1
|
Zhu L, Bai Y, Li A, Wan J, Sun M, Lou X, Duan X, Sheng Y, Lei N, Qin Z. IFN-γ-responsiveness of lymphatic endothelial cells inhibits melanoma lymphatic dissemination via AMPK-mediated metabolic control. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167314. [PMID: 38936516 DOI: 10.1016/j.bbadis.2024.167314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
The integrity of the lymphatic system is critical for preventing the dissemination of tumor cells, such as melanoma, to distant parts of the body. IFN-γ is well studied as a negative regulator for lymphangiogenesis, which is strongly associated with cancer metastasis. However, the exact mechanisms underlying this process remain unclear. In the present study, we investigated whether IFN-γ signaling in lymphatic endothelial cells (LECs) affects tumor cell dissemination by regulating the barrier function of tumor-associated lymphatic vessels. Using LEC-specific IFN-γ receptor (IFN-γR) knockout mice, we found that the loss of IFN-γR in LECs increased the dissemination of melanoma cells into the draining lymph nodes. Notably, IFN-γ signaling in LECs inhibited trans-lymphatic endothelial cell migration of melanoma cells, indicating its regulation of lymphatic barrier function. Further investigations revealed that IFN-γ upregulated the expression of the tight junction protein Claudin-3 in LECs, while knockdown of Claudin-3 in LECs abolished IFN-γ-induced inhibition of trans-lymphatic endothelial migration activity. Mechanistically, IFN-γ inhibits AMPK signaling activation, which is involved in the regulation of fatty acid metabolism. Modulating fatty acid metabolism and AMPK activation in LECs also affected the lymphatic dissemination of melanoma cells, further confirming that this process is involved in IFN-γ-induced regulation of lymphatic barrier function. These results provide novel insights into how IFN-γ modulates tight junctions in LECs, inhibiting the dissemination of melanoma cells via the lymphatic vessels.
Collapse
Affiliation(s)
- Linyu Zhu
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yueyue Bai
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Anqi Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiajia Wan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengyao Sun
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohan Lou
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xixi Duan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqiao Sheng
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Kumar D, Da Silva VC, Chaves NL. Myeloid‑derived suppressor cells as targets of emerging therapies and nanotherapies (Review). MEDICINE INTERNATIONAL 2024; 4:46. [PMID: 38983795 PMCID: PMC11228699 DOI: 10.3892/mi.2024.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024]
Abstract
Breast cancer (BC) is the leading cause of cancer-related mortality among women worldwide. Immunotherapies are a promising approach in cancer treatment, particularly for aggressive forms of BC with high mortality rates. However, the current eligibility for immunotherapy remains limited to a limited fraction of patients with BC. Myeloid-derived suppressor cells (MDSCs), originating from myeloid cells, are known for their dual role in immunosuppression and tumor promotion, significantly affecting patient outcomes by fostering the formation of premetastatic niches. Consequently, targeting MDSCs has emerged as a promising avenue for further exploration in therapeutic interventions. Leveraging nanotechnology-based drug delivery systems, which excel in accumulating drugs within tumors via passive or active targeting mechanisms, are a promising strategy for the use of MDSCs in the treatment of BC. The present review discusses the immunosuppressive functions of MDSCs, their role in BC, and the diverse strategies for targeting them in cancer therapy. Additionally, the present review discusses future advancements in BC treatments focusing on MDSCs. Furthermore, it elucidates the mechanisms underlying MDSC activation, recruitment and differentiation in BC progression, highlighting the clinical characteristics that render MDSCs suitable candidates for the therapy and targeted nanotherapy of BC.
Collapse
Affiliation(s)
- Dileep Kumar
- Department of Genetics and Morphology, Institutes of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Victor Carlos Da Silva
- Microscopy and Microanalysis Laboratory, Institutes of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Natalia Lemos Chaves
- Department of Genetics and Morphology, Institutes of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| |
Collapse
|
3
|
Kang W, Wang C, Wang M, Liu M, Hu W, Liang X, Zhang Y. The CXCR2 chemokine receptor: A new target for gastric cancer therapy. Cytokine 2024; 181:156675. [PMID: 38896956 DOI: 10.1016/j.cyto.2024.156675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Gastric cancer (GC) is one of the most common malignant tumors in the world, and current treatments are still based on surgery and drug therapy. However, due to the complexity of immunosuppression and drug resistance, the treatment of gastric cancer still faces great challenges. Chemokine receptor 2 (CXCR2) is one of the most common therapeutic targets in targeted therapy. As a G protein-coupled receptor, CXCR2 and its ligands play important roles in tumorigenesis and progression. The abnormal expression of these genes in cancer plays a decisive role in the recruitment and activation of white blood cells, angiogenesis, and cancer cell proliferation, and CXCR2 is involved in various stages of tumor development. Therefore, interfering with the interaction between CXCR2 and its ligands is considered a possible target for the treatment of various tumors, including gastric cancer.
Collapse
Affiliation(s)
- Wenyan Kang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Chengkun Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Minhui Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Meiqi Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Wei Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China
| | - Xiaoqiu Liang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China.
| | - Yang Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang Hunan, China.
| |
Collapse
|
4
|
Ruocco MR, Gisonna A, Acampora V, D’Agostino A, Carrese B, Santoro J, Venuta A, Nasso R, Rocco N, Russo D, Cavaliere A, Altobelli GG, Masone S, Avagliano A, Arcucci A, Fiume G. Guardians and Mediators of Metastasis: Exploring T Lymphocytes, Myeloid-Derived Suppressor Cells, and Tumor-Associated Macrophages in the Breast Cancer Microenvironment. Int J Mol Sci 2024; 25:6224. [PMID: 38892411 PMCID: PMC11172575 DOI: 10.3390/ijms25116224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Breast cancers (BCs) are solid tumors composed of heterogeneous tissues consisting of cancer cells and an ever-changing tumor microenvironment (TME). The TME includes, among other non-cancer cell types, immune cells influencing the immune context of cancer tissues. In particular, the cross talk of immune cells and their interactions with cancer cells dramatically influence BC dissemination, immunoediting, and the outcomes of cancer therapies. Tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) represent prominent immune cell populations of breast TMEs, and they have important roles in cancer immunoescape and dissemination. Therefore, in this article we review the features of TILs, TAMs, and MDSCs in BCs. Moreover, we highlight the mechanisms by which these immune cells remodel the immune TME and lead to breast cancer metastasis.
Collapse
Affiliation(s)
- Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (A.G.)
| | - Armando Gisonna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (A.G.)
| | - Vittoria Acampora
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Anna D’Agostino
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Barbara Carrese
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Jessie Santoro
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Alessandro Venuta
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Rosarita Nasso
- Department of Movement Sciences and Wellness, University of Naples “Parthenope”, 80133 Naples, Italy;
| | - Nicola Rocco
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | - Daniela Russo
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | | | - Giovanna Giuseppina Altobelli
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy;
| |
Collapse
|
5
|
Umekita S, Kiyozawa D, Kohashi K, Kawatoko S, Sasaki T, Ihara E, Oki E, Nakamura M, Ogawa Y, Oda Y. Clinicopathological significance of microsatellite instability and immune escape mechanism in patients with gastric solid-type poorly differentiated adenocarcinoma. Gastric Cancer 2024; 27:484-494. [PMID: 38441781 DOI: 10.1007/s10120-024-01474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/23/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND In gastric solid-type poorly differentiated adenocarcinoma (PDA), the role of microsatellite instability and immune escape mechanism remains unclear. The current study aimed to elucidate the clinical significance of mismatch repair (MMR) status, genome profile, C-X-C motif chemokine receptor 2 (CXCR2) expression, and myeloid-derived suppressor cell (MDSC) infiltration in solid-type PDA. METHODS In total, 102 primary solid-type PDA cases were retrieved, and classified into 46 deficient-MMR (dMMR) and 56 proficient-MMR (pMMR) cases based on immunohistochemistry (IHC) and polymerase chain reaction-based molecular testing results. The mRNA expression profiles (NanoString nCounter Assay) of stage-matched dMMR (n = 6) and pMMR (n = 6) cases were examined. The CXCR2 expression and MDSC infiltration (CD11b- and CD33-positive cells) were investigated via IHC in all solid-type PDA cases. RESULTS mRNA analysis revealed several differentially expressed genes and differences in biological behavior between the dMMR (n = 46) and pMMR (n = 56) groups. In the multivariate analysis, the dMMR status was significantly associated with a longer disease-free survival (hazard ratio = 5.152, p = 0.002) and overall survival (OS) (hazard ratio = 5.050, p = 0.005). CXCR2-high expression was significantly correlated with a shorter OS in the dMMR group (p = 0.018). A high infiltration of CD11b- and CD33-positive cells was significantly correlated with a shorter OS in the pMMR group (p = 0.022, 0.016, respectively). CONCLUSIONS dMMR status can be a useful prognostic predictor, and CXCR2 and MDSCs can be novel therapeutic targets in patients with solid-type PDA.
