1
|
Bakhtiyaridovvombaygi M, Yazdanparast S, Mikanik F, Izadpanah A, Parkhideh S, Shahbaz Ghasabeh A, Roshandel E, Hajifathali A, Gharehbaghian A. Cytokine-Induced Memory-Like NK Cells: Emerging strategy for AML immunotherapy. Biomed Pharmacother 2023; 168:115718. [PMID: 37857247 DOI: 10.1016/j.biopha.2023.115718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease developed from the malignant expansion of myeloid precursor cells in the bone marrow and peripheral blood. The implementation of intensive chemotherapy and hematopoietic stem cell transplantation (HSCT) has improved outcomes associated with AML, but relapse, along with suboptimal outcomes, is still a common scenario. In the past few years, exploring new therapeutic strategies to optimize treatment outcomes has occurred rapidly. In this regard, natural killer (NK) cell-based immunotherapy has attracted clinical interest due to its critical role in immunosurveillance and their capabilities to target AML blasts. NK cells are cytotoxic innate lymphoid cells that mediate anti-viral and anti-tumor responses by producing pro-inflammatory cytokines and directly inducing cytotoxicity. Although NK cells are well known as short-lived innate immune cells with non-specific responses that have limited their clinical applications, the discovery of cytokine-induced memory-like (CIML) NK cells could overcome these challenges. NK cells pre-activated with the cytokine combination IL-12/15/18 achieved a long-term life span with adaptive immunity characteristics, termed CIML-NK cells. Previous studies documented that using CIML-NK cells in cancer treatment is safe and results in promising outcomes. This review highlights the current application, challenges, and opportunities of CIML-NK cell-based therapy in AML.
Collapse
Affiliation(s)
- Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Izadpanah
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Parkhideh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Shahbaz Ghasabeh
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Bottino C, Della Chiesa M, Sorrentino S, Morini M, Vitale C, Dondero A, Tondo A, Conte M, Garaventa A, Castriconi R. Strategies for Potentiating NK-Mediated Neuroblastoma Surveillance in Autologous or HLA-Haploidentical Hematopoietic Stem Cell Transplants. Cancers (Basel) 2022; 14:cancers14194548. [PMID: 36230485 PMCID: PMC9559312 DOI: 10.3390/cancers14194548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary High-risk neuroblastomas (HR-NB) are malignant tumors of childhood that are treated with a very aggressive and life-threatening approach; this includes autologous hemopoietic stem cell transplantation (HSCT) and the infusion of a mAb targeting the GD2 tumor-associated antigen. Although the current treatment provided benefits, the 5-year overall survival remains below 50% due to relapses and refractoriness to therapy. Thus, there is an urgent need to ameliorate the standard therapeutic protocol, particularly improving the immune-mediated anti-tumor responses. Our review aims at summarizing and critically discussing novel immunotherapeutic strategies in HR-NB, including NK cell-based therapies and HLA-haploidentical HSCT from patients’ family. Abstract High-risk neuroblastomas (HR-NB) still have an unacceptable 5-year overall survival despite the aggressive therapy. This includes standardized immunotherapy combining autologous hemopoietic stem cell transplantation (HSCT) and the anti-GD2 mAb. The treatment did not significantly change for more than one decade, apart from the abandonment of IL-2, which demonstrated unacceptable toxicity. Of note, immunotherapy is a promising therapeutic option in cancer and could be optimized by several strategies. These include the HLA-haploidentical αβT/B-depleted HSCT, and the antibody targeting of novel NB-associated antigens such as B7-H3, and PD1. Other approaches could limit the immunoregulatory role of tumor-derived exosomes and potentiate the low antibody-dependent cell cytotoxicity of CD16 dim/neg NK cells, abundant in the early phase post-transplant. The latter effect could be obtained using multi-specific tools engaging activating NK receptors and tumor antigens, and possibly holding immunostimulatory cytokines in their construct. Finally, treatments also consider the infusion of novel engineered cytokines with scarce side effects, and cell effectors engineered with chimeric antigen receptors (CARs). Our review aims to discuss several promising strategies that could be successfully exploited to potentiate the NK-mediated surveillance of neuroblastoma, particularly in the HSCT setting. Many of these approaches are safe, feasible, and effective at pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
- Correspondence: ; Tel.: +39-01056363855
| | - Mariella Della Chiesa
