1
|
Wesley T, Escalona RM, Kannourakis G, Ahmed N. Plakin Expression in Serous Epithelial Ovarian Cancer Has the Potential to Impede Metastatic Spread and Epithelial-Mesenchymal Transition: A Comparative Expression Analysis of Immunohistochemical and In Silico Datasets. Cancers (Basel) 2024; 16:4087. [PMID: 39682273 DOI: 10.3390/cancers16234087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Epithelial ovarian cancer is aggressive and causes high mortality among women worldwide. Members of the plakin family are essential to maintain cytoskeletal integrity and key cellular processes. In this study we characterised the expression of plakins, particularly plectin (PLEC), periplakin (PPL), envoplakin (EVPL), and EMT-related proteins by immunohistochemistry in n = 48 patients' samples to evaluate a potential correlation of plakin expression with EMT as EOC progresses. These tissue plakin and EMT expression analyses were further evaluated by in vitro cell line expression and correlated with the expression of these molecules using publicly available datasets such as Cancer Genome Atlas (TCGA) and Clinical Proteome Tumour Analysis Consortium (CPTAC) datasets. We demonstrate that the expression of PPL and PLEC plakins is decreased in high-grade compared to low-grade EOCs with mixed EMT marker protein expression. This is supported by the correlation of high PPL and PLEC expression with an epithelial rather than mesenchymal phenotype. Our data suggest a partial loss of plakin expression as EOC tumours progress. This may impact the connections of plakins with membrane-bound receptors, which impede the downstream signalling required for the initiation of EMT as the tumours progress.
Collapse
Affiliation(s)
- Tamsin Wesley
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Ruth M Escalona
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3353, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Clayton, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3050, Australia
- Department of Surgery, St Vincent Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
2
|
Sun X, Guo Y. Chemerin Enhances Migration and Invasion of OC Cells via CMKLR1/RhoA/ROCK-Mediated EMT. Int J Endocrinol 2024; 2024:7957018. [PMID: 39104601 PMCID: PMC11300085 DOI: 10.1155/2024/7957018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/26/2024] [Accepted: 03/17/2024] [Indexed: 08/07/2024] Open
Abstract
Chemerin is a newly described adipokine with significant effects on obesity, metabolic disorders, and immune trafficking. Recently, chemerin has gained prominence for its potential roles in cancer and tumorigenesis with pro- or antitumor effects. To date, most referenced multifunctions of chemerin are attributed to the chemokine-like receptor 1 (CMKLR1), distributing broadly in many tissues. This study investigates the in vitro roles of chemerin treatment on migration and invasion of ovarian carcinoma cells (OVCAR-3 and SK-OV-3) and potential underlying mechanisms. Herein, exogenous chemerin treatment promotes growth and invasion of SK-OV-3 cells but has no significant effects on OVCAR-3 cells. SK-OV-3 cells undergo morphological elongation characterized by epithelial-to-mesenchymal transition (EMT) and Ras homologous genome members A (RhoA)/Rho protein-related curl spiral kinase-1 (ROCK1) activation. Furthermore, chemerin-enhanced invasion and EMT of SK-OV-3 cells are effectively blocked by C3 transferase (C3T) and Y27632 and RhoA and ROCK1 inhibitor, respectively. More importantly, RhoA/ROCK1-EMT-mediated SK-OV-3 cell invasion is orchestrated by CMKLR1 upregulation after chemerin treatment (50 ng/mL). The silencing of CMKLR1 significantly (P < 0.0001) reverses the chemerin-enhanced invasion, EMT, and RhoA/ROCK1 activation of SK-OV-3 cells. Our study indicates that chemerin promotes invasion of OC cells via CMKLR1-RhoA/ROCK1-mediated EMT, offering a novel potential target for metastasis of OC.
Collapse
Affiliation(s)
- Xiaojing Sun
- First Hospital of China Medical UniversityDepartment of Obstetrics and Gynecology, Shenyang 110001, Liaoning, China
| | - Yi Guo
- First Hospital of China Medical UniversityDepartment of Obstetrics and Gynecology, Shenyang 110001, Liaoning, China
| |
Collapse
|
3
|
Constantinescu DR, Sorop A, Ghionescu AV, Lixandru D, Herlea V, Bacalbasa N, Dima SO. EM-transcriptomic signature predicts drug response in advanced stages of high-grade serous ovarian carcinoma based on ascites-derived primary cultures. Front Pharmacol 2024; 15:1363142. [PMID: 38510654 PMCID: PMC10953505 DOI: 10.3389/fphar.2024.1363142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction: High-grade serous ovarian carcinoma (HGSOC) remains a medical challenge despite considerable improvements in the treatment. Unfortunately, over 75% of patients have already metastasized at the time of diagnosis. Advances in understanding the mechanisms underlying how ascites cause chemoresistance are urgently needed to derive novel therapeutic strategies. This study aimed to identify the molecular markers involved in drug sensitivity and highlight the use of ascites as a potential model to investigate HGSOC treatment options. Methods: After conducting an in silico analysis, eight epithelial-mesenchymal (EM)-associated genes related to chemoresistance were identified. To evaluate differences in EM-associated genes in HGSOC samples, we analyzed ascites-derived HGSOC primary cell culture (AS), tumor (T), and peritoneal nodule (NP) samples. Moreover, in vitro experiments were employed to measure tumor cell proliferation and cell migration in AS, following treatment with doxorubicin (DOX) and cisplatin (CIS) and expression of these markers. Results: Our results showed that AS exhibits a mesenchymal phenotype compared to tumor and peritoneal nodule samples. Moreover, DOX and CIS treatment leads to an invasive-intermediate epithelial-to-mesenchymal transition (EMT) state of the AS by different EM-associated marker expression. For instance, the treatment of AS showed that CDH1 and GATA6 decreased after CIS exposure and increased after DOX treatment. On the contrary, the expression of KRT18 has an opposite pattern. Conclusion: Taken together, our study reports a comprehensive investigation of the EM-associated genes after drug exposure of AS. Exploring ascites and their associated cellular and soluble components is promising for understanding the HGSOC progression and treatment response at a personalized level.
Collapse
Affiliation(s)
| | - Andrei Sorop
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | | | - Daniela Lixandru
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
| | - Vlad Herlea
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Department of Pathology-Fundeni Clinical Institute, Bucharest, Romania
| | - Nicolae Bacalbasa
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Simona Olimpia Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
4
|
Gendrau‐Sanclemente N, Figueras A, Gracova K, Lahiguera Á, Alsina‐Sanchís E, Marín‐Jiménez JA, Vidal A, Matias‐Guiu X, Fernandez‐Gonzalez S, Barahona M, Martí L, Ponce J, Viñals F. Ovarian cancer relies on the PDGFRβ-fibronectin axis for tumorsphere formation and metastatic spread. Mol Oncol 2024; 18:136-155. [PMID: 38010623 PMCID: PMC10766197 DOI: 10.1002/1878-0261.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the deadliest gynecological malignancy. The most common form of metastatic spread of HGSOC is transcoelomic dissemination. In this process, detached cells from the primary tumor aggregate as tumorspheres and promote the accumulation of peritoneal ascites. This represents an early event in HGSOC development and is indicative of poor prognosis. In this study, based on tumorspheres isolated from ascitic liquid samples from HGSOC patients, ovarian cancer spheroid 3D cultures, and in vivo models, we describe a key signal for tumorsphere formation in HGSOC. We report that platelet-derived growth factor receptor beta (PDGFRβ) is essential for fibronectin-mediated cell clustering of ovarian cancer cells into tumorspheres. This effect is mediated by the kinase NUAK family SNF1-like kinase 1 (NUAK1) and blocked by PDGFRβ pharmacological or genetic inhibition. In the absence of PDGFRβ, ovarian cancer cells can be provided with fibronectin by cancer-associated fibroblasts to generate chimeric spheroids. This work provides new insights that uncover potential targets to prevent peritoneal dissemination, the main cause of advanced disease in HGSOC patients.
