1
|
Nascimento-Gonçalves E, Seixas F, Palmeira C, Martins G, Fonseca C, Duarte JA, Faustino-Rocha AI, Colaço B, Pires MJ, Neuparth MJ, Moreira-Gonçalves D, Fardilha M, Henriques MC, Patrício D, Pelech S, Ferreira R, Oliveira PA. Lifelong exercise training promotes the remodelling of the immune system and prostate signalome in a rat model of prostate carcinogenesis. GeroScience 2024; 46:817-840. [PMID: 37171559 PMCID: PMC10828357 DOI: 10.1007/s11357-023-00806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
This work aimed to understand how lifelong exercise training promotes the remodelling of the immune system and prostate signalome in a rat model of PCa. Fifty-five male Wistar rats were divided into four groups: control sedentary, control exercised, induced PCa sedentary and induced PCa exercised. Exercised animals were trained in a treadmill for 53 weeks. Pca induction consisted on the sequential administration of flutamide, N-methyl-N-nitrosourea and testosterone propionate implants. Serum concentrations of C-reactive protein (CRP) and tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) were not different among groups. Peripheral levels of γδ T cells were higher in Pca exercised group than in the PCa sedentary group (p < 0.05). Exercise training also induced Oestrogen Receptor (ESR1) upregulation and Mitogen-activated Protein Kinase 13 (MAPK13) downregulation, changed the content of the phosphorylated (at Ser-104) form of this receptor (coded by the gene ESR1) and seemed to increase Erα phosphorylation and activity in exercised PCa rats when compared with sedentary PCa rats. Our data highlight the exercise-induced remodelling of peripheral lymphocyte subpopulations and lymphocyte infiltration in prostate tissue. Moreover, exercise training promotes the remodelling prostate signalome in this rat model of prostate carcinogenesis.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801, Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro (UA), 3810-193, Aveiro, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, UTAD, 5000-801, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro, 5000-801, Vila Real, Portugal
| | - Carlos Palmeira
- Clinical Pathology Department, Portuguese Institute of Oncology of Porto, 4200-072, Porto, Portugal
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-072, Porto, Portugal
- School of Health Science Fernando Pessoa and FP-i3iD, 4200-253, Porto, Portugal
| | - Gabriela Martins
- Clinical Pathology Department, Portuguese Institute of Oncology of Porto, 4200-072, Porto, Portugal
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Carolina Fonseca
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801, Vila Real, Portugal
| | - José Alberto Duarte
- CIAFEL, Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, 4200-450, Porto, Portugal
| | - Ana I Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801, Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, 7004-516, Évora, Portugal
- Comprehensive Health Research Centre, 7004-516, Évora, Portugal
| | - Bruno Colaço
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, UTAD, 5000-801, Vila Real, Portugal
- Department of Zootechnics, University of Trás-Os-Montes and Alto Douro, 5000-801, Vila Real, Portugal
| | - Maria João Pires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro, 5000-801, Vila Real, Portugal
| | - Maria João Neuparth
- Research Center in Physical Activity, Health and Leisure (CIAFEL)-Faculty of Sports-University of Porto (FADEUP), Portugal and Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116, Gandra, Portugal
| | - Daniel Moreira-Gonçalves
- Research Center in Physical Activity, Health and Leisure (CIAFEL)-Faculty of Sports-University of Porto (FADEUP), Portugal and Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Magda C Henriques
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Daniela Patrício
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Steven Pelech
- Department of Medicine, University of British Columbia, Vancouver, B.C, Canada
- Kinexus Bioinformatics Corporation, Suite 1 - 8755 Ash Street, Vancouver, BC, V6P 6T3, Canada
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal.
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801, Vila Real, Portugal.
- Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro, 5000-801, Vila Real, Portugal.
- Clinical Academic Center of Trás-Os-Montes and Alto Douro, University of Trás-Os-Montes and Alto Douro, 5000-801, Vila Real, Portugal.
- University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 5001-801, Vila Real, Portugal.
| |
Collapse
|
2
|
Poutanen M, Hagberg Thulin M, Härkönen P. Targeting sex steroid biosynthesis for breast and prostate cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00609-y. [PMID: 37684402 DOI: 10.1038/s41568-023-00609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.
- Turku Center for Disease Modelling, University of Turku, Turku, Finland.
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland.
| | - Malin Hagberg Thulin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pirkko Härkönen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
3
|
Bicak B, Kecel-Gunduz S, Budama-Kilinc Y, Ozdemir B. Molecular docking studies of YKT tripeptide and drug delivery system with poly(ε-caprolactone) nanoparticles. Arch Pharm (Weinheim) 2022; 355:e2100437. [PMID: 35150004 DOI: 10.1002/ardp.202100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/08/2022]
Abstract
Tyrosyllysylthreonine (YKT) is a peptide structure that contains three different amino acids in its structure and has anticancer properties. The main purpose of this study is to reveal the structural interactions of the peptide and to increase the efficiency of the peptide with nanoformulation. For these purposes, YKT-loaded poly(ε-caprolactone) (PCL) nanoparticles (NPs) were synthesized using the double-emission precipitation method and the obtained NPs were characterized with a Zeta Sizer, UV-Vis, Fourier transform infrared-attenuated total reflection spectrometers, scanning electron microscopy, and transmission electron microscopy. The in vitro release profile of the peptide-loaded PCL NPs was determined. In molecular modeling studies, PCL, PCL-polyvinyl alcohol (PVA), and PCL-PVA-YKT systems were simulated in an aqueous medium by molecular dynamics simulations, separately. The information about the interactions between the YKT tripeptide and the epidermal growth factor and androgen, estrogen, and progesterone receptors were obtained with the molecular docking study. Additionally, the ADME profile of YKT was determined as a result of each docking study. In conclusion, tripeptide-based nanodrug development studies of the YKT tripeptide are presented in this study.