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | | | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Chiara Vitale
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology/Oncology and HSCT, Meyer Children’s University Hospital, 50139 Florence, Italy
| | - Massimo Conte
- Pediatric Oncology Unit-IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Alberto Garaventa
- Pediatric Oncology Unit-IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
3
|
Zhou F, Zhang G, Wu Y, Xiong Y. Inflammasome Complexes: Crucial mediators in osteoimmunology and bone diseases. Int Immunopharmacol 2022; 110:109072. [DOI: 10.1016/j.intimp.2022.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
|
4
|
Marques RF, de Melo FM, Novais JT, Soares IS, Bargieri DY, Gimenez AM. Immune System Modulation by the Adjuvants Poly (I:C) and Montanide ISA 720. Front Immunol 2022; 13:910022. [PMID: 35844531 PMCID: PMC9278660 DOI: 10.3389/fimmu.2022.910022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Adjuvants are essential for vaccine development, especially subunit-based vaccines such as those containing recombinant proteins. Increasing the knowledge of the immune response mechanisms generated by adjuvants should facilitate the formulation of vaccines in the future. The present work describes the immune phenotypes induced by Poly (I:C) and Montanide ISA 720 in the context of mice immunization with a recombinant protein based on the Plasmodium vivax circumsporozoite protein (PvCSP) sequence. Mice immunized with the recombinant protein plus Montanide ISA 720 showed an overall more robust humoral response, inducing antibodies with greater avidity to the antigen. A general trend for mixed Th1/Th2 inflammatory cytokine profile was increased in Montanide-adjuvanted mice, while a balanced profile was observed in Poly (I:C)-adjuvanted mice. Montanide ISA 720 induced a gene signature in B lymphocytes characteristic of heme biosynthesis, suggesting increased differentiation to Plasma Cells. On the other hand, Poly (I:C) provoked more perturbations in T cell transcriptome. These results extend the understanding of the modulation of specific immune responses induced by different classes of adjuvants, and could support the optimization of subunit-based vaccines.
Collapse
Affiliation(s)
- Rodolfo F. Marques
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Filipe Menegatti de Melo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Janaina Tenório Novais
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene S. Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alba Marina Gimenez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Vitale C, Marzagalli M, Scaglione S, Dondero A, Bottino C, Castriconi R. Tumor Microenvironment and Hydrogel-Based 3D Cancer Models for In Vitro Testing Immunotherapies. Cancers (Basel) 2022; 14:1013. [PMID: 35205760 PMCID: PMC8870468 DOI: 10.3390/cancers14041013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, immunotherapy has emerged as a promising novel therapeutic strategy for cancer treatment. In a relevant percentage of patients, however, clinical benefits are lower than expected, pushing researchers to deeply analyze the immune responses against tumors and find more reliable and efficient tools to predict the individual response to therapy. Novel tissue engineering strategies can be adopted to realize in vitro fully humanized matrix-based models, as a compromise between standard two-dimensional (2D) cell cultures and animal tests, which are costly and hardly usable in personalized medicine. In this review, we describe the main mechanisms allowing cancer cells to escape the immune surveillance, which may play a significant role in the failure of immunotherapies. In particular, we discuss the role of the tumor microenvironment (TME) in the establishment of a milieu that greatly favors cancer malignant progression and impact on the interactions with immune cells. Then, we present an overview of the recent in vitro engineered preclinical three-dimensional (3D) models that have been adopted to resemble the interplays between cancer and immune cells and for testing current therapies and immunotherapeutic approaches. Specifically, we focus on 3D hydrogel-based tools based on different types of polymers, discussing the suitability of each of them in reproducing the TME key features based on their intrinsic or tunable characteristics. Finally, we introduce the possibility to combine the 3D models with technological fluid dynamics platforms, reproducing the dynamic complex interactions between tumor cells and immune effectors migrated in situ via the systemic circulation, pointing out the challenges that still have to be overcome for setting more predictive preclinical assays.
Collapse
Affiliation(s)
- Chiara Vitale
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
| | | | - Silvia Scaglione
- React4life SRL, 16121 Genova, Italy; (M.M.); (S.S.)
