrophages, different subtypes of T cells, and other inflammatory cells) into the ischemic region exacerbating brain damage. In this review, we discuss how neuroinflammation has both beneficial as well as detrimental roles and recent therapeutic strategies to combat pathological responses. Here, we also focus on time-dependent entry of immune cells to the ischemic area and the impact of other pathological mediators, including oxidative stress, excitotoxicity, matrix metalloproteinases (MMPs), high-mobility group box 1 (HMGB1), arachidonic acid metabolites, mitogen-activated protein kinase (MAPK), and post-translational modifications that could potentially perpetuate ischemic brain damage after the acute injury. Understanding the time-dependent role of inflammatory factors could help in developing new diagnostic, prognostic, and therapeutic neuroprotective strategies for post-stroke inflammation.
Collapse
Affiliation(s)
- Richard L. Jayaraj
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Fakhreya Y. Jalal
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Gary A. Rosenberg
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| |
Collapse
|