Collapse
Affiliation(s)
- Núria Gendrau‐Sanclemente
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Agnès Figueras
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Kristina Gracova
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Álvaro Lahiguera
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Elisenda Alsina‐Sanchís
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Juan A. Marín‐Jiménez
- Cancer Immunotherapy (CIT) Group‐ProCUREBellvitge Biomedical Research Institute (IDIBELL) – OncoBellBarcelonaSpain
- Department of Medical OncologyCatalan Institute of Oncology (ICO)BarcelonaSpain
| | - August Vidal
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
- Department of PathologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
- CIBERONCInstituto de Salud Carlos IIIMadridSpain
| | - Xavier Matias‐Guiu
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
- Department of PathologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
- CIBERONCInstituto de Salud Carlos IIIMadridSpain
| | | | - Marc Barahona
- Department of GynaecologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
| | - Lola Martí
- Department of GynaecologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
| | - Jordi Ponce
- Department of GynaecologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
| | - Francesc Viñals
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
- Departament de Ciències FisiològiquesUniversitat de BarcelonaSpain
| |
Collapse
|
5
|
Chen S, Wu Y, Gao Y, Wu C, Wang Y, Hou C, Ren M, Zhang S, Zhu Q, Zhang J, Yao Y, Huang M, Qi YB, Liu XS, Horng T, Wang H, Ye D, Zhu Z, Zhao S, Fan G. Allosterically inhibited PFKL via prostaglandin E2 withholds glucose metabolism and ovarian cancer invasiveness. Cell Rep 2023; 42:113246. [PMID: 37831605 DOI: 10.1016/j.celrep.2023.113246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/13/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Metastasis is the leading cause of high ovarian-cancer-related mortality worldwide. Three major processes constitute the whole metastatic cascade: invasion, intravasation, and extravasation. Tumor cells often reprogram their metabolism to gain advantages in proliferation and survival. However, whether and how those metabolic alterations contribute to the invasiveness of tumor cells has yet to be fully understood. Here we performed a genome-wide CRISPR-Cas9 screening to identify genes participating in tumor cell dissemination and revealed that PTGES3 acts as an invasion suppressor in ovarian cancer. Mechanistically, PTGES3 binds to phosphofructokinase, liver type (PFKL) and generates a local source of prostaglandin E2 (PGE2) to allosterically inhibit the enzymatic activity of PFKL. Repressed PFKL leads to downgraded glycolysis and the subsequent TCA cycle for glucose metabolism. However, ovarian cancer suppresses the expression of PTGES3 and disrupts the PTGES3-PGE2-PFKL inhibitory axis, leading to hyperactivation of glucose oxidation, eventually facilitating ovarian cancer cell motility and invasiveness.
Collapse
Affiliation(s)
- Shengmiao Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Yang Gao
- Interdisciplinary Research Center on Biology and Chemistry and Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chenxu Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuetong Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chun Hou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Miao Ren
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuyuan Zhang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qi Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiali Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yufeng Yao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mei Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yingchuan B Qi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xue-Song Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tiffany Horng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dan Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhengjiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry and Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Suwen Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; iHuman Institute, ShanghaiTech University, Shanghai, China.
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
6
|
Xu L, Yan X, Wang J, Zhao Y, Liu Q, Fu J, Shi X, Su J. The Roles of Histone Deacetylases in the Regulation of Ovarian Cancer Metastasis. Int J Mol Sci 2023; 24:15066. [PMID: 37894746 PMCID: PMC10606123 DOI: 10.3390/ijms242015066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy, and metastasis is the major cause of death in patients with ovarian cancer, which is regulated by the coordinated interplay of genetic and epigenetic mechanisms. Histone deacetylases (HDACs) are enzymes that can catalyze the deacetylation of histone and some non-histone proteins and that are involved in the regulation of a variety of biological processes via the regulation of gene transcription and the functions of non-histone proteins such as transcription factors and enzymes. Aberrant expressions of HDACs are common in ovarian cancer. Many studies have found that HDACs are involved in regulating a variety of events associated with ovarian cancer metastasis, including cell migration, invasion, and the epithelial-mesenchymal transformation. Herein, we provide a brief overview of ovarian cancer metastasis and the dysregulated expression of HDACs in ovarian cancer. In addition, we discuss the roles of HDACs in the regulation of ovarian cancer metastasis. Finally, we discuss the development of compounds that target HDACs and highlight their importance in the future of ovarian cancer therapy.
Collapse
Affiliation(s)
- Long Xu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Xiaoyu Yan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Jian Wang
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Qingqing Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Jiaying Fu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Xinyi Shi
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| |
Collapse
|
7
|
Pankowska KA, Będkowska GE, Chociej-Stypułkowska J, Rusak M, Dąbrowska M, Osada J. Crosstalk of Immune Cells and Platelets in an Ovarian Cancer Microenvironment and Their Prognostic Significance. Int J Mol Sci 2023; 24:ijms24119279. [PMID: 37298230 DOI: 10.3390/ijms24119279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological cancers, largely due to the fast development of metastasis and drug resistance. The immune system is a critical component of the OC tumor microenvironment (TME) and immune cells such as T cells, NK cells, and dendritic cells (DC) play a key role in anti-tumor immunity. However, OC tumor cells are well known for evading immune surveillance by modulating the immune response through various mechanisms. Recruiting immune-suppressive cells such as regulatory T cells (Treg cells), macrophages, or myeloid-derived suppressor cells (MDSC) inhibit the anti-tumor immune response and promote the development and progression of OC. Platelets are also involved in immune evasion by interaction with tumor cells or through the secretion of a variety of growth factors and cytokines to promote tumor growth and angiogenesis. In this review, we discuss the role and contribution of immune cells and platelets in TME. Furthermore, we discuss their potential prognostic significance to help in the early detection of OC and to predict disease outcome.
Collapse
Affiliation(s)
- Katarzyna Aneta Pankowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Grażyna Ewa Będkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Chociej-Stypułkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Małgorzata Rusak
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Milena Dąbrowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Osada
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| |
Collapse
|
8
|
Li Z, Qi J, Guo T, Li J. Research progress of Astragalus membranaceus in treating peritoneal metastatic cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116086. [PMID: 36587879 DOI: 10.1016/j.jep.2022.116086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Peritoneal metastasis is a manifestation of advanced cancer often associated with a poor prognosis and poor response to treatment. Astragalus membranaceus (Fisch.) Bunge is a commonly used medicinal material in traditional Chinese medicine with various biological activities. In patients with cancer, Astragalus membranaceus has demonstrated anti-tumor effects, immune regulation, postoperative recurrence and metastasis prevention, and survival prolongation. AIM OF THE STUDY Peritoneal metastasis results from tumor cell and peritoneal microenvironment co-evolution. We aimed to introduce and discuss the specific mechanism of action of Astragalus membranaceus in peritoneal metastasis treatment to provide a new perspective for treatment and further research. MATERIALS AND METHODS We consulted reports on the anti-peritoneal metastases effects of Astragalus membranaceus from PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang databases, as well as Google Scholar. Meanwhile, we also obtained data from published medical works and doctoral and master's theses. Then, we focused on the research progress of Astragalus membranaceus in peritoneal metastatic cancer treatment. Plant names are provided in accordance with "The Plant List" (www.theplantlist.org). RESULTS To date, more than 200 compounds have been isolated from Astragalus membranaceus. Among them, Astragalus polysaccharides, saponins, and flavonoids are the main bioactive components, and their effects on cancer have been extensively studied. In this review, we systematically summarize the effects of Astragalus membranaceus on the peritoneal metastasis microenvironment and related mechanisms, including maintaining the integrity of peritoneal mesothelial cells, restoring the peritoneal immune microenvironment, and inhibiting the formation of tumor blood vessels, matrix metalloproteinase, and dense tumor spheroids. CONCLUSIONS Our analysis demonstrates that Astragalus membranaceus could be a potential therapeutic for preventing the occurrence of peritoneal metastasis. However, it might be too early to recommend its use owing to the paucity of reliable in vivo experiment, clinical data, and evidence of clinical efficacy. In addition, previous studies of Astragalus membranaceus report inconsistent and contradictory findings. Therefore, detailed in vitro, in vivo, and clinical studies on the mechanism of Astragalus membranaceus in peritoneal metastatic cancer treatment are warranted.