- National Research Council of Italy, Institute of Electronics, Information Engineering and Telecommunications (IEIIT), 16149 Genova, Italy
| | - Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
| | - Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
- IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
| |
Collapse
|
6
|
Bilotta MT, Antignani A, Fitzgerald DJ. Managing the TME to improve the efficacy of cancer therapy. Front Immunol 2022; 13:954992. [PMID: 36341428 PMCID: PMC9630343 DOI: 10.3389/fimmu.2022.954992] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/30/2022] [Indexed: 02/05/2023] Open
Abstract
The tumor microenvironment (TME) influences tumor growth, metastatic spread and response to treatment. Often immunosuppression, mediated by the TME, impairs a beneficial response. The complexity of the tumor composition challenges our abilities to design new and more effective therapies. Going forward we will need to 'manage' the content and or functionality of the TME to improve treatment outcomes. Currently, several different kinds of treatments are available to patients with cancer: there are the traditional approaches of chemotherapy, radiation and surgery; there are targeted agents that inhibit kinases associated with oncogenic pathways; there are monoclonal antibodies that target surface antigens often delivering toxic payloads or cells and finally there are antibodies and biologics that seek to overcome the immunosuppression caused by elements within the TME. How each of these therapies interact with the TME is currently under intense and widespread investigation. In this review we describe how the TME and its immunosuppressive components can influence both tumor progression and response to treatment focusing on three particular tumor types, classic Hodgkin Lymphoma (cHL), Pancreatic Ductal Adenocarcinoma (PDAC) and Glioblastoma Multiforme (GBM). And, finally, we offer five approaches to manipulate or manage the TME to improve outcomes for cancer patients.
Collapse
|
7
|
Bottino C, Dondero A, Castriconi R. Inhibitory axes impacting on the activity and fate of Innate Lymphoid Cells. Mol Aspects Med 2021; 80:100985. [PMID: 34176653 DOI: 10.1016/j.mam.2021.100985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 01/02/2023]
Abstract
In neoplastic patients, an effective immune response ideally should be achieved by the coordinated action of different immune cells with tumor-suppressive functions. These include the more cytolytic members of the Innate Lymphoid Cells (ILCs) family represented by the Natural Killer (NK) cells, whose activities in cancer patients, however, can be hampered by several inhibitory signals. These are generated by membrane-bound and soluble molecules that, interacting with specific inhibitory receptors, create inhibitory axes impacting the NK cell differentiation and effector functions. These breaks, which now represent major immunotherapeutic targets, may be sensitive to interferon (IFN)-γ, whose source, in vivo, is represented by different cell types including the NK and ILC1. Since also ILCs can express receptors of the inhibitory axes like PD-1 and TIGIT, their therapeutic blockade might further amplify the IFN-γ release that, as an unwanted side effect, would promote the onset of NK cell-resistant tumor variants (NKRTV) expressing ligands involved in inhibitory axes. These variants might also arise from the activity of other cytokines such as IL-27, which can increase the expression of HLA class I and PD-Ls in different cell types, including tumor cells. Besides the amplification of membrane-bound inhibitory axes, tumors can reduce the number of infiltrating cytolytic ILCs, promote the recruitment of poorly cytolytic NK cell subsets, and manipulate to their advantage the infiltrating immune cells, which acquire tumor-promoting activities. This occurs thanks to the production of soluble factors including TGF-β1 and IL-18 that, alone or in combination, modify the activating and chemokine receptor repertoire of NK cells, and induce the ILCs differentiation towards cells ineffective in fighting cancer or, even worse, with tumor-promoting functions. The present review aims to present and discuss major inhibitory axes impacting on ILCs functions, migration, and differentiation with a major focus on tumor context.