Collapse
Affiliation(s)
- Shinya Umekita
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Daisuke Kiyozawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shinichiro Kawatoko
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taisuke Sasaki
- Department of Medicine and Bioregulatory, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eikichi Ihara
- Department of Medicine and Bioregulatory, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
6
|
Tamuli B, Sharma S, Patkar M, Biswas S. Key players of immunosuppression in epithelial malignancies: Tumor-infiltrating myeloid cells and γδ T cells. Cancer Rep (Hoboken) 2024; 7:e2066. [PMID: 38703051 PMCID: PMC11069128 DOI: 10.1002/cnr2.2066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The tumor microenvironment of solid tumors governs the differentiation of otherwise non-immunosuppressive macrophages and gamma delta (γδ) T cells into strong immunosuppressors while promoting suppressive abilities of known immunosuppressors such as myeloid-derived suppressor cells (MDSCs) upon infiltration into the tumor beds. RECENT FINDINGS In epithelial malignancies, tumor-associated macrophages (TAMs), precursor monocytic MDSCs (M-MDSCs), and gamma delta (γδ) T cells often acquire strong immunosuppressive abilities that dampen spontaneous immune responses by tumor-infiltrating T cells and B lymphocytes against cancer. Both M-MDSCs and γδ T cells have been associated with worse prognosis for multiple epithelial cancers. CONCLUSION Here we discuss recent discoveries on how tumor-associated macrophages and precursor M-MDSCs as well as tumor associated-γδ T cells acquire immunosuppressive abilities in the tumor beds, promote cancer metastasis, and perspectives on how possible novel interventions could restore the effective adaptive immune responses in epithelial cancers.
Collapse
Affiliation(s)
- Baishali Tamuli
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
| | - Sakshi Sharma
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
| | - Meena Patkar
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
| | - Subir Biswas
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
- Homi Bhabha National InstituteMumbaiIndia
| |
Collapse
|
7
|
Guo S, Wang Z. Unveiling the immunosuppressive landscape of pancreatic ductal adenocarcinoma: implications for innovative immunotherapy strategies. Front Oncol 2024; 14:1349308. [PMID: 38590651 PMCID: PMC10999533 DOI: 10.3389/fonc.2024.1349308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), stands as the fourth leading cause of cancer-related deaths in the United States, marked by challenging treatment and dismal prognoses. As immunotherapy emerges as a promising avenue for mitigating PDAC's malignant progression, a comprehensive understanding of the tumor's immunosuppressive characteristics becomes imperative. This paper systematically delves into the intricate immunosuppressive network within PDAC, spotlighting the significant crosstalk between immunosuppressive cells and factors in the hypoxic acidic pancreatic tumor microenvironment. By elucidating these mechanisms, we aim to provide insights into potential immunotherapy strategies and treatment targets, laying the groundwork for future studies on PDAC immunosuppression. Recognizing the profound impact of immunosuppression on PDAC invasion and metastasis, this discussion aims to catalyze the development of more effective and targeted immunotherapies for PDAC patients.
Collapse
Affiliation(s)
- Songyu Guo
- First Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhenxia Wang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
8
|
Kuonqui K, Campbell AC, Sarker A, Roberts A, Pollack BL, Park HJ, Shin J, Brown S, Mehrara BJ, Kataru RP. Dysregulation of Lymphatic Endothelial VEGFR3 Signaling in Disease. Cells 2023; 13:68. [PMID: 38201272 PMCID: PMC10778007 DOI: 10.3390/cells13010068] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3), a receptor tyrosine kinase encoded by the FLT4 gene, plays a significant role in the morphogenesis and maintenance of lymphatic vessels. Under both normal and pathologic conditions, VEGF-C and VEGF-D bind VEGFR3 on the surface of lymphatic endothelial cells (LECs) and induce lymphatic proliferation, migration, and survival by activating intracellular PI3K-Akt and MAPK-ERK signaling pathways. Impaired lymphatic function and VEGFR3 signaling has been linked with a myriad of commonly encountered clinical conditions. This review provides a brief overview of intracellular VEGFR3 signaling in LECs and explores examples of dysregulated VEGFR3 signaling in various disease states, including (1) lymphedema, (2) tumor growth and metastasis, (3) obesity and metabolic syndrome, (4) organ transplant rejection, and (5) autoimmune disorders. A more complete understanding of the molecular mechanisms underlying the lymphatic pathology of each disease will allow for the development of novel strategies to treat these chronic and often debilitating illnesses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Babak J. Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Raghu P. Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
9
|
Milovanović J, Vujasinović T, Todorović-Raković N, Greenman J, Hranisavljević J, Radulovic M. Vascular endothelial growth factor (VEGF) -A, -C and VE-cadherin as potential biomarkers in early breast cancer patients. Pathol Res Pract 2023; 252:154923. [PMID: 37948997 DOI: 10.1016/j.prp.2023.154923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) -A and -C act as multifunctional molecules and growth factors, while VE-cadherin (cadherin 5, CDH5) is the endothelial junction protein. AIM To assess the relationship between intratumoral VEGF -A, -C and CDH5 levels and clinical outcome, in primary, early-stage, breast cancer patients. PATIENTS AND METHODS The study included 69 node-negative (N0) breast cancer patients, all of whom had not received any prior hormonal or chemotherapeutic systemic therapy that would affect the course of disease. The median follow-up period was 144 months. Intratumoral mRNA levels of VEGF -A, -C and CDH5 were determined by RT-qPCR. Prognostic performance was evaluated by Cox proportional hazards regression, Kaplan-Meier analysis, as well as by the multivariable approach based on the least absolute shrinkage and selection operator (LASSO) logit regression. Classification of patients into the low and high subgroups was performed using the outcome-oriented cut-off point categorization approach. RESULTS Of the measured mRNAs, only CDH5 mRNA (t = -2.17; p = 0.04) and VEGF-C mRNA (t = -2.41; p = 0.03) showed significant differences between values in patient subgroups with distant metastasis and those without recurrences, respectively. These t-test results were in agreement with the Cox regression by which CDH5 mRNA reached the most pronounced hazard ratio (HR=2.07; p = 0.05), followed by VEGF-C mRNA (HR=1.59; p = 0.005). HR values above 1.0 indicate that high levels of either CDH5 or VEGF-C mRNAs associated with a higher risk of poor clinical outcome. Distant recurrence incidence was 26% for the CDH5high and 3% for the CDH5low subgroup (Kaplan-Meier analysis). Distant recurrence incidence was 23% for the VEGF-Chigh and 0% for VEGF-Clow subgroup. The independent prognostic value of VEGF-C mRNA was confirmed by LASSO regression. CONCLUSION Intratumoral VEGF-A levels did not associate with disease outcome in primary, early-stage, breast cancer patients, whilst raised levels of either CDH5 or VEGF-C prognosticated a high risk of distant metastasis.
Collapse
Affiliation(s)
- Jelena Milovanović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia.
| | - Tijana Vujasinović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Nataša Todorović-Raković
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - John Greenman
- Centre for Biomedicine, University of Hull, Hull, UK
| | - Jelena Hranisavljević
- Department for Radiobiology and Molecular Genetics, Institute of Nuclear Sciences Vinča - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marko Radulovic
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| |
Collapse
|
10
|
Jing G, Yang L, Wang H, Niu J, Wang H, Gao Y, Li Y, Wei B, Qian Y, Wang S. Blocked Autophagy is Involved in Layered Double Hydroxide-Induced Repolarization and Immune Activation in Tumor-Associated Macrophages. Adv Healthc Mater 2023; 12:e2301471. [PMID: 37549006 DOI: 10.1002/adhm.202301471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Tumor-associated macrophages (TAMs) are important immune cells in the tumor microenvironment (TME). The polar plasticity of TAMs makes them important targets for improving the immunosuppressive microenvironment of tumors. The previous study reveals that layered double hydroxides (LDHs) can effectively promote the polarization of TAMs from the anti-inflammatory M2 type to the pro-inflammatory M1 type. However, their mechanisms of action remain unexplored. This study reveals that LDHs composed of different cations exhibit distinct abilities to regulate the polarity of TAMs. Compared to Mg-Fe LDH, Mg-Al LDH has a stronger ability to promote the repolarization of TAMs from M2 to M1 and inhibit the formation of myeloid-derived suppressor cells (MDSCs). In addition, Mg-Al LDH restrains the growth of tumors in vivo and promotes the infiltration of activated immune cells into the TME more effectively. Interestingly, Mg-Al LDH influences the autophagy of TAMs; this negatively correlates with the pro-inflammatory ability of TAMs. Therefore, LDHs exert their polarization ability by inhibiting the autophagy of TAMs, and this mechanism might be related to the ionic composition of LDHs. This study lays the foundation for optimizing the performance of LDH-based immune adjuvants, which display excellent application prospects for tumor immunotherapy.