Collapse
Affiliation(s)
- Bilge Bicak
- Department of Physics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Serda Kecel-Gunduz
- Department of Physics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Yasemin Budama-Kilinc
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Burak Ozdemir
- Department of Bioengineering, Graduate School of Natural and Applied Science, Yildiz Technical University, İstanbul, Turkey
| |
Collapse
|
4
|
Chimento A, De Luca A, Avena P, De Amicis F, Casaburi I, Sirianni R, Pezzi V. Estrogen Receptors-Mediated Apoptosis in Hormone-Dependent Cancers. Int J Mol Sci 2022; 23:1242. [PMID: 35163166 PMCID: PMC8835409 DOI: 10.3390/ijms23031242] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
It is known that estrogen stimulates growth and inhibits apoptosis through estrogen receptor(ER)-mediated mechanisms in many cancer cell types. Interestingly, there is strong evidence that estrogens can also induce apoptosis, activating different ER isoforms in cancer cells. It has been observed that E2/ERα complex activates multiple pathways involved in both cell cycle progression and apoptotic cascade prevention, while E2/ERβ complex in many cases directs the cells to apoptosis. However, the exact mechanism of estrogen-induced tumor regression is not completely known. Nevertheless, ERs expression levels of specific splice variants and their cellular localization differentially affect outcome of estrogen-dependent tumors. The goal of this review is to provide a general overview of current knowledge on ERs-mediated apoptosis that occurs in main hormone dependent-cancers. Understanding the molecular mechanisms underlying the induction of ER-mediated cell death will be useful for the development of specific ligands capable of triggering apoptosis to counteract estrogen-dependent tumor growth.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Arianna De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Paola Avena
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Ivan Casaburi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Rosa Sirianni
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| |
Collapse
|
5
|
Birgersson M, Katona B, Lindskog C, Pontén F, Williams C. Antibody Validation for Estrogen Receptor Beta. Methods Mol Biol 2022; 2418:1-23. [PMID: 35119656 DOI: 10.1007/978-1-0716-1920-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antibodies can cross-react with proteins other than their intended targets, and antibody-based applications can, if not properly validated, lead to flawed interpretations. When evaluating 13 anti-estrogen receptor beta (ERβ) antibodies in 2017, we concluded that only one of them was specific. Applying this antibody in immunohistochemistry of over 44 different normal human tissues and 20 types of cancers revealed ERβ expression in only a few selected tissues. This aligned with mRNA evidence but contradicted a large set of published literature. ERβ protein expression continues to be reported in tissues without clear support by mRNA expression. In this chapter, we describe how ERβ antibodies can be thoroughly validated and discuss selection of well-characterized positive and negative controls. The validation scheme presented is applicable for immunohistochemistry and Western blotting. The protocol includes evaluation of mRNA evidence, use of public databases, assessment of on- and off-target binding, and an optional step for corroboration with immunoprecipitation and mass spectrometry.
Collapse
Affiliation(s)
- Madeleine Birgersson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Borbala Katona
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Cecilia Williams
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
- SciLifeLab, Department of Protein Science, KTH-Royal Institute of Technology, Solna, Sweden.
| |
Collapse
|
6
|
Fontana F, Limonta P. Dissecting the Hormonal Signaling Landscape in Castration-Resistant Prostate Cancer. Cells 2021; 10:1133. [PMID: 34067217 PMCID: PMC8151003 DOI: 10.3390/cells10051133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding the molecular mechanisms underlying prostate cancer (PCa) progression towards its most aggressive, castration-resistant (CRPC) stage is urgently needed to improve the therapeutic options for this almost incurable pathology. Interestingly, CRPC is known to be characterized by a peculiar hormonal landscape. It is now well established that the androgen/androgen receptor (AR) axis is still active in CRPC cells. The persistent activity of this axis in PCa progression has been shown to be related to different mechanisms, such as intratumoral androgen synthesis, AR amplification and mutations, AR mRNA alternative splicing, increased expression/activity of AR-related transcription factors and coregulators. The hypothalamic gonadotropin-releasing hormone (GnRH), by binding to its specific receptors (GnRH-Rs) at the pituitary level, plays a pivotal role in the regulation of the reproductive functions. GnRH and GnRH-R are also expressed in different types of tumors, including PCa. Specifically, it has been demonstrated that, in CRPC cells, the activation of GnRH-Rs is associated with a significant antiproliferative/proapoptotic, antimetastatic and antiangiogenic activity. This antitumor activity is mainly mediated by the GnRH-R-associated Gαi/cAMP signaling pathway. In this review, we dissect the molecular mechanisms underlying the role of the androgen/AR and GnRH/GnRH-R axes in CRPC progression and the possible therapeutic implications.
Collapse
Affiliation(s)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| |
Collapse
|
7
|
Ramírez-de-Arellano A, Pereira-Suárez AL, Rico-Fuentes C, López-Pulido EI, Villegas-Pineda JC, Sierra-Diaz E. Distribution and Effects of Estrogen Receptors in Prostate Cancer: Associated Molecular Mechanisms. Front Endocrinol (Lausanne) 2021; 12:811578. [PMID: 35087479 PMCID: PMC8786725 DOI: 10.3389/fendo.2021.811578] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022] Open
Abstract
Estrogens are hormones that have been extensively presented in many types of cancer such as breast, uterus, colorectal, prostate, and others, due to dynamically integrated signaling cascades that coordinate cellular growth, differentiation, and death which can be potentially new therapeutic targets. Despite the historical use of estrogens in the pathogenesis of prostate cancer (PCa), their biological effect is not well known, nor their role in carcinogenesis or the mechanisms used to carry their therapeutic effects of neoplastic in prostate transformation. The expression and regulation of the estrogen receptors (ERs) ERα, ERβ, and GPER stimulated by agonists and antagonists, and related to prostate cancer cells are herein reviewed. Subsequently, the structures of the ERs and their splice variants, the binding of ligands to ERs, and the effect on PCa are provided. Finally, we also assessed the contribution of molecular simulation which can help us to search and predict potential estrogenic activities.