Collapse
Affiliation(s)
- Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy; IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.
| |
Collapse
|
8
|
Gaggero S, Witt K, Carlsten M, Mitra S. Cytokines Orchestrating the Natural Killer-Myeloid Cell Crosstalk in the Tumor Microenvironment: Implications for Natural Killer Cell-Based Cancer Immunotherapy. Front Immunol 2021; 11:621225. [PMID: 33584718 PMCID: PMC7878550 DOI: 10.3389/fimmu.2020.621225] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are endowed with germline-encoded receptors that enable them to detect and kill malignant cells without prior priming. Over the years, overwhelming evidence has identified an essential role for NK cells in tumor immune surveillance. More recently, clinical trials have also highlighted their potential in therapeutic settings. Yet, data show that NK cells can be dysregulated within the tumor microenvironment (TME), rendering them ineffective in eradicating the cancer cells. This has been attributed to immune suppressive factors, including the tumor cells per se, stromal cells, regulatory T cells, and soluble factors such as reactive oxygen species and cytokines. However, the TME also hosts myeloid cells such as dendritic cells, macrophages, neutrophils, and myeloid-derived suppressor cells that influence NK cell function. Although the NK-myeloid cell crosstalk can promote anti-tumor responses, myeloid cells in the TME often dysregulate NK cells via direct cell-to-cell interactions down-regulating key NK cell receptors, depletion of nutrients and growth factors required for NK cell growth, and secretion of metabolites, chemokines and cytokines that ultimately alter NK cell trafficking, survival, and cytotoxicity. Here, we review the complex functions of myeloid-derived cytokines in both supporting and suppressing NK cells in the TME and how NK cell-derived cytokines can influence myeloid subsets. We discuss challenges related to these interactions in unleashing the full potential of endogenous and adoptively infused NK cells. Finally, we present strategies aiming at improving NK cell-based cancer immunotherapies via pathways that are involved in the NK-myeloid cell crosstalk in the TME.
Collapse
Affiliation(s)
- Silvia Gaggero
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut pour la Recherche contre le Cancer de Lille, UMR9020 - UMR-S 1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Kristina Witt
- Center for Hematology and Regenerative Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlsten
- Center for Hematology and Regenerative Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.,Center for Cell Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Suman Mitra
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut pour la Recherche contre le Cancer de Lille, UMR9020 - UMR-S 1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
9
|
Bottino C, Walzer T, Santoni A, Castriconi R. Editorial: TGF-β as a Key Regulator of NK and ILCs Development and Functions. Front Immunol 2021; 11:631712. [PMID: 33542726 PMCID: PMC7851045 DOI: 10.3389/fimmu.2020.631712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cristina Bottino
- Laboratory of Clinical and Experimental Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Giannina Gaslini, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, INSERM U1111 - CNRS UMR5308, Université de Lyon, ENS de Lyon, Université Lyon, Lyon, France
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
10
|
Zhu X, Qin X, Wang X, Wang Y, Cao W, Zhang J, Chen W. Oral cancer cell‑derived exosomes modulate natural killer cell activity by regulating the receptors on these cells. Int J Mol Med 2020; 46:2115-2125. [PMID: 33125101 PMCID: PMC7595664 DOI: 10.3892/ijmm.2020.4736] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/19/2020] [Indexed: 02/05/2023] Open
Abstract
Oral cancer (OC) is the most common type of head and neck malignant tumor. Tumor‑derived exosomes induce a complex extracellular environment that affects tumor immunity. In the present study, exosomes were isolated from OC cell lines (WSU‑HN4 and SCC‑9) by ultrafiltration and the protein content of these oral cancer‑derived exosomes (OCEXs) was analyzed by mass spectrometry, which revealed the enrichment of transforming growth factor (TGF)‑β1. Natural killer (NK) cells were examined by flow cytometry following co‑culture with OCEXs. The expression of killer cell lectin like receptor K1 (KLRK1; also known as NKG2D, as used herein) and natural cytotoxicity triggering receptor 3 (NCR3; also known as NKp30, as used herein) in NK cells was found to be significantly upregulated following co‑culture with the OCEXs for 1 day, whereas this expression decreased at 7 days. Killer cell lectin like receptor C1 (KLRC1; also known as NKG2A; as used herein) expression exhibited an opposite trend at 1 day. In addition, NK cell cytotoxicity against the OC cells was enhanced at 1 day, but was attenuated at 7 days. TGF‑β1 inhibited the function of NK cells at 7 days, whereas it had no obvious effects at 1 and 3 days. On the whole, the findings of the present study reveal changes in NK cell function and provide new insight into NK cell dysfunction.