Collapse
Affiliation(s)
- Guoxin Jing
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, P. R. China
| | - Linnan Yang
- The Center for Scientific Research of the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Hong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, P. R. China
| | - Jintong Niu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, P. R. China
| | - Huichao Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, P. R. China
| | - Yi Gao
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, P. R. China
| | - Youyuan Li
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, P. R. China
| | - Bangguo Wei
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, P. R. China
| | - Yechang Qian
- Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 201900, P. R. China
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
11
|
Zhang Y, Zhao L, Bi Y, Zhao J, Gao C, Si X, Dai H, Asmamaw MD, Zhang Q, Chen W, Liu H. The role of lncRNAs and exosomal lncRNAs in cancer metastasis. Biomed Pharmacother 2023; 165:115207. [PMID: 37499455 DOI: 10.1016/j.biopha.2023.115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Tumor metastasis is the main reason for cancer-related death, but there is still a lack of effective therapeutic to inhibit tumor metastasis. Therefore, the discovery and study of new tumor metastasis regulators is a prominent measure for cancer diagnosis and treatment. Long non-coding RNA (lncRNA) is a type of non-coding RNAs over 200 bp in length. It has been shown that the abnormally expressed lncRNAs promote tumor metastasis by participating in the epithelial-to-mesenchymal transition (EMT) process, altering the metastatic tumor microenvironment, or changing the extracellular matrix. It is,thus, critical to explore the regulation of lncRNAs expression in cells and the molecular mechanism of lncRNA-mediated cancer metastasis. Simultaneously, it has been shown that lncRNA is one kind of the main components of exosomes, which protects lncRNAs from being rapidly degraded. Meanwhile, the components of exosomes are parent-specific, making exosomal lncRNAs to be potential tumor metastasis markers and therapeutic targets. In view of this, we also summarized the aberrant enrichment of lncRNAs in exosomes and their role in metastatic cancer. The aberrant lncRNAs and exosomal lncRNAs gradually become biomarkers and therapeutic targets for tumor metastatic, and the potential of lncRNAs in therapeutics are studied here. Besides, the lncRNA-related databases, which could greatly facilitate in the study of lncRNAs and exosomal lncRNAs in metastatic of cancer are included in this review.
Collapse
Affiliation(s)
- Yutong Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China; The People's Hospital of Zhang Dian District, Zibo, China
| | - Lijuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Science, Zhengzhou University, Zhengzhou China
| | - Yaping Bi
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Jinyuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Chao Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Xiaojie Si
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Honglin Dai
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Moges Dessale Asmamaw
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Qiurong Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China.
| | - Wenchao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital; Zhengzhou University People's Hospital; Henan University People's Hospital, Zhengzhou China.
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China.
| |
Collapse
|
12
|
Cruz-Burgos M, Cortés-Ramírez SA, Losada-García A, Morales-Pacheco M, Martínez-Martínez E, Morales-Montor JG, Servín-Haddad A, Izquierdo-Luna JS, Rodríguez-Martínez G, Ramos-Godínez MDP, González-Covarrubias V, Cañavera-Constantino A, González-Ramírez I, Su B, Leong HS, Rodríguez-Dorantes M. Unraveling the Role of EV-Derived miR-150-5p in Prostate Cancer Metastasis and Its Association with High-Grade Gleason Scores: Implications for Diagnosis. Cancers (Basel) 2023; 15:4148. [PMID: 37627176 PMCID: PMC10453180 DOI: 10.3390/cancers15164148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Metastasis remains the leading cause of mortality in prostate cancer patients. The presence of tumor cells in lymph nodes is an established prognostic indicator for several cancer types, such as melanoma, breast, oral, pancreatic, and cervical cancers. Emerging evidence highlights the role of microRNAs enclosed within extracellular vesicles as facilitators of molecular communication between tumors and metastatic sites in the lymph nodes. This study aims to investigate the potential diagnostic utility of EV-derived microRNAs in liquid biopsies for prostate cancer. By employing microarrays on paraffin-embedded samples, we characterized the microRNA expression profiles in metastatic lymph nodes, non-metastatic lymph nodes, and primary tumor tissues of prostate cancer. Differential expression of microRNAs was observed in metastatic lymph nodes compared to prostate tumors and non-metastatic lymph node tissues. Three microRNAs (miR-140-3p, miR-150-5p, and miR-23b-3p) were identified as differentially expressed between tissue and plasma samples. Furthermore, we evaluated the expression of these microRNAs in exosomes derived from prostate cancer cells and plasma samples. Intriguingly, high Gleason score samples exhibited the lowest expression of miR-150-5p compared to control samples. Pathway analysis suggested a potential regulatory role for miR-150-5p in the Wnt pathway and bone metastasis. Our findings suggest EV-derived miR-150-5p as a promising diagnostic marker for identifying patients with high-grade Gleason scores and detecting metastasis at an early stage.
Collapse
Affiliation(s)
- Marian Cruz-Burgos
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Sergio A. Cortés-Ramírez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Alberto Losada-García
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication and Extracellular Vesicles, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | | | - Alejandro Servín-Haddad
- Urology Department, Hospital General Dr. Manuel Gea Gonzalez, Mexico City 14080, Mexico; (J.G.M.-M.); (A.S.-H.)
| | | | - Griselda Rodríguez-Martínez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | | | | | | | - Imelda González-Ramírez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana, Mexico City 14387, Mexico
| | - Boyang Su
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
- Biological Sciences Platform, Sunybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Hon S. Leong
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
- Biological Sciences Platform, Sunybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Mauricio Rodríguez-Dorantes
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| |
Collapse
|
13
|
Ren R, Xiong C, Ma R, Wang Y, Yue T, Yu J, Shao B. The recent progress of myeloid-derived suppressor cell and its targeted therapies in cancers. MedComm (Beijing) 2023; 4:e323. [PMID: 37547175 PMCID: PMC10397484 DOI: 10.1002/mco2.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 08/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are an immature group of myeloid-derived cells generated from myeloid cell precursors in the bone marrow. MDSCs appear almost exclusively in pathological conditions, such as tumor progression and various inflammatory diseases. The leading function of MDSCs is their immunosuppressive ability, which plays a crucial role in tumor progression and metastasis through their immunosuppressive effects. Since MDSCs have specific molecular features, and only a tiny amount exists in physiological conditions, MDSC-targeted therapy has become a promising research direction for tumor treatment with minimal side effects. In this review, we briefly introduce the classification, generation and maturation process, and features of MDSCs, and detail their functions under various circumstances. The present review specifically demonstrates the environmental specificity of MDSCs, highlighting the differences between MDSCs from cancer and healthy individuals, as well as tumor-infiltrating MDSCs and circulating MDSCs. Then, we further describe recent advances in MDSC-targeted therapies. The existing and potential targeted drugs are divided into three categories, monoclonal antibodies, small-molecular inhibitors, and peptides. Their targeting mechanisms and characteristics have been summarized respectively. We believe that a comprehensive in-depth understanding of MDSC-targeted therapy could provide more possibilities for the treatment of cancer.
Collapse
Affiliation(s)
- Ruiyang Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Chenyi Xiong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Runyu Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yixuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Tianyang Yue
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Jiayun Yu
- Department of RadiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
14
|
Zhang B, Hu M, Ma Q, Li K, Li X, He X, Shu P, Chen Y, Gao G, Qin D, Guo F, Zhao J, Liu N, Zhou K, Feng M, Liao W, Li D, Wang X, Wang Y. Optimized CAR-T therapy based on spatiotemporal changes and chemotactic mechanisms of MDSCs induced by hypofractionated radiotherapy. Mol Ther 2023; 31:2105-2119. [PMID: 37073129 PMCID: PMC10362417 DOI: 10.1016/j.ymthe.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023] Open
Abstract
Poor intratumoral infiltration is the major challenge for chimeric antigen receptor (CAR)-T cell therapy in solid tumors. Hypofractionated radiotherapy (HFRT) has been reported to induce immune cell infiltration and reshape the tumor immune microenvironment. Here, we showed that HFRT (5 × 5 Gy) mediated an early accumulation of intratumoral myeloid-derived suppressor cells (MDSCs) and decreased infiltration of T cells in the tumor microenvironment (TME) of immunocompetent mice bearing triple-negative breast cancer (TNBC) or colon cancer, which was further confirmed in tumors from patients. RNA sequencing (RNA-seq) and cytokine profiling analysis revealed that HFRT induced the activation and proliferation of tumor-infiltrated MDSCs, which was mediated by the interactions of multiple chemokines and chemokine receptors. Further investigation showed that when combined with HFRT, CXCR2 blockade significantly inhibited MDSCs trafficking to tumors and effectively enhanced the intratumoral infiltration and treatment efficacy of CAR-T cells. Our study demonstrates that MDSCs blockade combined with HFRT is promising for CAR-T cell therapy optimization in solid tumors.