Collapse
Affiliation(s)
- Zhiyuan Li
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Jinfeng Qi
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730030, China
| | - Junliang Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730030, China; The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730030, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, China.
| |
Collapse
|
9
|
Micek HM, Rosenstock L, Ma Y, Hielsberg C, Montemorano L, Gari MK, Ponik SM, Kreeger PK. Model of collective detachment in high-grade serous ovarian cancer demonstrates that tumor spheroids produce ECM to support metastatic processes. APL Bioeng 2023; 7:016111. [PMID: 36875739 PMCID: PMC9977464 DOI: 10.1063/5.0132254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) metastasizes through transcoelomic spread, with both single cells and spheroids of tumor cells observed in patient ascites. These spheroids may form through single cells that detach and aggregate (Sph-SC) or through collective detachment (Sph-CD). We developed an in vitro model to generate and separate Sph-SC from Sph-CD to enable study of Sph-CD in disease progression. In vitro-generated Sph-CD and spheroids isolated from ascites were similar in size (mean diameter 51 vs 55 μm, p > 0.05) and incorporated multiple ECM proteins. Using the in vitro model, nascent protein labeling, and qRT-PCR, we determined that ECM was produced after detachment. As fibronectin plays a key role in many cell adhesion events, we confirmed that inhibiting RGD-based adhesion or fibronectin assembly reduced Sph-CD-mesothelial adhesion strength under shear stress. Our model will enable future studies to determine factors that favor formation of Sph-CD, as well as allow investigators to manipulate Sph-CD to better study their effects on HGSOC progression.
Collapse
Affiliation(s)
- Hannah M. Micek
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Lauren Rosenstock
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Yicheng Ma
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Caitlin Hielsberg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Lauren Montemorano
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | | | | | - Pamela K. Kreeger
- Author to whom correspondence should be addressed:. Tel.: (608) 890–2915
| |
Collapse
|
10
|
Tumour-derived exosomal piR-25783 promotes omental metastasis of ovarian carcinoma by inducing the fibroblast to myofibroblast transition. Oncogene 2023; 42:421-433. [PMID: 36482201 DOI: 10.1038/s41388-022-02560-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
Ovarian carcinoma inherently possesses a distinct metastatic organotropism for the adipose-rich omentum, contributing to disease progression. Although the premetastatic microenvironment (PMM) has been known to often play a prometastatic role during the process, incomplete mechanistic insight into PMM formation has prevented its therapeutic targeting. Omental fibroblasts can be activated by tumour cells to differentiate into myofibroblasts, termed the fibroblast-to-myofibroblast transition (FMT), which, in turn, enhances cancer aggressiveness. Here, we report crosstalk between cancer cells and omental fibroblasts through exosomal piR-25783, which fuels tumour metastasis. Tumour cell-secreted exosomal piR-25783 activates the TGF-β/SMAD2/SMAD3 pathway in fibroblasts and promotes the FMT in the omentum along with the secretion of various cytokines and elevation of proliferative, migratory, and invasive properties, contributing to the formation of PMMs. Furthermore, piR-25783-induced myofibroblasts promote tumour implantation and growth in the omentum. In addition, the overexpression of piR-25783 in ovarian carcinoma is associated with unfavourable clinicopathological characteristics and shorter survival. In this study, we provide molecular, functional, and translational evidence suggesting that exosomal piR-25783 plays an important role in the formation of PMMs and the development of metastatic diseases in vitro and in vivo and may serve as a potential therapeutic target for ovarian carcinoma with metastasis.
Collapse
|
11
|
Escalona RM, Chu S, Kadife E, Kelly JK, Kannourakis G, Findlay JK, Ahmed N. Knock down of TIMP-2 by siRNA and CRISPR/Cas9 mediates diverse cellular reprogramming of metastasis and chemosensitivity in ovarian cancer. Cancer Cell Int 2022; 22:422. [PMID: 36585738 PMCID: PMC9805260 DOI: 10.1186/s12935-022-02838-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The endogenous tissue inhibitor of metalloproteinase-2 (TIMP-2), through its homeostatic action on certain metalloproteinases, plays a vital role in remodelling extracellular matrix (ECM) to facilitate cancer progression. This study investigated the role of TIMP-2 in an ovarian cancer cell line in which the expression of TIMP-2 was reduced by either siRNA or CRISPR/Cas9. METHODS OVCAR5 cells were transiently and stably transfected with either single or pooled TIMP-2 siRNAs (T2-KD cells) or by CRISPR/Cas9 under the influence of two distinct guide RNAs (gRNA1 and gRNA2 cell lines). The expression of different genes was analysed at the mRNA level by quantitative real time PCR (qRT-PCR) and at the protein level by immunofluorescence (IF) and western blot. Proliferation of cells was investigated by 5-Ethynyl-2'-deoxyuridine (EdU) assay or staining with Ki67. Cell migration/invasion was determined by xCELLigence. Cell growth in vitro was determined by 3D spheroid cultures and in vivo by a mouse xenograft model. RESULTS Approximately 70-90% knock down of TIMP-2 expression were confirmed in T2-KD, gRNA1 and gRNA2 OVCAR5 ovarian cancer cells at the protein level. T2-KD, gRNA1 and gRNA2 cells exhibited a significant downregulation of MMP-2 expression, but concurrently a significant upregulation in the expression of membrane bound MMP-14 compared to control and parental cells. Enhanced proliferation and invasion were exhibited in all TIMP-2 knocked down cells but differences in sensitivity to paclitaxel (PTX) treatment were observed, with T2-KD cells and gRNA2 cell line being sensitive, while the gRNA1 cell line was resistant to PTX treatment. In addition, significant differences in the growth of gRNA1 and gRNA2 cell lines were observed in in vitro 3D cultures as well as in an in vivo mouse xenograft model. CONCLUSIONS Our results suggest that the inhibition of TIMP-2 by siRNA and CRISPR/Cas-9 modulate the expression of MMP-2 and MMP-14 and reprogram ovarian cancer cells to facilitate proliferation and invasion. Distinct disparities in in vitro chemosensitivity and growth in 3D culture, and differences in tumour burden and invasion to proximal organs in a mouse model imply that selective suppression of TIMP-2 expression by siRNA or CRISPR/Cas-9 alters important aspects of metastasis and chemosensitivity in ovarian cancer.
Collapse
Affiliation(s)
- Ruth M. Escalona
- grid.1008.90000 0001 2179 088XDepartment of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052 Australia ,grid.1002.30000 0004 1936 7857Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Clayton, VIC 3168 Australia ,Fiona Elsey Cancer Research Institute, Suites 23, 106-110 Lydiard Street South, Ballarat Technology Park Central, Ballarat, VIC 3350 Australia
| | - Simon Chu
- grid.1002.30000 0004 1936 7857Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Clayton, VIC 3168 Australia
| | - Elif Kadife
- Fiona Elsey Cancer Research Institute, Suites 23, 106-110 Lydiard Street South, Ballarat Technology Park Central, Ballarat, VIC 3350 Australia
| | - Jason K. Kelly
- Fiona Elsey Cancer Research Institute, Suites 23, 106-110 Lydiard Street South, Ballarat Technology Park Central, Ballarat, VIC 3350 Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Suites 23, 106-110 Lydiard Street South, Ballarat Technology Park Central, Ballarat, VIC 3350 Australia ,grid.1040.50000 0001 1091 4859School of Science, Psychology and Sport, Federation University, Mt Helen, VIC 3350 Australia
| | - Jock K. Findlay
- grid.1008.90000 0001 2179 088XDepartment of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052 Australia ,grid.1002.30000 0004 1936 7857Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Clayton, VIC 3168 Australia
| | - Nuzhat Ahmed
- grid.1008.90000 0001 2179 088XDepartment of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052 Australia ,grid.1002.30000 0004 1936 7857Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Clayton, VIC 3168 Australia ,Fiona Elsey Cancer Research Institute, Suites 23, 106-110 Lydiard Street South, Ballarat Technology Park Central, Ballarat, VIC 3350 Australia ,grid.1040.50000 0001 1091 4859School of Science, Psychology and Sport, Federation University, Mt Helen, VIC 3350 Australia
| |
Collapse
|
12
|
Zhan S, Yung MMH, Siu MKY, Jiao P, Ngan HYS, Chan DW, Chan KKL. New Insights into Ferroptosis Initiating Therapies (FIT) by Targeting the Rewired Lipid Metabolism in Ovarian Cancer Peritoneal Metastases. Int J Mol Sci 2022; 23:ijms232315263. [PMID: 36499591 PMCID: PMC9737695 DOI: 10.3390/ijms232315263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecological cancers worldwide. The poor prognosis of this malignancy is substantially attributed to the inadequate symptomatic biomarkers for early diagnosis and effective remedies to cure the disease against chemoresistance and metastasis. Ovarian cancer metastasis is often relatively passive, and the single clusters of ovarian cancer cells detached from the primary ovarian tumor are transcoelomic spread by the peritoneal fluid throughout the peritoneum cavity and omentum. Our earlier studies revealed that lipid-enriched ascitic/omental microenvironment enforced metastatic ovarian cancer cells to undertake metabolic reprogramming and utilize free fatty acids as the main energy source for tumor progression and aggression. Intriguingly, cell susceptibility to ferroptosis has been tightly correlated with the dysregulated fatty acid metabolism (FAM), and enhanced iron uptake as the prominent features of ferroptosis are attributed to the strengthened lipid peroxidation and aberrant iron accumulation, suggesting that ferroptosis induction is a targetable vulnerability to prevent cancer metastasis. Therefore, the standpoints about tackling altered FAM in combination with ferroptosis initiation as a dual-targeted therapy against advanced ovarian cancer were highlighted herein. Furthermore, a discussion on the prospect and challenge of inducing ferroptosis as an innovative therapeutic approach for reversing remedial resistance in cancer interventions was included. It is hoped this proof-of-concept review will indicate appropriate directions for speeding up the translational application of ferroptosis-inducing compounds (FINs) to improve the efficacy of ovarian cancer treatment.