Collapse
Affiliation(s)
- Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Cecilia Rico-Fuentes
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Edgar Iván López-Pulido
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Julio César Villegas-Pineda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Erick Sierra-Diaz
- Departamentos de Clínicas Quirúrgicas y Salud Pública, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Urología, Hospital de Especialidades Centro Médico Nacional de Occidente, Guadalajara, Mexico
- *Correspondence: Erick Sierra-Diaz,
| |
Collapse
|
8
|
Kato K, Nakayoshi T, Inoue H, Fukuyoshi S, Ohta K, Endo Y, Kurimoto E, Oda A. Development of Force Field Parameters for p-Carborane to Investigate the Structural Influence of Carborane Derivatives on Drug Targets by Complex Formation. Biol Pharm Bull 2020; 43:1931-1939. [PMID: 33268711 DOI: 10.1248/bpb.b20-00656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Androgen receptor (AR) has a key role in the development and progression of prostate cancer, and AR antagonists are used for its remedy. Recently, carborane derivatives, which are carbon-containing boron clusters have attracted attention as new AR ligands. Here we determined the force field parameters of 10-vertex and 12-vertex p-carborane to facilitate in silico drug design of boron clusters. Then, molecular dynamics (MD) simulations of complexes of AR-carborane derivatives were performed to evaluate the parameters and investigate the influences of carborane derivatives on the three-dimensional structure of AR. Energy profiles were obtained using quantum chemical calculations, and the force-field parameters were determined by curve fitting of the energy profiles. The results of MD simulations indicated that binding of the antagonist-BA341 changed some hydrogen-bond formations involved in the structure and location of helix 12. Those results were consistent with previously reported data. The determined parameters are also useful for refining the structure of the carborane-receptor complex obtained by docking simulations and development of new ligands with carborane cages not only for AR but also for various receptors.
Collapse
Affiliation(s)
- Koichi Kato
- Faculty of Pharmacy, Meijo University.,College of Pharmacy, Kinjo Gakuin University
| | | | | | - Shuichi Fukuyoshi
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Kiminori Ohta
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University.,School of Pharmacy, Showa University
| | - Yasuyuki Endo
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | | | - Akifumi Oda
- Faculty of Pharmacy, Meijo University.,Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University.,Institute for Protein Research, Osaka University
| |
Collapse
|
9
|
Nanni S, Bacci L, Aiello A, Re A, Salis C, Grassi C, Pontecorvi A, Gaetano C, Farsetti A. Signaling through estrogen receptors modulates long non-coding RNAs in prostate cancer. Mol Cell Endocrinol 2020; 511:110864. [PMID: 32413384 DOI: 10.1016/j.mce.2020.110864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
Prostate cancer (PCa) is a sex-steroid hormone-dependent cancer in which estrogens play a critical role in both initiation and progression. Recently, several long non-coding RNAs (lncRNAs) have been associated with PCa and are supposedly playing a pivotal role in the biology and progression of this type of cancer. In this review, we focused on some lncRNAs that are known for their androgen and estrogen transcriptional responsiveness in PCa. Specifically, we summarized recent pieces of evidence about lncRNAs NEAT1, H19, MALAT1, and HOTAIR, in estrogen signaling, emphasizing their role in PCa progression and the acquisition of a castration-resistant phenotype. Here, the reader will find information about lncRNAs present in estrogen-dependent transcriptional complexes. The potential role of lncRNA/estrogen signaling as a novel pathway for PCa treatment will be discussed.
Collapse
Affiliation(s)
- Simona Nanni
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.
| | - Lorenza Bacci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168, Roma, Italy
| | - Aurora Aiello
- Institute for Systems Analysis and Computer Science "A. Ruberti" (IASI), National Research Council (CNR), 00185, Rome, Italy
| | - Agnese Re
- Institute for Systems Analysis and Computer Science "A. Ruberti" (IASI), National Research Council (CNR), 00185, Rome, Italy
| | - Chiara Salis
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168, Roma, Italy
| | - Claudio Grassi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Alfredo Pontecorvi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science "A. Ruberti" (IASI), National Research Council (CNR), 00185, Rome, Italy.
| |
Collapse
|
10
|
Wang Z, Deng T, Long X, Lin X, Wu S, Wang H, Ge R, Zhang Z, Wu CL, Taplin ME, Olumi AF. Methylation of SRD5A2 promoter predicts a better outcome for castration-resistant prostate cancer patients undergoing androgen deprivation therapy. PLoS One 2020; 15:e0229754. [PMID: 32134978 PMCID: PMC7058338 DOI: 10.1371/journal.pone.0229754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To determine whether SRD5A2 promoter methylation is associated with cancer progression during androgen deprivation therapy (ADT) in CRPC. PATIENTS AND METHODS In a Local CRPC cohort, 42 prostatic specimens were collected from patients who were diagnosed as CRPC and underwent transurethral resection of the prostate (TURP) at Massachusetts General Hospital (MGH). In a metastatic CRPC (Met CRPC) cohort, 12 metastatic biopsies were collected from CRPC patients who would be treated with abiraterone plus dutasteride (Clinical Trial NCT01393730). As controls, 36 benign prostatic specimens were collected from patients undergoing prostate reduction surgery for symptoms of bladder outlet obstruction secondary to benign prostatic hyperplasia (BPH). The methylation status of cytosine-phosphate-guanine (CpG) site(s) at SRD5A2 promoter regions was tested. RESULTS Compared with benign prostatic tissue, CRPC samples demonstrated higher SRD5A2 methylation in the whole promoter region (Local CRPC cohort: P < 0.001; Met CRPC cohort: P <0.05). In Local CRPC cohort, a higher ratio of methylation was correlated with better OS (R2 = 0.33, P = 0.013). Hypermethylation of specific regions (nucleotides -434 to -4 [CpG# -39 to CpG# -2]) was associated with a better OS (11.3±5.8 vs 6.4±4.4 years, P = 0.001) and PFS (8.4±5.4 vs 4.5±3.9 years, P = 0.003) with cutoff value of 37.9%. Multivariate analysis showed that SRD5A2 methylation was associated with OS independently (whole promoter region: P = 0.035; specific region: P = 0.02). CONCLUSION Our study demonstrate that SRD5A2 methylation in promoter regions, specifically at CpG# -39 to -2, is significantly associated with better survival for CRPC patients treated with ADT. Recognition of epigenetic modifications of SRD5A2 may affect the choices and sequence of available therapies for management of CRPC.