Collapse
Affiliation(s)
- Benxia Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Hu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Qizhi Ma
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xue Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xia He
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pei Shu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Chen
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ge Gao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Diyuan Qin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fuchun Guo
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Zhao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ning Liu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kexun Zhou
- Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - MingYang Feng
- Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weiting Liao
- Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, and Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Wang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongsheng Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Liu H, Wang Z, Zhou Y, Yang Y. MDSCs in breast cancer: an important enabler of tumor progression and an emerging therapeutic target. Front Immunol 2023; 14:1199273. [PMID: 37465670 PMCID: PMC10350567 DOI: 10.3389/fimmu.2023.1199273] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Women worldwide are more likely to develop breast cancer (BC) than any other type of cancer. The treatment of BC depends on the subtype and stage of the cancer, such as surgery, radiotherapy, chemotherapy, and immunotherapy. Although significant progress has been made in recent years, advanced or metastatic BC presents a poor prognosis, due to drug resistance and recurrences. During embryonic development, myeloid-derived suppressor cells (MDSCs) develop that suppress the immune system. By inhibiting anti-immune effects and promoting non-immune mechanisms such as tumor cell stemness, epithelial-mesenchymal transformation (EMT) and angiogenesis, MDSCs effectively promote tumor growth and metastasis. In various BC models, peripheral tissues, and tumor microenvironments (TME), MDSCs have been found to amplification. Clinical progression or poor prognosis are strongly associated with increased MDSCs. In this review, we describe the activation, recruitment, and differentiation of MDSCs production in BC, the involvement of MDSCs in BC progression, and the clinical characteristics of MDSCs as a potential BC therapy target.
Collapse
Affiliation(s)
- Haoyu Liu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Zhicheng Wang
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yuntao Zhou
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yanming Yang
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Zhang Z, Yao Z, Zhang Z, Cui L, Zhang L, Qiu G, Song X, Song S. Local radiotherapy for murine breast cancer increases risk of metastasis by promoting the recruitment of M-MDSCs in lung. Cancer Cell Int 2023; 23:107. [PMID: 37268941 DOI: 10.1186/s12935-023-02934-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/30/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Radiotherapy is one of the effective methods for treatment of breast cancer; however, controversies still exist with respect to radiotherapy for patients with TNBC. Here, we intend to explore the mechanism by which local radiotherapy promotes the recruitment of M-MDSCs in the lung and increases the risk of lung metastasis in TNBC tumor-bearing mice. METHODS A single dose of 20 Gy X-ray was used to locally irradiate the primary tumor of 4T1 tumor-bearing mice. Tumor growth, the number of pulmonary metastatic nodules, and the frequency of MDSCs were monitored in the mice. Antibody microarray and ELISA methods were used to analyze the cytokines in exosomes released by irradiated (IR) or non-IR 4T1 cells. The effects of the exosomes on recruitment of MDSCs and colonization of 4T1 cells in the lung of normal BALB/c mice were observed with the methods of FCM and pathological section staining. T lymphocytes or 4T1 cells co-cultured with MDSCs were performed to demonstrate the inhibitory effect on T lymphocytes or accelerative migration effect on 4T1 cells. Finally, a series of in vitro experiments demonstrated how the exosomes promote the recruitment of M-MDSCs in lung of mice. RESULTS Even though radiotherapy reduced the burden of primary tumors and larger lung metastatic nodules (≥ 0.4 mm2), the number of smaller metastases (< 0.4 mm2) significantly increased. Consistently, radiotherapy markedly potentiated M-MDSCs and decreased PMN-MDSCs recruitment to lung of tumor-bearing mice. Moreover, the frequency of M-MDSCs of lung was positively correlated with the number of lung metastatic nodules. Further, M-MDSCs markedly inhibited T cell function, while there was no difference between M-MDSCs and PMN-MDSCs in promoting 4T1 cell migration. X-ray irradiation promoted the release of G-CSF, GM-CSF and CXCl1-rich exosomes, and facilitated the migration of M-MDSCs and PMN-MDSCs into the lung through CXCL1/CXCR2 signaling. While irradiated mouse lung extracts or ir/4T1-exo treated macrophage culture medium showed obvious selective chemotaxis to M-MDSCs. Mechanistically, ir/4T1-exo induce macrophage to produce GM-CSF, which further promoted CCL2 release in an autocrine manner to recruit M-MDSCs via CCL2/CCR2 axis. CONCLUSIONS Our work has identified an undesired effect of radiotherapy that may promote immunosuppressive premetastatic niches formation by recruiting M-MDSCs to lung. Further studies on radiotherapy combined CXCR2 or CCR2 signals inhibitors were necessary.
Collapse
Affiliation(s)
- Zhengzheng Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Hebei province Key Laboratory of Immunological mechanism and intervention of serious diseases, Hebei Medical University, Shijiazhuang, China
| | - Zhiyan Yao
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Hebei province Key Laboratory of Immunological mechanism and intervention of serious diseases, Hebei Medical University, Shijiazhuang, China
| | - Zimeng Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Hebei province Key Laboratory of Immunological mechanism and intervention of serious diseases, Hebei Medical University, Shijiazhuang, China
| | - Ling Cui
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Hebei province Key Laboratory of Immunological mechanism and intervention of serious diseases, Hebei Medical University, Shijiazhuang, China
| | - Ling Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Hebei province Key Laboratory of Immunological mechanism and intervention of serious diseases, Hebei Medical University, Shijiazhuang, China
| | - Gang Qiu
- Department of Oncology, Hebei People's Hospital, Shijiazhuang, China
| | - Xiaotian Song
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.
- Hebei province Key Laboratory of Immunological mechanism and intervention of serious diseases, Hebei Medical University, Shijiazhuang, China.
| | - Shuxia Song
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.