Collapse
Affiliation(s)
- Shijie Zhan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mingo M. H. Yung
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michelle K. Y. Siu
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Peili Jiao
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hextan Y. S. Ngan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David W. Chan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Medicine, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China
- Correspondence: (D.W.C.); (K.K.L.C.); Tel.: +86-755-2351-6153 (D.W.C.); +852-2255-4260 (K.K.L.C.); Fax: +852-2255-0947 (K.K.L.C.)
| | - Karen K. L. Chan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Correspondence: (D.W.C.); (K.K.L.C.); Tel.: +86-755-2351-6153 (D.W.C.); +852-2255-4260 (K.K.L.C.); Fax: +852-2255-0947 (K.K.L.C.)
| |
Collapse
|
13
|
Prognostic value of site-specific metastases and treatment effect of surgery for FIGO stage IVB ovarian cancer: A population-based study. Asian J Surg 2022; 46:1777-1780. [PMID: 36414485 DOI: 10.1016/j.asjsur.2022.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/13/2022] [Indexed: 11/21/2022] Open
|
14
|
Metal-organic framework-based smart nanoplatforms with multifunctional attributes for biosensing, drug delivery, and cancer theranostics. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Morretton J, Simon A, Herbette A, Barbazan J, Pérez‐González C, Cosson C, Mboup B, Latouche A, Popova T, Kieffer Y, Macé A, Gestraud P, Bataillon G, Becette V, Meseure D, Nicolas A, Mariani O, Vincent‐Salomon A, Stern M, Mechta‐Grigoriou F, Roman Roman S, Vignjevic DM, Rouzier R, Sastre‐Garau X, Goundiam O, Basto R. A catalog of numerical centrosome defects in epithelial ovarian cancers. EMBO Mol Med 2022; 14:e15670. [PMID: 36069081 PMCID: PMC9449595 DOI: 10.15252/emmm.202215670] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Centrosome amplification, the presence of more than two centrosomes in a cell is a common feature of most human cancer cell lines. However, little is known about centrosome numbers in human cancers and whether amplification or other numerical aberrations are frequently present. To address this question, we have analyzed a large cohort of primary human epithelial ovarian cancers (EOCs) from 100 patients. We found that rigorous quantitation of centrosome number in tumor samples was extremely challenging due to tumor heterogeneity and extensive tissue disorganization. Interestingly, even if centrosome clusters could be identified, the incidence of centrosome amplification was not comparable to what has been described in cultured cancer cells. Surprisingly, centrosome loss events where a few or many nuclei were not associated with centrosomes were clearly noticed and overall more frequent than centrosome amplification. Our findings highlight the difficulty of characterizing centrosome numbers in human tumors, while revealing a novel paradigm of centrosome number defects in EOCs.
Collapse
Affiliation(s)
- Jean‐Philippe Morretton
- Biology of Centrosomes and Genetic Instability, Institut CuriePSL Research University, CNRS UMR 144ParisFrance
| | - Anthony Simon
- Biology of Centrosomes and Genetic Instability, Institut CuriePSL Research University, CNRS UMR 144ParisFrance
| | - Aurélie Herbette
- Department of Translational Research, Institut CuriePSL UniversityParis Cedex 05France
| | - Jorge Barbazan
- Migration and Invasion Laboratory, Institut CuriePSL Research University, CNRS UMR 144ParisFrance
| | - Carlos Pérez‐González
- Migration and Invasion Laboratory, Institut CuriePSL Research University, CNRS UMR 144ParisFrance
| | - Camille Cosson
- Department of Translational Research, Institut CuriePSL UniversityParis Cedex 05France
| | - Bassirou Mboup
- Statistical Methods for Precision MedicineINSERM U900, Institut CurieSaint‐CloudFrance
| | - Aurélien Latouche
- Statistical Methods for Precision MedicineINSERM U900, Institut CurieSaint‐CloudFrance
| | - Tatiana Popova
- DNA Repair & Uveal Melanoma (D.R.U.M.), INSERM U830, Institut CuriePSL Research UniversityParis Cedex 05France
| | - Yann Kieffer
- Stress and Cancer Laboratory, INSERM U830, Institut Curie, Team Ligue Nationale Contre le CancerPSL Research UniversityParisFrance
| | - Anne‐Sophie Macé
- Cell and Tissue Imaging Facility (PICT‐IBiSA), Institut CuriePSL Research University, Centre National de la Recherche ScientifiqueParisFrance
| | - Pierre Gestraud
- Bioinformatics and Computational Systems Biology of Cancer, Mines Paristech, INSERM U900, Institut CuriePSL UniversityParis Cedex 05France
| | | | | | - Didier Meseure
- Department of PathologyInstitut CurieParis Cedex 05France
| | - André Nicolas
- Department of PathologyInstitut CurieParis Cedex 05France
| | - Odette Mariani
- Department of PathologyInstitut CurieParis Cedex 05France
- Biological Resource Center, Department of Pathology, Institut CuriePSL Research UniversityParisFrance
| | | | - Marc‐Henri Stern
- DNA Repair & Uveal Melanoma (D.R.U.M.), INSERM U830, Institut CuriePSL Research UniversityParis Cedex 05France
| | - Fatima Mechta‐Grigoriou
- Stress and Cancer Laboratory, INSERM U830, Institut Curie, Team Ligue Nationale Contre le CancerPSL Research UniversityParisFrance
| | - Sergio Roman Roman
- Department of Translational Research, Institut CuriePSL UniversityParis Cedex 05France
| | - Danijela Matic Vignjevic
- Migration and Invasion Laboratory, Institut CuriePSL Research University, CNRS UMR 144ParisFrance
| | - Roman Rouzier
- Statistical Methods for Precision MedicineINSERM U900, Institut CurieSaint‐CloudFrance
- Department of SurgeryInstitut CurieSaint‐CloudFrance
- UFR Simone Veil – SantéUniversité Versailles Saint Quentin, Université Paris SaclayMontigny le BretonneuxFrance
| | - Xavier Sastre‐Garau
- Department of PathologyInstitut CurieParis Cedex 05France
- Present address:
Laboratory of PathologyIntercommunal Hospital Center of CreteilCreteil CedexFrance
| | - Oumou Goundiam
- Department of Translational Research, Institut CuriePSL UniversityParis Cedex 05France
| | - Renata Basto
- Biology of Centrosomes and Genetic Instability, Institut CuriePSL Research University, CNRS UMR 144ParisFrance
| |
Collapse
|
16
|
Brogi E, Forfori F. Anesthesia and cancer recurrence: an overview. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE (ONLINE) 2022; 2:33. [PMID: 37386584 DOI: 10.1186/s44158-022-00060-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/05/2022] [Indexed: 07/01/2023]
Abstract
Several perioperative factors are responsible for the dysregulation or suppression of the immune system with a possible impact on cancer cell growth and the development of new metastasis. These factors have the potential to directly suppress the immune system and activate hypothalamic-pituitary-adrenal axis and the sympathetic nervous system with a consequent further immunosuppressive effect.Anesthetics and analgesics used during the perioperative period may modulate the innate and adaptive immune system, inflammatory system, and angiogenesis, with a possible impact on cancer recurrence and long-term outcome. Even if the current data are controversial and contrasting, it is crucial to increase awareness about this topic among healthcare professionals for a future better and conscious choice of anesthetic techniques.In this article, we aimed to provide an overview regarding the relationship between anesthesia and cancer recurrence. We reviewed the effects of surgery, perioperative factors, and anesthetic agents on tumor cell survival and tumor recurrence.