Collapse
Affiliation(s)
- Zongwei Wang
- Department of Surgery, Division of Urology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Department of Pathology and Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Tuo Deng
- Department of Surgery, Division of Urology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Department of Urology, Minimally Invasive Surgery center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, Guangdong, China
| | - Xingbo Long
- Department of Urology, Union Medical College, Beijing, China
| | - Xueming Lin
- Department of Pathology and Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shulin Wu
- Department of Pathology and Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Hongbo Wang
- Department of Pathology and Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Rongbin Ge
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Zhenwei Zhang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States of America
| | - Chin-Lee Wu
- Department of Pathology and Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Mary-Ellen Taplin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States of America
| | - Aria F. Olumi
- Department of Surgery, Division of Urology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
11
|
Lafront C, Germain L, Weidmann C, Audet-Walsh É. A Systematic Study of the Impact of Estrogens and Selective Estrogen Receptor Modulators on Prostate Cancer Cell Proliferation. Sci Rep 2020; 10:4024. [PMID: 32132580 PMCID: PMC7055213 DOI: 10.1038/s41598-020-60844-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/17/2020] [Indexed: 01/10/2023] Open
Abstract
The estrogen signaling pathway has been reported to modulate prostate cancer (PCa) progression through the activity of estrogen receptors α and β (ERα and ERβ). Given that selective estrogen receptor modulators (SERMs) are used to treat breast cancer, ERs have been proposed as attractive therapeutic targets in PCa. However, many inconsistencies regarding the expression of ERs and the efficacy of SERMs for PCa treatment exist, notably due to the use of ERβ antibodies lacking specificity and treatments with high SERM concentrations leading to off-target effects. To end this confusion, our objective was to study the impact of estrogenic and anti-estrogenic ligands in well-studied in vitro PCa models with appropriate controls, dosages, and ER subtype-specific antibodies. When using physiologically relevant concentrations of nine estrogenic/anti-estrogenic compounds, including five SERMs, we observed no significant modulation of PCa cell proliferation. Using RNA-seq and validated antibodies, we demonstrate that these PCa models do not express ERs. In contrast, RNA-seq from PCa samples from patients have detectable expression of ERα. Overall, our study reveals that commonly used PCa models are inappropriate to study ERs and indicate that usage of alternative models is essential to properly assess the roles of the estrogen signaling pathway in PCa.
Collapse
Affiliation(s)
- Camille Lafront
- Department of molecular medicine, Faculty of Medicine, Université Laval, Québec City, G1V 0A6, Canada
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada
- Centre de recherche sur le cancer (CRC) of Université Laval, Québec City, Canada
| | - Lucas Germain
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada
- Centre de recherche sur le cancer (CRC) of Université Laval, Québec City, Canada
- Department of biochemistry, microbiology and bioinformatics, Faculty of Sciences and Engineering, Université Laval, Québec City, G1V 0A6, Canada
| | - Cindy Weidmann
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada
- Centre de recherche sur le cancer (CRC) of Université Laval, Québec City, Canada
| | - Étienne Audet-Walsh
- Department of molecular medicine, Faculty of Medicine, Université Laval, Québec City, G1V 0A6, Canada.
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada.
- Centre de recherche sur le cancer (CRC) of Université Laval, Québec City, Canada.
| |
Collapse
|
12
|
Lombardi APG, Vicente CM, Porto CS. Estrogen Receptors Promote Migration, Invasion and Colony Formation of the Androgen-Independent Prostate Cancer Cells PC-3 Through β-Catenin Pathway. Front Endocrinol (Lausanne) 2020; 11:184. [PMID: 32328032 PMCID: PMC7160699 DOI: 10.3389/fendo.2020.00184] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is initially dependent on the androgen, gradually evolves into an androgen-independent form of the disease, also known as castration-resistant prostate cancer (CRPC). At this stage, current therapies scantily improve survival of the patient. Androgens and estrogens are involved in normal prostate and prostate cancer development. The mechanisms by which estrogens/estrogen receptors (ERs) induce prostate cancer and promote prostate cancer progression have not yet been fully identified. Our laboratory has shown that androgen-independent prostate cancer cells PC-3 express both ERα and ERβ. The activation of ERβ increases the expression of β-catenin and proliferation of PC-3 cells. We now report that the activation of ERβ promotes the increase of migration, invasion and anchorage-independent growth of PC-3 cells. Furthermore, the activation of ERα also plays a role in invasion and anchorage-independent growth of PC-3 cells. These effects are blocked by pretreatment with PKF 118-310, compound that disrupts the complex β-catenin/TCF/LEF, suggesting that ERs/β-catenin are involved in all cellular characteristics of tumor development in vitro. Furthermore, PKF 118-310 also inhibited the upregulation of vascular endothelial growth factor A (VEGFA) induced by activation of ERs. VEGF also is involved on invasion of PC-3 cells. In conclusion, this study provides novel insights into the signatures and molecular mechanisms of ERβ in androgen-independent prostate cancer cells PC-3. ERα also plays a role on invasion and colony formation of PC-3 cells.