- Hebei province Key Laboratory of Immunological mechanism and intervention of serious diseases, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
17
|
Chen X, Lin L, Wu Q, Li S, Wang H, Sun Y. Tumor Necrosis Factor- α Promotes the Tumorigenesis, Lymphangiogenesis, and Lymphatic Metastasis in Cervical Cancer via Activating VEGFC-Mediated AKT and ERK Pathways. Mediators Inflamm 2023; 2023:5679966. [PMID: 37124061 PMCID: PMC10147529 DOI: 10.1155/2023/5679966] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/14/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Background Lymphatic metastasis is a common phenomenon of cervical cancer. Tumor necrosis factor-α (TNF-α) was found to be closely associated with lymphatic cancer metastasis. However, the mechanism through which TNF-α regulates lymphatic metastasis in cervical cancer remains unclear. Methods In this study, cervical cancer cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with or without TNF-α for 48 h, and then the corresponding conditional medium (CM-TNF-α or CM) was collected. The level of vascular endothelial growth factor (VEGFC) in the corresponding CM was then detected using an enzyme-linked immunosorbent assay (ELISA). Next, human lymphatic endothelial cells (HLECs) were cultured in CM-TNF-α or CM for 48 h. Cell viability was measured using the cell counting kit-8 (CCK-8) assay, and angiogenesis was detected using a tube formation assay. Subsequently, the expressions of AKT, p-AKT, ERK, and p-ERK in HLECs were detected using western blotting. In addition, to further investigate the effect of TNF-α on the progression of cervical cancer, a C33A subcutaneous xenograft model was established in vivo. Results We found that TNF-α significantly stimulated cervical cancer cells to secrete VEGFC. Additionally, the CM collected from the TNF-α-treated cervical cancer cells notably promoted the proliferation, migration, and angiogenesis of HLECs; however, these changes were reversed by MAZ51, a VEGFR3 inhibitor. Moreover, TNF-α obviously elevated D2-40 and VEGFC protein expressions in tumor tissues, promoting lymphangiogenesis and lymphatic metastasis in vivo. Meanwhile, TNF-α markedly upregulated p-AKT and p-ERK expressions in tumor tissues, whereas these changes were reversed by MAZ51. Conclusion Collectively, TNF-α could promote tumorigenesis, lymphangiogenesis, and lymphatic metastasis in vitro and in vivo in cervical cancer via activating VEGFC-mediated AKT and ERK pathways. These results may provide new directions for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, China
| | - Luping Lin
- Department of Abdominal Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, China
| | - Qiaoling Wu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, China
| | - Sang Li
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, China
| | - Huihui Wang
- Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, China
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, China
| |
Collapse
|
18
|
Saba NF, Steuer CE, Ekpenyong A, McCook-Veal A, Magliocca K, Patel M, Schmitt NC, Stokes W, Bates JE, Rudra S, Remick J, McDonald M, Abousaud M, Tan AC, Fadlullah MZH, Chaudhary R, Muzaffar J, Kirtane K, Liu Y, Chen GZ, Shin DM, Teng Y, Chung CH. Pembrolizumab and cabozantinib in recurrent metastatic head and neck squamous cell carcinoma: a phase 2 trial. Nat Med 2023; 29:880-887. [PMID: 37012550 PMCID: PMC10205145 DOI: 10.1038/s41591-023-02275-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/24/2023] [Indexed: 04/05/2023]
Abstract
Anti-programmed cell death protein 1 (PD-1) therapy is a standard of care in recurrent metastatic head and neck squamous cell carcinoma (RMHNSCC). Vascular endothelial growth factor inhibitors, including tyrosine kinase inhibitors, have immunomodulatory properties and have offered promising results when combined with anti-PD-1 agents. We conducted a phase 2, multicenter, single-arm trial of pembrolizumab and cabozantinib in patients with RMHNSCC who had Response Evaluation Criteria in Solid Tumors v.1.1 measurable disease and no contraindications to either agent. We assessed the primary end points of tolerability and overall response rate to the combination with secondary end points of progression-free survival and overall survival and performed correlative studies with PDL-1 and combined positive score, CD8+ T cell infiltration and tumor mutational burden. A total of 50 patients were screened and 36 were enrolled with 33 evaluable for response. The primary end point was met, with 17 out of 33 patients having a partial response (52%) and 13 (39%) stable disease with an overall clinical benefit rate of 91%. Median and 1-year overall survival were 22.3 months (95% confidence interval (CI) = 11.7-32.9) and 68.4% (95% CI = 45.1%-83.5%), respectively. Median and 1-year progression-free survival were 14.6 months (95% CI = 8.2-19.6) and 54% (95% CI = 31.5%-72%), respectively. Grade 3 or higher treatment-related adverse events included increased aspartate aminotransferase (n = 2, 5.6%). In 16 patients (44.4%), the dose of cabozantinib was reduced to 20 mg daily. The overall response rate correlated positively with baseline CD8+ T cell infiltration. There was no observed correlation between tumor mutational burden and clinical outcome. Pembrolizumab and cabozantinib were well tolerated and showed promising clinical activity in patients with RMHNSCC. Further investigation of similar combinations are needed in RMHNSCC. The trial is registered at ClinicalTrials.gov under registration no. NCT03468218 .
Collapse
Affiliation(s)
- Nabil F Saba
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| | - Conor E Steuer
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Asari Ekpenyong
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Ashley McCook-Veal
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Kelly Magliocca
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Mihir Patel
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Otolaryngology, Emory University, Atlanta, GA, USA
| | - Nicole C Schmitt
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Otolaryngology, Emory University, Atlanta, GA, USA
| | - William Stokes
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - James E Bates
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Soumon Rudra
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Jill Remick
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Mark McDonald
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Marin Abousaud
- Astellas Pharma Global Development Inc., Astellas Pharma, Northbrook, USA
| | - Aik Choon Tan
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Ritu Chaudhary
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jameel Muzaffar
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kedar Kirtane
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Yuan Liu
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Georgia Z Chen
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Christine H Chung
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
19
|
Thomas JA, Gireesh Moly AG, Xavier H, Suboj P, Ladha A, Gupta G, Singh SK, Palit P, Babykutty S. Enhancement of immune surveillance in breast cancer by targeting hypoxic tumor endothelium: Can it be an immunological switch point? Front Oncol 2023; 13:1063051. [PMID: 37056346 PMCID: PMC10088512 DOI: 10.3389/fonc.2023.1063051] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/17/2023] [Indexed: 03/30/2023] Open
Abstract
Breast cancer ranks second among the causes of cancer-related deaths in women. In spite of the recent advances achieved in the diagnosis and treatment of breast cancer, further study is required to overcome the risk of cancer resistance to treatment and thereby improve the prognosis of individuals with advanced-stage breast cancer. The existence of a hypoxic microenvironment is a well-known event in the development of mutagenesis and rapid proliferation of cancer cells. Tumor cells, purposefully cause local hypoxia in order to induce angiogenesis and growth factors that promote tumor growth and metastatic characteristics, while healthy tissue surrounding the tumor suffers damage or mutate. It has been found that these settings with low oxygen levels cause immunosuppression and a lack of immune surveillance by reducing the activation and recruitment of tumor infiltrating leukocytes (TILs). The immune system is further suppressed by hypoxic tumor endothelium through a variety of ways, which creates an immunosuppressive milieu in the tumor microenvironment. Non responsiveness of tumor endothelium to inflammatory signals or endothelial anergy exclude effector T cells from the tumor milieu. Expression of endothelial specific antigens and immunoinhibitory molecules like Programmed death ligand 1,2 (PDL-1, 2) and T cell immunoglobulin and mucin-domain containing-3 (TIM-3) by tumor endothelium adds fuel to the fire by inhibiting T lymphocytes while promoting regulatory T cells. The hypoxic microenvironment in turn recruits Myeloid Derived Suppressor Cells (MDSCs), Tumor Associated Macrophages (TAMs) and T regulatory cells (Treg). The structure and function of newly generated blood vessels within tumors, on the other hand, are aberrant, lacking the specific organization of normal tissue vasculature. Vascular normalisation may work for a variety of tumour types and show to be an advantageous complement to immunotherapy for improving tumour access. By enhancing immune response in the hypoxic tumor microenvironment, via immune-herbal therapeutic and immune-nutraceuticals based approaches that leverage immunological evasion of tumor, will be briefly reviewed in this article. Whether these tactics may be the game changer for emerging immunological switch point to attenuate the breast cancer growth and prevent metastatic cell division, is the key concern of the current study.
Collapse
Affiliation(s)
- Juvin Ann Thomas
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Athira Gireesh Gireesh Moly
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Hima Xavier
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Priya Suboj
- Department of Botany and Biotechnology, St. Xaviers College, Thumba, Thiruvananthapuram, Kerala, India
| | - Amit Ladha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West-Midlands, United Kingdom
| | - Gaurav Gupta
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Partha Palit
- Drug Discovery Research Laboratory, Assam University, Silchar, Department of Pharmaceutical Sciences, Assam, India
| | - Suboj Babykutty
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| |
Collapse
|
20
|
Xie X, Tian L, Zhao Y, Liu F, Dai S, Gu X, Ye Y, Zhou L, Liu X, Sun Y, Zhao X. BACH1-induced ferroptosis drives lymphatic metastasis by repressing the biosynthesis of monounsaturated fatty acids. Cell Death Dis 2023; 14:48. [PMID: 36670112 PMCID: PMC9860034 DOI: 10.1038/s41419-023-05571-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the fatal malignancies worldwide. It has an increased propensity to metastasize via lymphogenous routes in an early stage. The prognosis of patients with lymph node metastases (LNM) is often worse than that of patients without metastases. Although several factors have been found to influence metastasis, the mechanisms of preference for specific metastatic routes remain poorly understood. Herein, we provide evidence that the intrinsic hypersensitivity of tumor cells to ferroptosis may proactively drive lymphatic metastasis. Serum autoantibodies associated with LNM of early ESCC were screened using a whole-proteome protein array containing 19 394 human recombinant proteins, and an anti-BACH1 autoantibody was first identified. Pan-cancer analysis of ferroptosis-related genes with preferential lymphatic metastasis and preferential hematogenous metastasis based on The Cancer Genome Atlas data was performed. Only BACH1 showed significant overexpression in tumors with preferential lymphatic metastasis, whereas it was downregulated in most tumors with preferential nonlymphatic metastasis. In addition, it was found that the serum levels of autoantibodies against BACH1 were elevated in early-stage patients with LNM. Interestingly, BACH1 overexpression and ferroptosis induction promoted LNM but inhibited hematogenous metastasis in mouse models. Transcriptomic and lipidomic analyses found that BACH1 repressed SCD1-mediated biosynthesis of monounsaturated fatty acids, especially oleic acid (OA). OA significantly attenuated the ferroptotic phenotypes and reversed the metastatic properties of BACH1-overexpressing cells. OA addition significantly rescued the ferroptotic phenotypes and reversed the metastatic properties of BACH1-overexpressing cells. Importantly, the concentration gradient of OA between primary lesions and the lymph resulted in the chemoattraction of tumor cells to promote invasion, thus facilitating lymphatic metastasis. BACH1-induced ferroptosis drives lymphatic metastasis via the BACH1-SCD1-OA axis. More importantly, this study confirms that ferroptosis is a double-edged sword in tumorigenesis and tumor progression. The clinical application of ferroptosis-associated agents requires a great caution.