Collapse
Affiliation(s)
- Etrusca Brogi
- Department of Anesthesia and Intensive Care, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| | - Francesco Forfori
- Department of Anesthesia and Intensive Care, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| |
Collapse
|
17
|
Seely KD, Morgan AD, Hagenstein LD, Florey GM, Small JM. Bacterial Involvement in Progression and Metastasis of Colorectal Neoplasia. Cancers (Basel) 2022; 14:1019. [PMID: 35205767 PMCID: PMC8870662 DOI: 10.3390/cancers14041019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
While the gut microbiome is composed of numerous bacteria, specific bacteria within the gut may play a significant role in carcinogenesis, progression, and metastasis of colorectal carcinoma (CRC). Certain microbial species are known to be associated with specific cancers; however, the interrelationship between bacteria and metastasis is still enigmatic. Mounting evidence suggests that bacteria participate in cancer organotropism during solid tumor metastasis. A critical review of the literature was conducted to better characterize what is known about bacteria populating a distant site and whether a tumor depends upon the same microenvironment during or after metastasis. The processes of carcinogenesis, tumor growth and metastatic spread in the setting of bacterial infection were examined in detail. The literature was scrutinized to discover the role of the lymphatic and venous systems in tumor metastasis and how microbes affect these processes. Some bacteria have a potent ability to enhance epithelial-mesenchymal transition, a critical step in the metastatic cascade. Bacteria also can modify the microenvironment and the local immune profile at a metastatic site. Early targeted antibiotic therapy should be further investigated as a measure to prevent metastatic spread in the setting of bacterial infection.
Collapse
Affiliation(s)
- Kevin D. Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (A.D.M.); (L.D.H.)
| | - Amanda D. Morgan
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (A.D.M.); (L.D.H.)
| | - Lauren D. Hagenstein
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (A.D.M.); (L.D.H.)
| | - Garrett M. Florey
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA;
| | - James M. Small
- Department of Biomedical Sciences, Rocky Vista University, Parker, CO 80134, USA;
| |
Collapse
|
18
|
Gao C, Shi J, Zhang J, Li Y, Zhang Y. Chemerin promotes proliferation and migration of ovarian cancer cells by upregulating expression of PD-L1. J Zhejiang Univ Sci B 2022; 23:164-170. [PMID: 35187890 PMCID: PMC8861558 DOI: 10.1631/jzus.b2100392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
Ovarian cancer is the third-most-common malignant reproductive tumor in women. According to the American Cancer Society, it has the highest mortality rate of gynecological tumors. The five-year survival rate was only 29% during the period from 1975 to 2008 (Reid et al., 2017). In recent decades, the five-year survival rate of ovarian cancer has remained around 30% despite continuous improvements in surgery, chemotherapy, radiotherapy, and other therapeutic methods. However, because of the particularity of the volume and location of ovarian tissue, the early symptoms of ovarian cancer are hidden, and there is a lack of highly sensitive and specific screening methods. Most patients have advanced metastasis, including abdominal metastasis, when they are diagnosed (Reid et al., 2017). Therefore, exploring the mechanism of ovarian cancer metastasis and finding early preventive measures are key to improving the survival rate and reducing mortality caused by ovarian cancer.
Collapse
Affiliation(s)
- Chenxi Gao
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jinming Shi
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jingxin Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China. ,
| | - Yi Zhang
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
19
|
Aberrant Methylation of 20 miRNA Genes Specifically Involved in Various Steps of Ovarian Carcinoma Spread: From Primary Tumors to Peritoneal Macroscopic Metastases. Int J Mol Sci 2022; 23:ijms23031300. [PMID: 35163224 PMCID: PMC8835734 DOI: 10.3390/ijms23031300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Our work aimed to differentiate 20 aberrantly methylated miRNA genes that participate at different stages of development and metastasis of ovarian carcinoma (OvCa) using methylation-specific qPCR in a representative set of clinical samples: 102 primary tumors without and with metastases (to lymph nodes, peritoneum, or distant organs) and 30 peritoneal macroscopic metastases (PMM). Thirteen miRNA genes (MIR107, MIR124-2, MIR124-3, MIR125B-1, MIR127, MIR129-2, MIR130B, MIR132, MIR193A, MIR339, MIR34B/C, MIR9-1, and MIR9-3) were hypermethylated already at the early stages of OvCa, while hypermethylation of MIR1258, MIR137, MIR203A, and MIR375 was pronounced in metastatic tumors, and MIR148A showed high methylation levels specifically in PMM. We confirmed the significant relationship between methylation and expression levels for 11 out of 12 miRNAs analyzed by qRT-PCR. Moreover, expression levels of six miRNAs were significantly decreased in metastatic tumors in comparison with nonmetastatic ones, and downregulation of miR-203a-3p was the most significant. We revealed an inverse relationship between expression levels of miR-203a-3p and those of ZEB1 and ZEB2 genes, which are EMT drivers. We also identified three miRNA genes (MIR148A, MIR9-1, and MIR193A) that likely regulate EMT–MET reversion in the colonization of PMM. According to the Kaplan–Meier analysis, hypermethylation of several examined miRNA genes was associated with poorer overall survival of OvCa patients, and high methylation levels of MIR130B and MIR9-1 were related to the greatest relative risk of death.
Collapse
|
20
|
Escalona RM, Kannourakis G, Findlay JK, Ahmed N. Expression of TIMPs and MMPs in Ovarian Tumors, Ascites, Ascites-Derived Cells, and Cancer Cell Lines: Characteristic Modulatory Response Before and After Chemotherapy Treatment. Front Oncol 2022; 11:796588. [PMID: 35047406 PMCID: PMC8762252 DOI: 10.3389/fonc.2021.796588] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
Background The tissue inhibitors of metalloproteinase (TIMPs) and their associated metalloproteinase (MMPs) are essential regulators of tissue homeostasis and are essential for cancer progression. This study analyzed the expression of TIMP-1,-2,-3 and the associated MMPs (MMP-2,-9,-11,-14) in different Stages, Grades and World Health Organization (WHO) classifications of serous ovarian tumors, ascites, ascites-derived cells from chemo-naïve (CN) and relapsed (CR) patients, and in ovarian cancer cell lines. The status of TIMPs and associated MMPs in response to chemotherapy treatment was assessed in cancer cell lines; TCGA data was interrogated to gauge TIMPs and associated MMPs as prognostic and platinum-response indicators. Methods The levels of TIMP-1, -2 and -3 were assessed by immunohistochemistry. The mRNA expression of TIMPs and MMPs was quantified by real time PCR (qRT-PCR). The chemosensitivity (IC50 values) to Cisplatin or Paclitaxel in cell lines was evaluated by MTT assay. The levels of TIMPs in ascites and cell lysates were analyzed by an ELISA assay. Results The expression of TIMP-2 was significantly upregulated in Type 2 compared to Type 1 tumors and normal/benign ovarian tissues. TIMP-3 expression was significantly enhanced in Stage III, Grade 3 and Type 2 tumors compared to normal/benign ovarian tissues. The mRNA expression of MMP-9,-11 and -14 was significantly upregulated in Stage IV compared to normal/benign ovarian tissues. The expression of TIMP-1 was highest, followed by TIMP-2 and then TIMP-3 in CN ascites. At the cellular level, TIMP-2 mRNA expression was significantly higher in CN compared to CR epithelial cells in patients. The expression of TIMP-1 and -2, MMPs and cancer stem cells (CSCs) were upregulated in response to chemotherapy treatments in cancer cell lines. Interrogation of the TCGA dataset suggests shifts in platinum responses in patients consistent with genetic alterations in TIMP-2, -3 and MMP-2, -11 genes in tumors; and decreased overall survival (OS) and progression-free survival (PFS) in patients with altered MMP-14 genes. Conclusions TIMPs and related MMPs are differentially expressed in serous ovarian tumors, ascites, ascites-derived cells and ovarian cancer cell lines. Chemotherapy treatment modulates expression of TIMPs and MMPs in association with increased expression of genes related to cancer stem cells.