Collapse
|
13
|
Baci D, Bruno A, Cascini C, Gallazzi M, Mortara L, Sessa F, Pelosi G, Albini A, Noonan DM. Acetyl-L-Carnitine downregulates invasion (CXCR4/CXCL12, MMP-9) and angiogenesis (VEGF, CXCL8) pathways in prostate cancer cells: rationale for prevention and interception strategies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:464. [PMID: 31718684 PMCID: PMC6852951 DOI: 10.1186/s13046-019-1461-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/21/2019] [Indexed: 01/04/2023]
Abstract
Background Prostate cancer (PCa) is a leading cause of cancer-related death in males worldwide. Exacerbated inflammation and angiogenesis have been largely demonstrated to contribute to PCa progression. Diverse naturally occurring compounds and dietary supplements are endowed with anti-oxidant, anti-inflammatory and anti-angiogenic activities, representing valid compounds to target the aberrant cytokine/chemokine production governing PCa progression and angiogenesis, in a chemopreventive setting. Using mass spectrometry analysis on serum samples of prostate cancer patients, we have previously found higher levels of carnitines in non-cancer individuals, suggesting a protective role. Here we investigated the ability of Acetyl-L-carnitine (ALCAR) to interfere with key functional properties of prostate cancer progression and angiogenesis in vitro and in vivo and identified target molecules modulated by ALCAR. Methods The chemopreventive/angiopreventive activities ALCAR were investigated in vitro on four different prostate cancer (PCa) cell lines (PC-3, DU-145, LNCaP, 22Rv1) and a benign prostatic hyperplasia (BPH) cell line. The effects of ALCAR on the induction of apoptosis and cell cycle arrest were investigated by flow cytometry (FC). Functional analysis of cell adhesion, migration and invasion (Boyden chambers) were performed. ALCAR modulation of surface antigen receptor (chemokines) and intracellular cytokine production was assessed by FC. The release of pro-angiogenic factors was detected by a multiplex immunoassay. The effects of ALCAR on PCa cell growth in vivo was investigated using tumour xenografts. Results We found that ALCAR reduces cell proliferation, induces apoptosis, hinders the production of pro inflammatory cytokines (TNF-α and IFN-γ) and of chemokines CCL2, CXCL12 and receptor CXCR4 involved in the chemotactic axis and impairs the adhesion, migration and invasion capabilities of PCa and BPH cells in vitro. ALCAR exerts angiopreventive activities on PCa by reducing production/release of pro angiogenic factors (VEGF, CXCL8, CCL2, angiogenin) and metalloprotease MMP-9. Exposure of endothelial cells to conditioned media from PCa cells, pre-treated with ALCAR, inhibited the expression of CXCR4, CXCR1, CXCR2 and CCR2 compared to those from untreated cells. Oral administration (drinking water) of ALCAR to mice xenografted with two different PCa cell lines, resulted in reduced tumour cell growth in vivo. Conclusions Our results highlight the capability of ALCAR to down-modulate growth, adhesion, migration and invasion of prostate cancer cells, by reducing the production of several crucial chemokines, cytokines and MMP9. ALCAR is a widely diffused dietary supplements and our findings provide a rational for studying ALCAR as a possible molecule for chemoprevention approaches in subjects at high risk to develop prostate cancer. We propose ALCAR as a new possible “repurposed agent’ for cancer prevention and interception, similar to aspirin, metformin or beta-blockers.
Collapse
Affiliation(s)
- Denisa Baci
- School of Medicine and Surgery, University of Milano-Bicocca, Building U8, Via Cadore 48, 20900, Monza, Italy
| | - Antonino Bruno
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Caterina Cascini
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Matteo Gallazzi
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Lorenzo Mortara
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Fausto Sessa
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giuseppe Pelosi
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Adriana Albini
- School of Medicine and Surgery, University of Milano-Bicocca, Building U8, Via Cadore 48, 20900, Monza, Italy. .,Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy.
| | - Douglas M Noonan
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
14
|
Majumdar S, Rinaldi JC, Malhotra NR, Xie L, Hu DP, Gauntner TD, Grewal HS, Hu WY, Kim SH, Katzenellenbogen JA, Kasper S, Prins GS. Differential Actions of Estrogen Receptor α and β via Nongenomic Signaling in Human Prostate Stem and Progenitor Cells. Endocrinology 2019; 160:2692-2708. [PMID: 31433456 PMCID: PMC6804489 DOI: 10.1210/en.2019-00177] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022]
Abstract
Human prostate stem and progenitor cells express estrogen receptor (ER)α and ERβ and exhibit proliferative responses to estrogens. In this study, membrane-initiated estrogen signaling was interrogated in human prostate stem/progenitor cells enriched from primary epithelial cultures and stem-like cell lines from benign and cancerous prostates. Subcellular fractionation and proximity ligation assays localized ERα and ERβ to the cell membrane with caveolin-1 interactions. Exposure to 17β-estradiol (E2) for 15 to 60 minutes led to sequential phosphorylation of signaling molecules in MAPK and AKT pathways, IGF1 receptor, epidermal growth factor receptor, and ERα, thus documenting an intact membrane signalosome that activates diverse downstream cascades. Treatment with an E2-dendrimer conjugate or ICI 182,870 validated E2-mediated actions through membrane ERs. Overexpression and knockdown of ERα or ERβ in stem/progenitor cells identified pathway selectivity; ERα preferentially activated AKT, whereas ERβ selectively activated MAPK cascades. Furthermore, prostate cancer stem-like cells expressed only ERβ, and brief E2 exposure activated MAPK but not AKT cascades. A gene subset selectively regulated by nongenomic E2 signaling was identified in normal prostate progenitor cells that includes BGN, FOSB, FOXQ1, and MAF. Membrane-initiated E2 signaling rapidly modified histone methyltransferases, with MLL1 cleavage observed downstream of phosphorylated AKT and EZH2 phosphorylation downstream of MAPK signaling, which may jointly modify histones to permit rapid gene transcription. Taken together, the present findings document ERα and ERβ membrane-initiated signaling in normal and cancerous human prostate stem/progenitor cells with differential engagement of downstream effectors. These signaling pathways influence normal prostate stem/progenitor cell homeostasis and provide novel therapeutic sites to target the elusive prostate cancer stem cell population.