Collapse
Affiliation(s)
- Xiufeng Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Lusong Tian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Yan Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Fang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Shuyang Dai
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Xinglu Gu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Yuxin Ye
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Lanping Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Xinmiao Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Yulin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.
| |
Collapse
|
21
|
Extracellular Vesicles Are Important Mediators That Regulate Tumor Lymph Node Metastasis via the Immune System. Int J Mol Sci 2023; 24:ijms24021362. [PMID: 36674900 PMCID: PMC9865533 DOI: 10.3390/ijms24021362] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Extracellular vesicles (EVs) are particles with a lipid bilayer structure, and they are secreted by various cells in the body. EVs interact with and modulate the biological functions of recipient cells by transporting their cargoes, such as nucleic acids and proteins. EVs influence various biological phenomena, including disease progression. They also participate in tumor progression by stimulating a variety of signaling pathways and regulating immune system activation. EVs induce immune tolerance by suppressing CD8+ T-cell activation or polarizing macrophages toward the M2 phenotype, which results in tumor cell proliferation, migration, invasion, and metastasis. Moreover, immune checkpoint molecules are also expressed on the surface of EVs that are secreted by tumors that express these molecules, allowing tumor cells to not only evade immune cell attack but also acquire resistance to immune checkpoint inhibitors. During tumor metastasis, EVs contribute to microenvironmental changes in distant organs before metastatic lesions appear; thus, EVs establish a premetastatic niche. In particular, lymph nodes are adjacent organs that are connected to tumor lesions via lymph vessels, so that tumor cells metastasize to draining lymph nodes at first, such as sentinel lymph nodes. When EVs influence the microenvironment of lymph nodes, which are secondary lymphoid tissues, the immune response against tumor cells is weakened; subsequently, tumor cells spread throughout the body. In this review, we will discuss the association between EVs and tumor progression via the immune system as well as the clinical application of EVs as biomarkers and therapeutic agents.
Collapse
|
22
|
Zhang Z, Li J, Jiao S, Han G, Zhu J, Liu T. Functional and clinical characteristics of focal adhesion kinases in cancer progression. Front Cell Dev Biol 2022; 10:1040311. [PMID: 36407100 PMCID: PMC9666724 DOI: 10.3389/fcell.2022.1040311] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and an adaptor protein that primarily regulates adhesion signaling and cell migration. FAK promotes cell survival in response to stress. Increasing evidence has shown that at the pathological level, FAK is highly expressed in multiple tumors in several systems (including lung, liver, gastric, and colorectal cancers) and correlates with tumor aggressiveness and patient prognosis. At the molecular level, FAK promotes tumor progression mainly by altering survival signals, invasive capacity, epithelial-mesenchymal transition, the tumor microenvironment, the Warburg effect, and stemness of tumor cells. Many effective drugs have been developed based on the comprehensive role of FAK in tumor cells. In addition, its potential as a tumor marker cannot be ignored. Here, we discuss the pathological and pre-clinical evidence of the role of FAK in cancer development; we hope that these findings will assist in FAK-based clinical studies.
Collapse
Affiliation(s)
- Zhaoyu Zhang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinlong Li
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Guangda Han
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaming Zhu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tianzhou Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
23
|
Gu Z, Yin H, Zhang H, Zhang H, Liu X, Zeng X, Zheng X. Optimization of a method for the clinical detection of serum exosomal miR-940 as a potential biomarker of breast cancer. Front Oncol 2022; 12:956167. [PMID: 36338741 PMCID: PMC9634127 DOI: 10.3389/fonc.2022.956167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/05/2022] [Indexed: 10/20/2023] Open
Abstract
Serum exosomal microRNAs (miRNAs) are potential biomarkers for tumor diagnosis. Clinically, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) can be used to determine the expression of exosomal miRNAs in the serum of breast cancer patients. The prerequisites for obtaining meaningful serum exosomal miRNA data of breast cancer patients include a suitable extraction method for exosomes and RT-qPCR data standardized by internal reference genes. However, the appropriate methods for the extraction of exosomes and the applicability of reference genes for analyzing exosomal miRNAs in breast cancer patients remain to be studied. This study compared the effects of three exosome extraction methods as well as the expression of exosomal miRNA in different initial serum amounts and at different serum states to identify the selection of the best method for serum exosome extraction. Five candidate reference genes including miR-16, miR-484, miR-1228, miR-191 and miR-423 for standardizing serum exosomal miRNAs were screened using five algorithms and were used for the quantification of serum exosomal miR-940. Significant downregulation of serum exosomal miR-940 expression in breast cancer was detected using miR-191 and miR-1228, whereas no significant down or up regulation was observed with miR-484, miR-423 and miR-16. Previous studies have shown that the expression level of miR-940 is downregulated in breast cancer tissues. The absolute quantitative results showed that miR-940 was significantly downregulated in breast cancer serum exosomes, which was consistent with the results from the analysis using miR-191 or miR-1228 as reference genes. Therefore, miR-191 and miR-1228 could serve as reference genes for the relative quantification of serum exosomal miRNAs. This finding indicated the importance of rigorously evaluating the stability of reference genes and standardization for serum exosomal miRNA expression. Moreover, the level of serum exosomal miR-940 in breast cancer could reflect the presence of lymph node metastasis and the status of HER2/neu, which indicates its potential as a biomarker for breast cancer metastasis. In summary, an optimized protocol for the detection of serum exosomal miR-940 as a breast cancer marker was preliminarily established.
Collapse
Affiliation(s)
- Zhiyun Gu
- Department of Oncology Laboratory, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Haojie Yin
- Bioengineering College, Chongqing University, Chongqing, China
| | - Haiwei Zhang
- Department of Oncology Laboratory, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Hui Zhang
- Department of Oncology Laboratory, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaoyu Liu
- Department of Oncology Laboratory, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaohua Zeng
- Department of Oncology Laboratory, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaodong Zheng
- Department of Oncology Laboratory, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
- Medical College of Chongqing University, Chongqing University, Chongqing, China
| |
Collapse
|
24
|
Ding J, Zheng Y, Wang G, Zheng J, Chai D. The performance and perspectives of dendritic cell vaccines modified by immune checkpoint inhibitors or stimulants. Biochim Biophys Acta Rev Cancer 2022; 1877:188763. [PMID: 35872287 DOI: 10.1016/j.bbcan.2022.188763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Therapeutic dendritic cell (DC) vaccines stimulate the elimination of tumor cells by the immune system. However, while antigen-specific T cell responses induced by DC vaccines are commonly observed, the clinical response rate is relatively poor, necessitating vaccine optimization. There is evidence that the suppression of DC function by immune checkpoints hinders the anti-tumor immune responses mediated by DC vaccines, ultimately leading to the immune escape of the tumor cells. The use of immune checkpoint inhibitors (ICIs) and immune checkpoint activators (ICAs) has extended the immunotherapeutic range. It is known that both inhibitory and stimulatory checkpoint molecules are expressed by most DC subsets and can thus be used to manipulate the effectiveness of DC vaccines. Such manipulation has been investigated using strategies such as chemotherapy, agonistic or antagonistic antibodies, siRNA, shRNA, CRISPR-Cas9, soluble antibodies, lentiviruses, and adenoviruses to maximize the efficacy of DC vaccines. Thus, a deeper understanding of immune checkpoints may assist in the development of improved DC vaccines. Here, we review the actions of various ICIs or ICAs shown by preclinical studies, as well as their potential application in DC vaccines. New therapeutic interventional strategies for blocking and stimulating immune checkpoint molecules in DCs are also described in detail.