Collapse
Affiliation(s)
- Ruth M Escalona
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, Australia
| | - Jock K Findlay
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Translational Medicine, Monash University, Melbourne, VIC, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, Australia
| |
Collapse
|
21
|
Deo AN, Thorat R, Dhadve AC, De A, Rekhi B, Ray P. IGF1R-α6 integrin-S100A4 network governs the organ-specific metastasis of chemoresistant epithelial ovarian cancer cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166282. [PMID: 34600083 DOI: 10.1016/j.bbadis.2021.166282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
Recurrent metastatic epithelial ovarian cancer (EOC) is challenging and associated with treatment limitations, as the mechanisms governing the metastatic behavior of chemoresistant EOC cells remain elusive. Using orthotopic xenograft mouse models of sensitive and acquired platinum-taxol-resistant A2780 EOC cells, we studied the mechanistic role of insulin like growth factor 1 receptor (IGF1R) signaling in the regulation of organ-specific metastasis of EOC cells undergoing acquirement of chemoresistance. Biochemical assays and organ-specific fibroblast-EOC cell co-culture were used to study the differential metastatic characteristics of sensitive vs. chemoresistant EOC cells, and the key molecule/s underlying the organ-specific homing of chemoresistant EOC cells were identified through subtractive LC/MS profiling of the co-culture secretome. The role of the identified molecule was validated through genetic/pharmacologic perturbation experiments. Acquired chemoresistance augmented organ-specific metastasis of EOC cells and enhanced lung homing, particularly for the late-stage chemoresistant cells, which was abrogated after IGF1R silencing. Escalation of chemoresistance (intrinsic and acquired) conferred EOC cells with higher adhesion toward primary lung fibroblasts, largely governed by the α6 integrin-IGF1R dual signaling axes. Subtractive analysis of the co-culture secretome revealed that interaction with lung fibroblasts induced the secretion of S100A4 from highly resistant EOC cells, which reciprocally activated lung fibroblasts. Genetic and pharmacologic inhibition of S100A4 significantly lowered distant metastases and completely abrogated lung-tropic nature of late-stage chemoresistant EOC cells. These results indicate that chemoresistance exacerbates organ-specific metastasis of EOC cells via the IGF1R-α6 integrin-S100A4 molecular network, of which S100A4 may serve as a potential target for the treatment of recurrent metastatic EOC.
Collapse
Affiliation(s)
- Abhilash Nitin Deo
- Imaging Cell Signalling and Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, Maharashtra, India
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, Maharashtra, India
| | - Ajit Chandrakant Dhadve
- Imaging Cell Signalling and Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, Maharashtra, India
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, Maharashtra, India
| | - Bharat Rekhi
- Tata Memorial Hospital, Dr. E Borges Road, Parel, Mumbai 400 012, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, Maharashtra, India
| | - Pritha Ray
- Imaging Cell Signalling and Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, Maharashtra, India.
| |
Collapse
|
22
|
Development and validation of a nomogram to predict synchronous lung metastases in patients with ovarian cancer: a large cohort study. Biosci Rep 2021; 40:226935. [PMID: 33175143 PMCID: PMC7687041 DOI: 10.1042/bsr20203089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose: Lung metastasis is an independent risk factor affecting the prognosis of ovarian cancer patients. We developed and validated a nomogram to predict the risk of synchronous lung metastases in newly diagnosed ovarian cancer patients. Methods: Data of ovarian cancer patients from the Surveillance, Epidemiology, and Final Results (SEER) database between 2010 and 2015 were retrospectively collected. The model nomogram was built on the basis of logistic regression. The consistency index (C-index) was used to evaluate the discernment of the synchronous lung metastasis nomogram. Calibration plots were drawn to analyze the consistency between the observed probability and predicted probability of synchronous lung metastases. The Kaplan–Meier method was used to estimate overall survival rate, and influencing factors were included in multivariate Cox regression analysis (P<0.05) to determine the independent prognostic factors of synchronous lung metastases. Results: Overall, 16059 eligible patients were randomly divided into training (n=11242) and validation cohorts (n=4817). AJCC T, N stage, bone metastases, brain metastases, and liver metastases were evaluated as predictors of synchronous lung metastases. Finally, a nomogram was constructed. The nomogram based on independent predictors was calibrated and showed good discriminative ability. Mixed histological types, chemotherapy, and primary site surgery were factors affecting the overall survival of patients with synchronous lung metastases. Conclusion: The clinical prediction model has high accuracy and can be used to predict lung metastasis risk in newly diagnosed ovarian cancer patients, which can guide the treatment of patients with synchronous lung metastases.
Collapse
|
23
|
Giulietti M, Bastianoni M, Cecati M, Ruzzo A, Bracci M, Malavolta M, Piacenza F, Giacconi R, Piva F. MetaTropismDB: a database of organ-specific metastasis induced by human cancer cell lines in mouse models. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:6006230. [PMID: 33238004 PMCID: PMC7687678 DOI: 10.1093/database/baaa100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/25/2020] [Accepted: 11/02/2020] [Indexed: 11/12/2022]
Abstract
The organotropism is the propensity of metastatic cancer cells to colonize preferably certain distant organs, resulting in a non-random distribution of metastases. In order to shed light on this behaviour, several studies were performed by the injection of human cancer cell lines into immunocompromised mouse models. However, the information about these experiments is spread in the literature. For each xenograft experiment reported in the literature, we annotated both the experimental conditions and outcomes, including details on inoculated human cell lines, mouse models, injection methods, sites of metastasis, organs not colonized, rate of metastasis, latency time, overall survival and the involved genes. We created MetaTropismDB, a freely available database collecting hand-curated data useful to highlight the mechanisms of organ-specific metastasis. Currently, it stores the results of 513 experiments in which injections of 219 human cell lines have been carried out in mouse models. Notably, 296 genes involved in organotropic metastases have been collected. This specialized database allows the researchers to compare the current results about organotropism and plan future experiments in order to identify which tumour molecular signatures establish if and where the metastasis will develop. Database URL: http://www.introni.it/Metastasis/metastasis.html.
Collapse
Affiliation(s)
| | - Marco Bastianoni
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Monia Cecati
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Annamaria Ruzzo
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via Sant’Andrea 34, 61029, Urbino, Italy
| | - Massimo Bracci
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10/a, 60126, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Via Birarelli 8, 60121, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Via Birarelli 8, 60121, Ancona, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Via Birarelli 8, 60121, Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
24
|
Zhao H, Xu F, Li J, Ni M, Wu X. A Population-Based Study on Liver Metastases in Women With Newly Diagnosed Ovarian Cancer. Front Oncol 2020; 10:571671. [PMID: 33102229 PMCID: PMC7545579 DOI: 10.3389/fonc.2020.571671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022] Open
Abstract
Aim: The purpose of this study was to analyze the incidence, clinical characteristics, prognostic factors and survival of ovarian cancer patients with liver metastases upon initial diagnosis. Methods: Patients with ovarian cancer liver metastases upon initial diagnosis between 2010 and 2016 were identified from the Surveillance, Epidemiology, and End Results (SEER) database. Univariate and multivariate logistic regression was performed to identify the predictors of the presence of liver metastases in newly diagnosed ovarian cancer patients. Overall survival (OS) was assessed using the Kaplan-Meier method and log-rank test. Univariate and multivariate Cox regression was conducted to determine the independent prognostic factors for OS. Results: A total of 1,744 ovarian cancer patients with liver metastases was identified from the SEER database, accounting for 6.7% of the entire ovarian cancer patients. As to the unique distant organ provided by SEER, liver was the most common metastatic site of ovarian cancer (4.65%). Age, race, laterality, histology, pathological grade, extrahepatic sites, stage of tumor were the predictors of the presence with liver metastases revealed by multivariable logistic regression model. Median OS for the patients with liver metastases at initial diagnosis of ovarian cancer was 16.0 months. Multivariate Cox regression model confirmed race, histology, extrahepatic metastatic sites, surgery and marital status were independent prognostic factors for OS. Conclusion: The study provided population-based estimates of the incidence and prognosis of newly diagnosed ovary cancer patients with liver metastases, which could be potentially used for the risk assessment and individualized treatment.