Collapse
Affiliation(s)
- Xueqin Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Xing Qin
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Xiaoning Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Yingnan Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Wei Cao
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
- Correspondence to: Professor Wantao Chen, Department of Oral and Maxillofacial-Head and Neck Oncology and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China, E-mail:
| |
Collapse
|
11
|
Domagala J, Lachota M, Klopotowska M, Graczyk-Jarzynka A, Domagala A, Zhylko A, Soroczynska K, Winiarska M. The Tumor Microenvironment-A Metabolic Obstacle to NK Cells' Activity. Cancers (Basel) 2020; 12:cancers12123542. [PMID: 33260925 PMCID: PMC7761432 DOI: 10.3390/cancers12123542] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
NK cells have unique capabilities of recognition and destruction of tumor cells, without the requirement for prior immunization of the host. Maintaining tolerance to healthy cells makes them an attractive therapeutic tool for almost all types of cancer. Unfortunately, metabolic changes associated with malignant transformation and tumor progression lead to immunosuppression within the tumor microenvironment, which in turn limits the efficacy of various immunotherapies. In this review, we provide a brief description of the metabolic changes characteristic for the tumor microenvironment. Both tumor and tumor-associated cells produce and secrete factors that directly or indirectly prevent NK cell cytotoxicity. Here, we depict the molecular mechanisms responsible for the inhibition of immune effector cells by metabolic factors. Finally, we summarize the strategies to enhance NK cell function for the treatment of tumors.
Collapse
Affiliation(s)
- Joanna Domagala
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Mieszko Lachota
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (M.L.); (M.K.)
| | - Marta Klopotowska
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (M.L.); (M.K.)
| | - Agnieszka Graczyk-Jarzynka
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
| | - Antoni Domagala
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland;
- Department of Urology, Holy Cross Cancer Center, 25-734 Kielce, Poland
| | - Andriy Zhylko
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
| | - Karolina Soroczynska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Correspondence: ; Tel.: +48-225-992-199
| |
Collapse
|
12
|
Tan C, Waldmann TA. Bench-to-bedside translation of interleukin-15 for immunotherapy: principles and challenges. Expert Opin Drug Deliv 2020; 17:895-898. [PMID: 32357804 DOI: 10.1080/17425247.2020.1764933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi , Oxford, MS, USA
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
13
|
Regis S, Dondero A, Caliendo F, Bottino C, Castriconi R. NK Cell Function Regulation by TGF-β-Induced Epigenetic Mechanisms. Front Immunol 2020; 11:311. [PMID: 32161594 PMCID: PMC7052483 DOI: 10.3389/fimmu.2020.00311] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
TGF-β is a potent immunosuppressive cytokine that severely affects the function of NK cells. Tumor cells can take advantage of this ability, enriching their surrounding microenvironment with TGF-β. TGF-β can alter the expression of effector molecules and of activating and chemokine receptors, influence metabolism, induce the NK cell conversion toward the less cytolytic ILC1s. These and other changes possibly occur by the induction of complex gene expression programs, involving epigenetic mechanisms. While most of these programs are at present unexplored, the role of certain transcription factors, microRNAs and chromatin changes determined by TGF-β in NK cells start to be elucidated in human and/or mouse NK cells. The deep understanding of these mechanisms will be useful to design therapies contributing to restore the full NK function.