Collapse
Affiliation(s)
- Jiage Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| |
Collapse
|
25
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Roberts LM, Perez MJ, Balogh KN, Mingledorff G, Cross JV, Munson JM. Myeloid Derived Suppressor Cells Migrate in Response to Flow and Lymphatic Endothelial Cell Interaction in the Breast Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14123008. [PMID: 35740673 PMCID: PMC9221529 DOI: 10.3390/cancers14123008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 12/07/2022] Open
Abstract
At the site of the tumor, myeloid derived suppressor cells (MDSCs) infiltrate and interact with elements of the tumor microenvironment in complex ways. Within the invading tumor, MDSCs are exposed to interstitial fluid flow (IFF) that exists within the chronic inflammatory tumor microenvironment at the tumor-lymphatic interface. As drivers of cell migration and invasion, the link between interstitial fluid flow, lymphatics, and MDSCs have not been clearly established. Here, we hypothesized that interstitial fluid flow and cells within the breast tumor microenvironment modulate migration of MDSCs. We developed a novel 3D model to mimic the breast tumor microenvironment and incorporated MDSCs harvested from 4T1-tumor bearing mice. Using live imaging, we found that sorted GR1+ splenocytes had reduced chemotactic index compared to the unsorted population, but their speed and displacement were similar. Using our adapted tissue culture insert assay, we show that interstitial fluid flow promotes MDSC invasion, regardless of absence or presence of tumor cells. Coordinating with lymphatic endothelial cells, interstitial fluid flow further enhanced invasion of MDSCs in the presence of 4T1 cells. We also show that VEGFR3 inhibition reduced both MDSC and 4T1 flow response. Together, these findings indicate a key role of interstitial fluid flow in MDSC migration as well as describe a tool to explore the immune microenvironment in breast cancer.
Collapse
Affiliation(s)
- LaDeidra Monét Roberts
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA;
| | - Matthew J. Perez
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA;
| | - Kristen N. Balogh
- Department of Pathology, University of Virginia, Charlottesville, VA 22904, USA; (K.N.B.); (J.V.C.)
| | - Garnett Mingledorff
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22904, USA;
| | - Janet V. Cross
- Department of Pathology, University of Virginia, Charlottesville, VA 22904, USA; (K.N.B.); (J.V.C.)
| | - Jennifer M. Munson
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA;
- Correspondence:
| |
Collapse
|
27
|
Hu H, Xiang Y, Li T, Yu QY, Gu LX, Liao XH, Zhang TC. Induction of M‑MDSCs with IL6/GM‑CSF from adherence monocytes and inhibition by WP1066. Exp Ther Med 2022; 24:487. [PMID: 35761803 PMCID: PMC9214597 DOI: 10.3892/etm.2022.11414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022] Open
Abstract
Peripheral blood monocytes acquire the phenotype of myeloid-derived suppressor cells (MDSCs) by induction of cytokine or co-culture with cancer cells and are widely used to model MDSCs for in vitro studies. However, the simplest method of plastic adhesive sorting is poorly described as the purity of monocyte resulting from this method is the lowest compared with flow cytometry cell-sorting and magnetic beads sorting. Therefore, the present study aimed at investigating the effect of the plastic adhesive monocyte isolation techniques on the resulting MDSCs phenotype. Monocytes were allowed to adhere for 1 h and cultured with IL6 and granulocyte-macrophage colony-stimulating factors (GM-CSF) for 7 days. Plastic adhesion sorting resulted in early low monocyte yield and purity, but high purity of MDSCs was obtained by refreshing the induction medium. The resulting MDSCs were the major subpopulation of CD33+CD11b+CD14+CD15-human leukocyte antigen (HLA)-/low cells and provided the potent capacity to suppress T cell proliferation and cytokine IFN-γ production. Moreover, the induced MDSCs were inhibited by STAT3 inhibitor WP1066, resulting in downregulation of phosphorylated-STAT3 and PD-L1 expression and upregulation of apoptosis respectively. In conclusion, the present study described the generation of monocytic MDSCs from adherence monocytes and the inhibition of STAT3 inhibitor WP1066 on the induced MDSCs. The present study contributed to the development of a new clinical drug, WP1066 targeting MDSC.
Collapse
Affiliation(s)
- Hao Hu
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yuan Xiang
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Ting Li
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Qi-Ying Yu
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Li-Xing Gu
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Xing-Hua Liao
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Tong-Cun Zhang
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
28
|
Wang Y, Wang J, Zhu F, Wang H, Yi L, Huang K, Zhai Z. Elevated circulating myeloid-derived suppressor cells associated with poor prognosis in B-cell non-Hodgkin's lymphoma patients. Immun Inflamm Dis 2022; 10:e616. [PMID: 35478441 PMCID: PMC9017625 DOI: 10.1002/iid3.616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction Myeloid‐derived suppressor cells (MDSCs) are a heterogeneous cell population with the ability to suppress immune responses. MDSCs usually cluster in cancer, inflammation, and autoimmune diseases. Although there have been some studies on MDSCs in non‐Hodgkin lymphoma (NHL), the correlation between the peripheral levels of MDSCs in patients with various subtypes of B cell NHL and clinical features and prognosis remains inconclusive. This study aimed at the issue. Methods 101 patients with B cell NHL and 15 age‐matched healthy controls were included in this study. Flow cytometric detection of monocytic‐MDSCs (M‐MDSCs) and granulocytic‐MDSCs (G‐MDSCs) was done. Results In this study, we found that counts of circulating M‐MDSCs and G‐MDSCs were significantly increased in different clinical statuses of B‐NHL patients compared to healthy controls. Similarly, a significant increase in the levels of M‐MDSCs and G‐MDSCs was found among the diverse types of B‐NHL compared with healthy donors. Stratification studies indicated MDSCs expansion was closely associated with disease progression (tumor stage, LDH levels and B syndromes). Moreover, the overall survival time of patients with G‐MDSCs (%) ≥ 98.70% was shorter than patients with G‐MDSCs (%) < 98.70% in newly diagnosed B‐NHL subgroup, meanwhile, there was a significant difference in survival of patients with M‐MDSCs (%) ≥ 7.19% compared to patients with M‐MDSCs (%) < 7.19% in relapsed B‐NHL subgroup. Conclusion Our results suggested that M‐MDSCs and G‐MDSCs may be a potential and efficient index to evaluate the prognosis of B‐NHL patients.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Hematology, Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiyu Wang
- Department of Hematology, Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fengfeng Zhu
- Department of Hematology, Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Huiping Wang
- Department of Hematology, Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liuying Yi
- Department of Hematology, Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Keke Huang
- Department of Hematology, Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhimin Zhai
- Department of Hematology, Second Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
29
|
Li Y, Wang J, Wang H, Zhang S, Wei Y, Liu S. The Interplay Between Inflammation and Stromal Components in Pancreatic Cancer. Front Immunol 2022; 13:850093. [PMID: 35493517 PMCID: PMC9046560 DOI: 10.3389/fimmu.2022.850093] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Inflammation involves interactions between various immune cells, inflammatory cells, chemokines and cytokines in pancreatic cancer. Cancer cells as well as surrounding stromal and inflammatory cells establish an inflammatory tumor microenvironment (TME). Inflammation is closely associated with immunity. Meanwhile, immune cells are involved in both inflammation and immune response. Tumor-promoting inflammation and tumor-suppressive immunity are two main characteristics of the tumor microenvironment in pancreatic cancer. Yet, the mechanism of inflammation and immune response in pancreatic cancer development is still unclear due to the dual role of some cytokines and the complicated crosstalk between tumor and stromal components in TME. In this review, we outline the principal cytokines and stromal cells in the pancreatic TME that are involved in the tumor-promoting and immunosuppressive effects of inflammation, and discuss the interaction between inflammation and stromal components in pancreatic cancer progression. Moreover, the clinical approaches based on targeting TME in pancreatic cancer are also summarized. Defining the mechanisms of interplay between inflammation and stromal components will be essential for further development of anti-cancer therapies.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaoqiang Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingxin Wei
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
30
|
RNF6 promotes the migration and invasion of breast cancer by promoting the ubiquitination and degradation of MST1. Exp Ther Med 2022; 23:118. [PMID: 34970341 PMCID: PMC8713179 DOI: 10.3892/etm.2021.11041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Ring finger protein 6 (RNF6), a member of E3 ubiquitin ligases, plays a potential role as a tumour promoter in numerous carcinomas. However, the role and expression of RNF6 in breast cancer (BC) remains to be elucidated. The present study showed that RNF6 upregulation was detected in BC tissues and was associated with short survival in patients with BC. Multivariate analysis also revealed that RNF6 overexpression is an independent predictor for poor outcome of patients with BC. Furthermore, migration and metastasis assay indicated that RNF6 silencing significantly inhibited the invasion and migration of BC cells in vivo and in vitro, and RNF6 suppression decreased YES-associated protein (YAP) expression. RNF6 promoted the metastatic ability of BC cells via YAP. Mechanistically, RNF6 interacts with mammalian STE20-like protein kinase 1 (MST1), a key factor that regulates YAP, and promoted its ubiquitination and degradation. Additionally, RNF6 regulated YAP signalling by promoting ubiquitination and degradation of MST1 in BC. Taken together, these data may highlight a role of RNF6 in BC, which could serve as a valuable prognostic indicator and potential therapeutic target for patients with BC.