Collapse
Affiliation(s)
- Haiyun Zhao
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Xu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajia Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mengdong Ni
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Liu S, Xi X. LINC01133 contribute to epithelial ovarian cancer metastasis by regulating miR-495-3p/TPD52 axis. Biochem Biophys Res Commun 2020; 533:1088-1094. [PMID: 33036757 DOI: 10.1016/j.bbrc.2020.09.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 11/19/2022]
Abstract
Currently, there is increasing evidence that long noncoding RNAs (lncRNAs) initiate and promote the progression of epithelial ovarian cancer (EOC). In this study, we revealed the roles and the potential mechanisms of long intergenic non-protein coding RNA 1133 (LINC01133) in EOC, which remains not well understood. We found that LINC01133 was upregulated in EOC tissues and cell lines. Besides, it was associated with the clinicopathological feature of metastasis. Functional experiments demonstrated that LINC01133 could facilitate cancer cell migration and invasion in vitro and tumor metastasis in vivo. Further molecular mechanisms studies indicated that LINC01133 and miR-495-3p reciprocally repressed expression of each other. We also realized that LINC01133 shared the same binding sites for miR-495-3p with tumor protein D52 (TPD52). We confirmed that TPD52 functioned as a direct target of miR-495-3p and mediated the enhancing effect of LINC01133 on cancer metastasis. Generally, our study showed that LINC01133 interacted with miR-495-3p to promote metastasis in EOC by regulating TPD52. LINC01133 also provided a potential therapeutic perspective for future clinical treatment.
Collapse
MESH Headings
- Animals
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/metabolism
- Carcinoma, Ovarian Epithelial/pathology
- Carcinoma, Ovarian Epithelial/secondary
- Cell Line, Tumor
- Cell Movement/genetics
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Immunohistochemistry
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Invasiveness/genetics
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Up-Regulation
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Shaoqiu Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowei Xi
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Abstract
Pancreatic cancer is the third leading cause of cancer death in the USA, and pancreatic ductal adenocarcinoma (PDA) constitutes 85% of pancreatic cancer diagnoses. PDA frequently metastasizes to the peritoneum, but effective treatment of peritoneal metastasis remains a clinical challenge. Despite this unmet need, understanding of the biological mechanisms that contribute to development and progression of PDA peritoneal metastasis is sparse. By contrast, a vast number of studies have investigated mechanisms of peritoneal metastasis in ovarian and gastric cancers. Here, we contrast similarities and differences between peritoneal metastasis in PDA as compared with those in gastric and ovarian cancer by outlining molecular mediators involved in each step of the peritoneal metastasis cascade. This review aims to provide mechanistic insights that could be translated into effective targeted therapies for patients with peritoneal metastasis from PDA.
Collapse
|
27
|
Dasari S, Pandhiri T, Grassi T, Visscher DW, Multinu F, Agarwal K, Mariani A, Shridhar V, Mitra AK. Signals from the Metastatic Niche Regulate Early and Advanced Ovarian Cancer Metastasis through miR-4454 Downregulation. Mol Cancer Res 2020; 18:1202-1217. [PMID: 32350057 PMCID: PMC10788085 DOI: 10.1158/1541-7786.mcr-19-1162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/16/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022]
Abstract
Treatment of ovarian cancer is limited by extensive metastasis and yet it remains poorly understood. We have studied the critical step of metastatic colonization in the context of the productive interactions with the metastatic microenvironment with a goal of identifying key regulators. By combining miRNA expression analysis using an organotypic 3D culture model of early ovarian cancer metastasis with that of matched primary and metastatic tumors from 42 patients with ovarian cancer, we identified miR-4454 as a key regulator of both early colonization and advanced metastasis in patients with ovarian cancer. miR-4454 was downregulated in the metastasizing ovarian cancer cells through paracrine signals from microenvironmental fibroblasts, which promoted migration, invasion, proliferation, and clonogenic growth in ovarian cancer cells as well as their ability to penetrate through the outer layers of the omentum. Stable overexpression of miR-4454 decreased metastasis in ovarian cancer xenografts. Its mechanism of action was through the upregulation of its targets, secreted protein acidic and cysteine rich (SPARC) and BCL2 associated athanogene 5 (BAG5), which activated focal adhesion kinase (FAK) signaling, promoted mutant p53 gain of function by its stabilization, and inhibited apoptosis. Because microenvironment-induced downregulation of miR-4454 is essential for early and advanced metastasis, targeting it could be a promising therapeutic approach. IMPLICATIONS: This study identifies a miRNA, miR-4454, which is downregulated by signals from the microenvironment and promotes early and advanced ovarian cancer metastasis through its effects on FAK activation, mutant p53 stabilization, and apoptosis inhibition.
Collapse
Affiliation(s)
- Subramanyam Dasari
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Taruni Pandhiri
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Tommaso Grassi
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
| | - Daniel W Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Francesco Multinu
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
| | - Komal Agarwal
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
- Department of Obstetrics and Gynecology, St. Vincent Dunn Hospital, Bedford, Indiana
| | - Andrea Mariani
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
| | - Viji Shridhar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Anirban K Mitra
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| |
Collapse
|
28
|
Yousefi M, Dehghani S, Nosrati R, Ghanei M, Salmaninejad A, Rajaie S, Hasanzadeh M, Pasdar A. Current insights into the metastasis of epithelial ovarian cancer - hopes and hurdles. Cell Oncol (Dordr) 2020; 43:515-538. [PMID: 32418122 DOI: 10.1007/s13402-020-00513-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ovarian cancer is the most lethal gynecologic cancer and the fifth leading cause of cancer-related mortality in women worldwide. Despite various attempts to improve the diagnosis and therapy of ovarian cancer patients, the survival rate for these patients is still dismal, mainly because most of them are diagnosed at a late stage. Up to 90% of ovarian cancers arise from neoplastic transformation of ovarian surface epithelial cells, and are usually referred to as epithelial ovarian cancer (EOC). Unlike most human cancers, which are disseminated through blood-borne metastatic routes, EOC has traditionally been thought to be disseminated through direct migration of ovarian tumor cells to the peritoneal cavity and omentum via peritoneal fluid. It has recently been shown, however, that EOC can also be disseminated through blood-borne metastatic routes, challenging previous thoughts about ovarian cancer metastasis. CONCLUSIONS Here, we review our current understanding of the most updated cellular and molecular mechanisms underlying EOC metastasis and discuss in more detail two main metastatic routes of EOC, i.e., transcoelomic metastasis and hematogenous metastasis. The emerging concept of blood-borne EOC metastasis has led to exploration of the significance of circulating tumor cells (CTCs) as novel and non-invasive prognostic markers in this daunting cancer. We also evaluate the role of tumor stroma, including cancer associated fibroblasts (CAFs), tumor associated macrophages (TAMs), endothelial cells, adipocytes, dendritic cells and extracellular matrix (ECM) components in EOC growth and metastasis. Lastly, we discuss therapeutic approaches for targeting EOC. Unraveling the mechanisms underlying EOC metastasis will open up avenues to the design of new therapeutic options. For instance, understanding the molecular mechanisms involved in the hematogenous metastasis of EOC, the biology of CTCs, and the detailed mechanisms through which EOC cells take advantage of stromal cells may help to find new opportunities for targeting EOC metastasis.
Collapse
Affiliation(s)
- Meysam Yousefi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadegh Dehghani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Halal Research Center of IRI, FDA, Tehran, Iran
| | - Sara Rajaie
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | - Malihe Hasanzadeh
- Department of Gynecologic Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran. .,Division of Applied Medicine, Faculty of Medicine, University of Aberdeen, Foresterhill, Aberdeen, UK.
| |
Collapse
|
29
|
Ovarian Cancer, Cancer Stem Cells and Current Treatment Strategies: A Potential Role of Magmas in the Current Treatment Methods. Cells 2020; 9:cells9030719. [PMID: 32183385 PMCID: PMC7140629 DOI: 10.3390/cells9030719] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Epithelial ovarian cancer (EOC) constitutes 90% of ovarian cancers (OC) and is the eighth most common cause of cancer-related death in women. The cancer histologically and genetically is very complex having a high degree of tumour heterogeneity. The pathogenic variability in OC causes significant impediments in effectively treating patients, resulting in a dismal prognosis. Disease progression is predominantly influenced by the peritoneal tumour microenvironment rather than properties of the tumor and is the major contributor to prognosis. Standard treatment of OC patients consists of debulking surgery, followed by chemotherapy, which in most cases end in recurrent chemoresistant disease. This review discusses the different origins of high-grade serous ovarian cancer (HGSOC), the major sub-type of EOC. Tumour heterogeneity, genetic/epigenetic changes, and cancer stem cells (CSC) in facilitating HGSOC progression and their contribution in the circumvention of therapy treatments are included. Several new treatment strategies are discussed including our preliminary proof of concept study describing the role of mitochondria-associated granulocyte macrophage colony-stimulating factor signaling protein (Magmas) in HGSOC and its unique potential role in chemotherapy-resistant disease.