Collapse
Affiliation(s)
- Shyama Majumdar
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jaqueline C Rinaldi
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Neha R Malhotra
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Lishi Xie
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Dan-Ping Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Timothy D Gauntner
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Harinder S Grewal
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Wen-Yang Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois
| | | | - Susan Kasper
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois Cancer Center, Chicago, Illinois
| |
Collapse
|
15
|
Estrogen Receptors in Epithelial-Mesenchymal Transition of Prostate Cancer. Cancers (Basel) 2019; 11:cancers11101418. [PMID: 31548498 PMCID: PMC6826537 DOI: 10.3390/cancers11101418] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer (PC) remains a widespread malignancy in men. Since the androgen/androgen receptor (AR) axis is associated with the pathogenesis of prostate cancer, suppression of AR-dependent signaling by androgen deprivation therapy (ADT) still represents the primary intervention for this disease. Despite the initial response, prostate cancer frequently develops resistance to ADT and progresses. As such, the disease becomes metastatic and few therapeutic options are available at this stage. Although the majority of studies are focused on the role of AR signaling, compelling evidence has shown that estrogens and their receptors control prostate cancer initiation and progression through a still debated mechanism. Epithelial versus mesenchymal transition (EMT) is involved in metastatic spread as well as drug-resistance of human cancers, and many studies on the role of this process in prostate cancer progression have been reported. We discuss here the findings on the role of estrogen/estrogen receptor (ER) axis in epithelial versus mesenchymal transition of prostate cancer cells. The pending questions concerning this issue are presented, together with the impact of the available data in clinical management of prostate cancer patients.
Collapse
|
16
|
Anh NH, Long NP, Kim SJ, Min JE, Yoon SJ, Kim HM, Yang E, Hwang ES, Park JH, Hong SS, Kwon SW. Steroidomics for the Prevention, Assessment, and Management of Cancers: A Systematic Review and Functional Analysis. Metabolites 2019; 9:E199. [PMID: 31546652 PMCID: PMC6835899 DOI: 10.3390/metabo9100199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Steroidomics, an analytical technique for steroid biomarker mining, has received much attention in recent years. This systematic review and functional analysis, following the PRISMA statement, aims to provide a comprehensive review and an appraisal of the developments and fundamental issues in steroid high-throughput analysis, with a focus on cancer research. We also discuss potential pitfalls and proposed recommendations for steroidomics-based clinical research. Forty-five studies met our inclusion criteria, with a focus on 12 types of cancer. Most studies focused on cancer risk prediction, followed by diagnosis, prognosis, and therapy monitoring. Prostate cancer was the most frequently studied cancer. Estradiol, dehydroepiandrosterone, and cortisol were mostly reported and altered in at least four types of cancer. Estrogen and estrogen metabolites were highly reported to associate with women-related cancers. Pathway enrichment analysis revealed that steroidogenesis; androgen and estrogen metabolism; and androstenedione metabolism were significantly altered in cancers. Our findings indicated that estradiol, dehydroepiandrosterone, cortisol, and estrogen metabolites, among others, could be considered oncosteroids. Despite noble achievements, significant shortcomings among the investigated studies were small sample sizes, cross-sectional designs, potential confounding factors, and problematic statistical approaches. More efforts are required to establish standardized procedures regarding study design, analytical procedures, and statistical inference.
Collapse
Affiliation(s)
- Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | | | - Sun Jo Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Jung Eun Min
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang Jun Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Hyung Min Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Eugine Yang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea.
| | - Eun Sook Hwang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea.
| | - Jeong Hill Park
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea.
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
17
|
Lin J, Dong K, Bai Y, Zhao S, Dong Y, Shi J, Shi W, Long J, Yang X, Wang D, Yang X, Zhao L, Hu K, Pan J, Sang X, Wang K, Zhao H. Precision oncology for gallbladder cancer: insights from genetic alterations and clinical practice. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:467. [PMID: 31700903 DOI: 10.21037/atm.2019.08.67] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Gallbladder cancer (GBC) is an uncommon but highly fatal malignancy, with limited adjuvant therapy. The present study aims to explore the actionable alterations and precision oncology for GBC patients. Methods Patients with pathologically confirmed GBC who progressed after first-line systemic treatment were enrolled. Genomic alterations were captured by ultra-deep targeted next-generation sequencing (tNGS). The actionabilities of alterations and the therapeutic regimens were evaluated by a multidisciplinary tumor board (MDTB). Results Sixty patients with GBC were enrolled and analyzed. tNGS was successfully achieved in all patients. The median tumor mutation burden for GBC patients was 5.4 (range: 0.8-36.74) mutations/Mb, and the most common mutations were in TP53 (73%), CDKN2A (25%) and PIK3CA (20%). The most frequently copy-number altered genes were CDKN2A deletion (11.7%) and ERBB2 amplification (13.3%). 23% of the patients displayed gene fusion; 17 fusion events were identified, and 14 of the 17 fusion events co-occurred with mutations in driver genes. In total, 46 of the 60 (76%) patients were identified as possessing at least one actionable target to proceed precision oncology. Conclusions The present study revealed the mutational profile for the clinical practice of precision oncology in GBC patients.