Collapse
Affiliation(s)
- Stefano Regis
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Fabio Caliendo
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Cristina Bottino
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Centre of Excellence for Biomedical Research, CEBR, University of Genoa, Genoa, Italy
| |
Collapse
|
14
|
Sabry M, Zubiak A, Hood SP, Simmonds P, Arellano-Ballestero H, Cournoyer E, Mashar M, Pockley AG, Lowdell MW. Tumor- and cytokine-primed human natural killer cells exhibit distinct phenotypic and transcriptional signatures. PLoS One 2019; 14:e0218674. [PMID: 31242243 PMCID: PMC6594622 DOI: 10.1371/journal.pone.0218674] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/06/2019] [Indexed: 11/19/2022] Open
Abstract
An emerging cellular immunotherapy for cancer is based on the cytolytic activity of natural killer (NK) cells against a wide range of tumors. Although in vitro activation, or “priming,” of NK cells by exposure to pro-inflammatory cytokines, such as interleukin (IL)-2, has been extensively studied, the biological consequences of NK cell activation in response to target cell interactions have not been thoroughly characterized. We investigated the consequences of co-incubation with K562, CTV-1, Daudi RPMI-8226, and MCF-7 tumor cell lines on the phenotype, cytokine expression profile, and transcriptome of human NK cells. We observe the downregulation of several activation receptors including CD16, CD62L, C-X-C chemokine receptor (CXCR)-4, natural killer group 2 member D (NKG2D), DNAX accessory molecule (DNAM)-1, and NKp46 following tumor-priming. Although this NK cell phenotype is typically associated with NK cell dysfunction in cancer, we reveal the upregulation of NK cell activation markers, such as CD69 and CD25; secretion of pro-inflammatory cytokines, including macrophage inflammatory proteins (MIP-1) α /β and IL-1β/6/8; and overexpression of numerous genes associated with enhanced NK cell cytotoxicity and immunomodulatory functions, such as FAS, TNFSF10, MAPK11, TNF, and IFNG. Thus, it appears that tumor-mediated ligation of receptors on NK cells may induce a primed state which may or may not lead to full triggering of the lytic or cytokine secreting machinery. Key signaling molecules exclusively affected by tumor-priming include MAP2K3, MARCKSL1, STAT5A, and TNFAIP3, which are specifically associated with NK cell cytotoxicity against tumor targets. Collectively, these findings help define the phenotypic and transcriptional signature of NK cells following their encounters with tumor cells, independent of cytokine stimulation, and provide insight into tumor-specific NK cell responses to inform the transition toward harnessing the therapeutic potential of NK cells in cancer.
Collapse
Affiliation(s)
- May Sabry
- Department of Haematology, University College London, London, United Kingdom
| | - Agnieszka Zubiak
- Department of Haematology, University College London, London, United Kingdom
| | - Simon P. Hood
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Poppy Simmonds
- Department of Haematology, University College London, London, United Kingdom
| | | | - Eily Cournoyer
- Department of Haematology, University College London, London, United Kingdom
| | - Meghavi Mashar
- Department of Haematology, University College London, London, United Kingdom
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Mark W. Lowdell
- Department of Haematology, University College London, London, United Kingdom
- InmuneBio Inc., La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Natural Killer Cells as Key Players of Tumor Progression and Angiogenesis: Old and Novel Tools to Divert Their Pro-Tumor Activities into Potent Anti-Tumor Effects. Cancers (Basel) 2019; 11:cancers11040461. [PMID: 30939820 PMCID: PMC6521276 DOI: 10.3390/cancers11040461] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Immune cells, as a consequence of their plasticity, can acquire altered phenotype/functions within the tumor microenvironment (TME). Some of these aberrant functions include attenuation of targeting and killing of tumor cells, tolerogenic/immunosuppressive behavior and acquisition of pro-angiogenic activities. Natural killer (NK) cells are effector lymphocytes involved in tumor immunosurveillance. In solid malignancies, tumor-associated NK cells (TANK cells) in peripheral blood and tumor-infiltrating NK (TINK) cells show altered phenotypes and are characterized by either anergy or reduced cytotoxicity. Here, we aim at discussing how NK cells can support tumor progression and how induction of angiogenesis, due to TME stimuli, can be a relevant part on the NK cell-associated tumor supporting activities. We will review and discuss the contribution of the TME in shaping NK cell response favoring cancer progression. We will focus on TME-derived set of factors such as TGF-β, soluble HLA-G, prostaglandin E2, adenosine, extracellular vesicles, and miRNAs, which can exhibit a dual function. On one hand, these factors can suppress NK cell-mediated activities but, on the other hand, they can induce a pro-angiogenic polarization in NK cells. Also, we will analyze the impact on cancer progression of the interaction of NK cells with several TME-associated cells, including macrophages, neutrophils, mast cells, cancer-associated fibroblasts, and endothelial cells. Then, we will discuss the most relevant therapeutic approaches aimed at potentiating/restoring NK cell activities against tumors. Finally, supported by the literature revision and our new findings on NK cell pro-angiogenic activities, we uphold NK cells to a key host cellular paradigm in controlling tumor progression and angiogenesis; thus, we should bear in mind NK cells like a TME-associated target for anti-tumor therapeutic approaches.
Collapse
|