Collapse
|
30
|
Yue H, Wang J, Chen R, Hou X, Li J, Lu X. Gene signature characteristic of elevated stromal infiltration and activation is associated with increased risk of hematogenous and lymphatic metastasis in serous ovarian cancer. BMC Cancer 2019; 19:1266. [PMID: 31888563 PMCID: PMC6937680 DOI: 10.1186/s12885-019-6470-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Background The clinical significance of hematogenous and lymphatic metastasis in ovarian cancer has been increasingly addressed, as it plays an imperative role in the formation of both intraperitoneal and distant metastases. Our objective is to identify the key molecules and biological processes potentially related to this relatively novel metastatic route in serous ovarian cancer. Methods Since lymphovascular space invasion (LVSI) is considered as the first step of hematogenous and lymphatic dissemination, we developed a gene signature mainly based on the transcriptome profiles with available information on LVSI status in the Cancer Genome Atlas (TCGA) dataset. We then explored the underlying biological rationale and prognostic value of the identified gene signature using multiple public databases. Results We observe that primary tumors with increased risk of hematogenous and lymphatic metastasis highly express a panel of genes, namely POSTN, LUM, THBS2, COL3A1, COL5A1, COL5A2, FAP1 and FBN1. The identified geneset is characterized by enhanced deposition of extracellular matrix and extensive stromal activation. Mechanistically, both the recruitment and the activation of stromal cells, especially fibroblasts, are closely associated with lymphovascular metastasis. Survival analysis further reveals that the elevated expression of the identified genes correlates to cancer progression and poor prognosis in patients with serous ovarian cancer. Conclusions Our findings indicate that tumor stroma supports the hematogenous and lymphatic spread of ovarian cancer, increasing tumor invasiveness and ultimately resulting in worse survival. Thus stroma-targeted therapies may improve the clinical outcomes in combination with cytoreductive surgery and chemotherapy.
Collapse
Affiliation(s)
- Huiran Yue
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Jieyu Wang
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Ruifang Chen
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Xiaoman Hou
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Jun Li
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
| | - Xin Lu
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fangxie Road, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
| |
Collapse
|
31
|
Yin M, Shen J, Yu S, Fei J, Zhu X, Zhao J, Zhai L, Sadhukhan A, Zhou J. Tumor-Associated Macrophages (TAMs): A Critical Activator In Ovarian Cancer Metastasis. Onco Targets Ther 2019; 12:8687-8699. [PMID: 31695427 PMCID: PMC6814357 DOI: 10.2147/ott.s216355] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) that appear in every stage of cancer progression are usually tumor-promoting cells and are present abundantly in the tumor-associated microenvironment. In ovarian cancer, the overall and intratumoral M1/M2 ratio is a relatively efficient TAM parameter for predicting the prognosis of patients, especially for serous tissue type cancer. TAMs exhibit immunological checkpoint modulators, such as the B7 family and programmed death-ligand 1 (PD-L1), and play a key role in the development, metastasis and invasion of ovarian cancer, but the underlying mechanism is barely understood. Ovarian cancer is a severe gynecological malignancy with high mortality. Ovarian cancer-associated death can primarily be attributed to cancer metastasis. The majority of patients are diagnosed with wide dissemination in the peritoneum and omentum, limiting the effectiveness of surgery and chemotherapy. In addition, unlike other well-documented cancers, metastasis through vasculature is not a usual dissemination pathway in ovarian cancer. This review sheds light on TAMs and the main process and mechanism of ovarian cancer metastasis.
Collapse
Affiliation(s)
- Meichen Yin
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiayu Shen
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Shuqian Yu
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Fei
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoqing Zhu
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiayao Zhao
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Lingyun Zhai
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Annapurna Sadhukhan
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
32
|
Schwarzenbach H, Gahan PB. Circulating non-coding RNAs in recurrent and metastatic ovarian cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:399-418. [PMID: 35582568 PMCID: PMC8992516 DOI: 10.20517/cdr.2019.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 12/25/2022]
Abstract
Ovarian cancer has a poor outcome because it is usually detected at advanced tumor stages, and the majority of the patients develop disease relapse as a result of chemotherapy resistance. This most lethal gynecological malignancy metastasizes within the peritoneal fluid or ascites to pelvic and distal organs. In ovarian cancer progression and metastasis, small non-coding RNAs (ncRNAs), including long noncoding RNAs and microRNAs have been recognized as important regulators. Their dysregulation modulates gene expression and cellular signal pathways and can be detected in liquid biopsies. In this review, we provide an overview on circulating plasma and serum ncRNAs participating in tumor cell migration and invasion, and contributing to recurrence and metastasis of ovarian cancer. We will also discuss the development of potential, novel therapies using ncRNAs as target molecules or tumor markers for ovarian cancer.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Peter B Gahan
- Fondazione "Enrico Puccinelli" Onlus, Perugia 06123, Italy
| |
Collapse
|
33
|
Ovarian Cancer Stemness: Biological and Clinical Implications for Metastasis and Chemotherapy Resistance. Cancers (Basel) 2019; 11:cancers11070907. [PMID: 31261739 PMCID: PMC6678827 DOI: 10.3390/cancers11070907] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/04/2023] Open
Abstract
Epithelial ovarian cancer is a highly lethal gynecological malignancy that is characterized by the early development of disseminated metastasis. Though ovarian cancer has been generally considered to preferentially metastasize via direct transcoelomic dissemination instead of the hematogenous route, emerging evidence has indicated that the hematogenous spread of cancer cells plays a larger role in ovarian cancer metastasis than previously thought. Considering the distinctive biology of ovarian cancer, an in-depth understanding of the biological and molecular mechanisms that drive metastasis is critical for developing effective therapeutic strategies against this fatal disease. The recent “cancer stem cell theory” postulates that cancer stem cells are principally responsible for tumor initiation, metastasis, and chemotherapy resistance. Even though the hallmarks of ovarian cancer stem cells have not yet been completely elucidated, metastasized ovarian cancer cells, which have a high degree of chemoresistance, seem to manifest cancer stem cell properties and play a key role during relapse at metastatic sites. Herein, we review our current understanding of the cell-biological mechanisms that regulate ovarian cancer metastasis and chemotherapy resistance, with a pivotal focus on ovarian cancer stem cells, and discuss the potential clinical implications of evolving cancer stem cell research and resultant novel therapeutic approaches.
Collapse
|
34
|
A Cell-Autonomous Oncosuppressive Role of Human RNASET2 Affecting ECM-Mediated Oncogenic Signaling. Cancers (Basel) 2019; 11:cancers11020255. [PMID: 30813308 PMCID: PMC6406318 DOI: 10.3390/cancers11020255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 02/05/2023] Open
Abstract
RNASET2 is an extracellular ribonuclease endowed with a marked antitumorigenic role in several carcinomas, independent from its catalytic activity. Besides its antitumorigenic role by the recruitment to the tumor mass of immune cells from the monocyte/macrophage lineage, RNASET2 is induced by cellular stress and involved in actin cytoskeleton remodeling affecting cell interactions with the extracellular matrix (ECM). Here, we aimed to investigate the effects of RNASET2 expression modulation on cell phenotype and behavior in epithelial ovarian cancer (EOC) cellular models. In silico analysis on two publicly available datasets of gene expression from EOC patients (n = 392) indicated that increased RNASET2 transcript levels are associated with longer overall survival. In EOC biopsies (n = 101), analyzed by immunohistochemistry, RNASET2 was found heterogeneously expressed among tumors with different clinical⁻pathological characteristics and, in some cases, its expression localized to tumor-associated ECM. By characterizing in vitro two models of EOC cells in which RNASET2 was silenced or overexpressed, we report that RNASET2 expression negatively affects growth capability by conferring a peculiar cell phenotype upon the interaction of EOC cells with the ECM, resulting in decreased src activation. Altogether, these data suggest that drugs targeting activated src might represent a therapeutic approach for RNASET2-expressing EOCs.
Collapse
|
35
|
The Tumor Microenvironment of High Grade Serous Ovarian Cancer. Cancers (Basel) 2018; 11:cancers11010021. [PMID: 30587822 PMCID: PMC6357134 DOI: 10.3390/cancers11010021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 12/26/2022] Open
|