Collapse
Affiliation(s)
- Jianzhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Kun Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yi Bai
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | | | - Yonghong Dong
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan 710068, China
| | | | | | - Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Xu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Dongxu Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Xiaobo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Lin Zhao
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan 710068, China
| | - Ke Hu
- Center for Radiotherapy, Peking Union Medical College Hospital, Beijing 100032, China
| | - Jie Pan
- Department of Radiology, Peking Union Medical College Hospital, Beijing 100032, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| | - Kai Wang
- OrigiMed, Shanghai 201114, China.,Zhejiang University International Hospital, Hangzhou 310030, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing 100730, China
| |
Collapse
|
18
|
Agbo L, Lambert JP. Proteomics contribution to the elucidation of the steroid hormone receptors functions. J Steroid Biochem Mol Biol 2019; 192:105387. [PMID: 31173874 DOI: 10.1016/j.jsbmb.2019.105387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
Steroid hormones have far-ranging biological impacts and more are continuously being uncovered. Over the last decades, proteomics approaches have become key to better understand biological processes. Due to multiple technical breakthroughs allowing for the concurrent identification and/or quantification of thousands of analytes using mass spectrometers, researchers employing proteomics tools today can now obtain truly holistic views of multiple facets of the human proteome. Here, we review how the field of proteomics has contributed to discoveries about steroid hormones, their receptors and their impact on human pathologies. In particular, the involvement of steroid receptors in cancer initiation, development, metastasis and treatment will be highlighted. Techniques at the forefront of the proteomics field will also be discussed to present how they can contribute to a better understanding of steroid hormone receptors.
Collapse
Affiliation(s)
- Lynda Agbo
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Québec, QC, Canada; Research Center CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Québec, QC, Canada; Research Center CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
19
|
Sehgal PD, Bauman TM, Nicholson TM, Vellky JE, Ricke EA, Tang W, Xu W, Huang W, Ricke WA. Tissue-specific quantification and localization of androgen and estrogen receptors in prostate cancer. Hum Pathol 2019; 89:99-108. [PMID: 31054895 DOI: 10.1016/j.humpath.2019.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/05/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Androgens and estrogens, working together, promote prostate cancer (PRCA) initiation and progression, with androgens acting via androgen receptor (AR) and estrogens acting primarily through estrogen receptor α (ERα). While the interplay between these steroid hormones has been established, the interaction between steroid hormone receptors in prostatic disease remains unstudied. The goal of this study was to objectively determine the incidence, stage specificity, and tissue/cell type specificity of AR and ERα expression, both independently and simultaneously, during the progression of PRCA. Using multiplexed immunohistochemistry and multispectral imaging analysis, AR, ERα, and smooth muscle α-actin expression was detected and quantitated in benign prostate tissue (BPT), high-grade prostatic intraepithelial neoplasia (HGPIN), PRCA, and metastasis (MET) from patient specimens (n=340). Epithelial AR expression was significantly increased in HGPIN, PRCA, and MET compared with BPT, whereas ERα expression in epithelial and stromal cells was highest in HGPIN. With analysis of AR and ERα coexpression, we identified a unique population of double-positive (AR+/ERα+) cells that increased in HGPIN specimens in both the stroma and the epithelium. Double-negative (AR-/ERα-) cells significantly decreased across PRCA progression, from 65% in BPT to 30% in MET. Preliminary analysis of this AR+/ERα+ population indicates potential cell type specificity in smooth muscle α-actin-negative stromal cells. This study demonstrates stage-, tissue-, and cell type-specific AR and ERα expression changes during PRCA progression, both independently and coexpressed. A more complete understanding of steroid hormones and their receptors in the initiation and progression of prostatic disease may elucidate improved strategies for PRCA prevention or therapy.
Collapse
Affiliation(s)
- Priyanka D Sehgal
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Tyler M Bauman
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Division of Urology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Tristan M Nicholson
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Urology, University of Washington School of Medicine, Seattle, WA 98915, USA
| | - Jordan E Vellky
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Cancer Biology Graduate Program, University of Wisconsin-Madison, Wisconsin Institute for Medical Research, Madison, WI 53705, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Emily A Ricke
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; George M. O'Brien Research Center of Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Weiping Tang
- Department of Medicinal Chemistry, University of Wisconsin School of Pharmacy, Madison, WI 53705, USA
| | - Wei Xu
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; George M. O'Brien Research Center of Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wei Huang
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; George M. O'Brien Research Center of Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - William A Ricke
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; George M. O'Brien Research Center of Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
20
|
Souza DS, Lombardi APG, Vicente CM, Lucas TFG, Erustes AG, Pereira GJS, Porto CS. Estrogen receptors localization and signaling pathways in DU-145 human prostate cancer cells. Mol Cell Endocrinol 2019; 483:11-23. [PMID: 30660702 DOI: 10.1016/j.mce.2018.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
The aim of the present study was to investigate the subcellular localization of estrogen receptors ERα and ERβ in androgen-independent prostate cancer cell line DU-145, and the possible role of exportin CRM1 on ERs distribution. In addition, we evaluated the ERs contribution to activation of ERK1/2 and AKT. Immunostaining of ERα and ERβ was predominantly found in the extranuclear regions of DU-145 cells. CRM1 inhibitor Leptomycin B reduced drastically the presence of ERα and ERβ in the extranuclear regions and increased in the nuclei, indicating the possible involvement of CRM1 on ERs nuclear-cytoplasmic shuttling. 17β-estradiol (E2), ERα-selective agonist PPT and ERβ-selective agonist DPN induced a rapid increase on ERK1/2 phosphorylation. E2-induced ERK1/2 activation was partially inhibited when cells were pretreated with ERα- or ERβ-selective antagonists, and blocked by simultaneous pretreatment with both antagonists, suggesting ERα/β heterodimers formation. Furthermore, E2 treatment did not activate AKT pathway. Therefore, we highlighted a possible crosstalk between extranuclear and nuclear ERs and their upstream and downstream signaling molecules as an important mechanism to control ER function as a potential therapeutic target in prostate cancer cells.
Collapse
Affiliation(s)
- Deborah S Souza
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Ana Paola G Lombardi
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Carolina M Vicente
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Thaís Fabiana G Lucas
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Adolfo G Erustes
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Gustavo J S Pereira
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Catarina S Porto
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
21
|
Nakamura Y, Ise K, McNamara KM, Azmahani A, Sato S, Fujishima F, Joh K, Suzuki H, Mitsuzuka K, Arai Y, Takahashi H, Sasano H. The expression of sex steroid receptors and sex steroid–synthesizing/metabolizing enzymes in metastasized lymph nodes of prostate cancer. Hum Pathol 2019; 84:124-132. [DOI: 10.1016/j.humpath.2018.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/16/2022]
|
22
|
Neural Transcription Factors in Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:437-462. [PMID: 31900920 DOI: 10.1007/978-3-030-32656-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progression to the malignant state is fundamentally dependent on transcriptional regulation in cancer cells. Optimum abundance of cell cycle proteins, angiogenesis factors, immune evasion markers, etc. is needed for proliferation, metastasis or resistance to treatment. Therefore, dysregulation of transcription factors can compromise the normal prostate transcriptional network and contribute to malignant disease progression.The androgen receptor (AR) is considered to be a key transcription factor in prostate cancer (PCa) development and progression. Consequently, androgen pathway inhibitors (APIs) are currently the mainstay in PCa treatment, especially in castration-resistant prostate cancer (CRPC). However, emerging evidence suggests that with increased administration of potent APIs, prostate cancer can progress to a highly aggressive disease that morphologically resembles small cell carcinoma, which is referred to as neuroendocrine prostate cancer (NEPC), treatment-induced or treatment-emergent small cell prostate cancer. This chapter will review how neuronal transcription factors play a part in inducing a plastic stage in prostate cancer cells that eventually progresses to a more aggressive state such as NEPC.
Collapse
|
23
|
Kimura N, Yamada Y, Takayama KI, Fujimura T, Takahashi S, Kume H, Inoue S. Androgen-responsive tripartite motif 36 enhances tumor-suppressive effect by regulating apoptosis-related pathway in prostate cancer. Cancer Sci 2018; 109:3840-3852. [PMID: 30238687 PMCID: PMC6272107 DOI: 10.1111/cas.13803] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Tripartite motif 36 (TRIM36) belongs to the TRIM family, most members of which are involved in ubiquitination and degradation of target proteins by functioning as E3 ubiquitin ligases. The function of TRIM36 has not been well documented, therefore, we investigated the clinical significance and function of TRIM36 in human prostate cancer (PC). Multivariate logistic regression analysis showed that TRIM36 immunoreactivity was an independent predictor of cancer‐specific survival of PC patients. Gain‐of‐function study revealed that overexpression of TRIM36 suppressed cell proliferation and migration of LNCaP, 22Rv1, and DU145 cells. Moreover, TRIM36 knockdown using siRNA suppressed apoptosis and promoted cell proliferation and migration in LNCaP and 22Rv1 cells. Furthermore, our microarray analysis revealed that the apoptosis‐related pathway was significantly upregulated by TRIM36 overexpression. The TUNEL assay showed that apoptosis promoted by docetaxel treatment was alleviated in siTRIM36‐treated LNCaP and 22Rv1 cells. Taken together, these results suggest that high expression of TRIM36 is associated with favorable prognosis and that TRIM36 plays a tumor‐suppressive role by inhibiting cell proliferation and migration as well as promoting apoptosis in PC.
Collapse
Affiliation(s)
- Naoki Kimura
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuta Yamada
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Urology, Chiba-Tokushukai Hospital, Chiba, Japan
| | - Ken-Ichi Takayama
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Inoue
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Division of Gene Regulation and Signal Transduction, Research Center of Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
24
|
He N, Kong Y, Lei X, Liu Y, Wang J, Xu C, Wang Y, Du L, Ji K, Wang Q, Li Z, Liu Q. MSCs inhibit tumor progression and enhance radiosensitivity of breast cancer cells by down-regulating Stat3 signaling pathway. Cell Death Dis 2018; 9:1026. [PMID: 30297887 PMCID: PMC6175943 DOI: 10.1038/s41419-018-0949-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023]
Abstract
The acquisition of radioresistance by breast cancer cells during radiotherapy may lead to cancer recurrence and poor survival. Signal transducer and activator of transcription 3 (Stat3) is activated in breast cancer cells and, therefore, may be an effective target for overcoming therapeutic resistance. Mesenchymal stem cells (MSCs) have been investigated for use in cancer treatment. Here, we investigated the potential of MSC conditioned medium (MSC-CM) in sensitizing breast cancer to radiotherapy. It was found that MSC-CM could inhibit the level of activated Stat3, suppress cancer growth, and exhibit synergetic effects with radiation treatment in vitro and in vivo. Furthermore, MSC-CM reduced the ALDH-positive cancer stem cells (CSCs) population, modulated several potential stem cell markers, and decreased tumor migration, as well as metastasis. These results demonstrate that MSC-CM suppresses breast cancer cells growth and sensitizes cancer cells to radiotherapy through inhibition of the Stat3 signaling pathway, thus, providing a novel strategy for breast cancer therapy by overcoming radioresistance.
Collapse
Affiliation(s)
- Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yangyang Kong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Xudan Lei
- School of Medicine, Nankai University, Tianjin, China
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Kaihua Ji
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Qin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, China.
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China.
| |
Collapse
|