Collapse
|
31
|
The Effect of Terpenoid Natural Chinese Medicine Molecular Compound on Lung Cancer Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3730963. [PMID: 34956377 PMCID: PMC8702311 DOI: 10.1155/2021/3730963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022]
Abstract
Among all malignant tumors in the whole universe, the incidence and mortality of lung cancer disease rank first. Especially in the past few years, the occurrence of lung cancer in the urban population has continued to increase, which seriously threatens the lives and health of people. Among the many treatments for lung cancer, chemotherapy is the best one, but traditional chemotherapy has low specificity and drug resistance. To address the above issue, this study reviews the five biological pathways that common terpenoid compounds in medicinal plants interfere with the occurrence and development of lung cancer: cell proliferation, cell apoptosis, cell autophagy, cell invasion, metastasis, and immune mechanism regulation. In addition, the mechanism of the terpenoid natural traditional Chinese medicine monomer compound combined with Western medicine in the multipathway antilung cancer is summarized.
Collapse
|
32
|
Watson KL, Yi R, Moorehead RA. Transgenic overexpression of the miR-200b/200a/429 cluster inhibits mammary tumor initiation. Transl Oncol 2021; 14:101228. [PMID: 34562686 PMCID: PMC8473771 DOI: 10.1016/j.tranon.2021.101228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
The miR-200 family consists of five members expressed as two clusters: miR-200c/141 cluster and miR-200b/200a/429 cluster. In the mammary gland, miR-200s maintain epithelial identity by decreasing the expression of mesenchymal markers leading to high expression of epithelial markers. While the loss of miR-200s is associated with breast cancer growth and metastasis the impact of miR-200 expression on mammary tumor initiation has not been investigated. Using mammary specific expression of the miR-200b/200a/429 cluster in transgenic mice, we found that elevated expression miR-200s could almost completely prevent mammary tumor development. Only 1 of 16 MTB-IGFIRba429 transgenic mice (expressing both the IGF-IR and miR-200b/200a/429 transgenes) developed a mammary tumor while 100% of MTB-IGFIR transgenic mice (expressing only the IGF-IR transgene) developed mammary tumors. RNA sequencing, qRT-PCR, and immunohistochemistry of mammary tissue from 55-day old mice found Spp1, Saa1, and Saa2 to be elevated in mammary tumors and inhibited by miR-200b/200a/429 overexpression. This study suggests that miR-200s could be used as a preventative strategy to protect women from developing breast cancer. One concern with this approach is the potential negative impact miR-200 overexpression may have on mammary function. However, transgenic overexpression of miR-200s, on their own, did not significantly impact mammary ductal development indicating the miR-200 overexpression should not significantly impact mammary function. Thus, this study provides the initial foundation for using miR-200s for breast cancer prevention and additional studies should be performed to identify strategies for increasing mammary miR-200 expression and determine whether miR-200s can prevent mammary tumor initiation by other genetic alterations.
Collapse
Affiliation(s)
- Katrina L Watson
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Rui Yi
- Department of Pathology, Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Roger A Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
33
|
Hao Z, Li R, Wang Y, Li S, Hong Z, Han Z. Landscape of Myeloid-derived Suppressor Cell in Tumor Immunotherapy. Biomark Res 2021; 9:77. [PMID: 34689842 PMCID: PMC8543853 DOI: 10.1186/s40364-021-00333-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/26/2021] [Indexed: 02/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a group of immature cells that produced by emergency myelopoiesis. Emerging evidences have identified the vital role of MDSC in cancer microenvironment, in which MDSC exerts both immunological and non-immunological activities to assist the progression of cancer. Advances in pre-clinical research have provided us the understanding of MDSC in cancer context from the perspective of molecular mechanism. In clinical scenario, MDSC and its subsets have been discovered to exist in peripheral blood and tumor site of patients from various types of cancers. In this review, we highlight the clinical value of MDSC in predicting prognosis of cancer patients and the responses of immunotherapies, therefore to propose the MDSC-inhibiting strategy in the scenario of cancer immunotherapies. Phenotypes and biological functions of MDSC in cancer microenvironment are comprehensively summarized to provide potential targets of MDSC-inhibiting strategy from the aspect of molecular mechanisms.
Collapse
Affiliation(s)
- Zhaonian Hao
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Ruyuan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Department of Gynecology and Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shuangying Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
34
|
Fujimoto N, Dieterich LC. Mechanisms and Clinical Significance of Tumor Lymphatic Invasion. Cells 2021; 10:cells10102585. [PMID: 34685565 PMCID: PMC8533989 DOI: 10.3390/cells10102585] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 12/17/2022] Open
Abstract
Tumor-associated lymphatic vessels play an important role in tumor progression, mediating lymphatic dissemination of malignant cells to tumor-draining lymph nodes and regulating tumor immunity. An early, necessary step in the lymphatic metastasis cascade is the invasion of lymphatic vessels by tumor cell clusters or single tumor cells. In this review, we discuss our current understanding of the underlying cellular and molecular mechanisms, which include tumor-specific as well as normal, developmental and immunological processes “hijacked” by tumor cells to gain access to the lymphatic system. Furthermore, we summarize the prognostic value of lymphatic invasion, discuss its relationship with local recurrence, lymph node and distant metastasis, and highlight potential therapeutic options and challenges.
Collapse
Affiliation(s)
- Noriki Fujimoto
- Department of Dermatology, Shiga University of Medical Science, Otsu 520-2192, Japan;
| | - Lothar C. Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
35
|
Li J, Wang S, Wang N, Zheng Y, Yang B, Wang X, Zhang J, Pan B, Wang Z. Aiduqing formula inhibits breast cancer metastasis by suppressing TAM/CXCL1-induced Treg differentiation and infiltration. Cell Commun Signal 2021; 19:89. [PMID: 34461944 PMCID: PMC8404313 DOI: 10.1186/s12964-021-00775-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/08/2021] [Indexed: 12/25/2022] Open
Abstract
Background Metastasis represents the leading cause of death in patients with breast cancer. Traditional Chinese medicine is particularly appreciated for metastatic diseases in Asian countries due to its benefits for survival period prolongation and immune balance modulation. However, the underlying molecular mechanisms remain largely unknown. This study aimed to explore the antimetastatic effect and immunomodulatory function of a clinical formula Aiduqing (ADQ). Methods Naive CD4+ T cells, regulatory T cells (Tregs), and CD8+ T cells were sorted by flow cytometry. Then, breast cancer cells and these immune cells were co-cultured in vitro or co-injected into mice in vivo to simulate their coexistence. Flow cytometry, ELISA, qPCR, double luciferase reporter gene assay, and chromatin immunoprecipitation assay were conducted to investigate the immunomodulatory and antimetastatic mechanisms of ADQ. Results ADQ treatment by oral gavage significantly suppressed 4T1-Luc xenograft growth and lung metastasis in the orthotopic breast cancer mouse model, without noticeable hepatotoxicity, nephrotoxicity, or hematotoxicity. Meanwhile, ADQ remodeled the immunosuppressive tumor microenvironment (TME) by increasing the infiltration of tumor-infiltrating lymphocytes (TILs) and cytotoxic CD8+ T cells, and decreasing the infiltration of Tregs, naive CD4+ T cells, and tumor-associated macrophages (TAMs). Molecular mechanism studies revealed that ADQ remarkably inhibited CXCL1 expression and secretion from TAMs and thus suppressed the chemotaxis and differentiation of naive CD4+ T cells into Tregs, leading to the enhanced cytotoxic effects of CD8+ T cells. Mechanistically, TAM-derived CXCL1 promoted the differentiation of naive CD4+ T cells into Tregs by transcriptionally activating the NF-κB/FOXP3 signaling. Lastly, mouse 4T1-Luc xenograft experiments validated that ADQ formula inhibited breast cancer immune escape and lung metastasis by suppressing the TAM/CXCL1/Treg pathway. Conclusions This study not only provides preclinical evidence supporting the application of ADQ in inhibiting breast cancer metastasis but also sheds novel insights into TAM/CXCL1/NF-κB/FOXP3 signaling as a promising therapeutic target for Treg modulation and breast cancer immunotherapy.![]() Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00775-2.
Collapse
Affiliation(s)
- Jing Li
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research On Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shengqi Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research On Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China.,Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Neng Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yifeng Zheng
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research On Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bowen Yang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research On Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuan Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research On Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Juping Zhang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research On Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bo Pan
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research On Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiyu Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Clinical Research On Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China. .,Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China. .,The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China. .,State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
36
|
Gillot L, Baudin L, Rouaud L, Kridelka F, Noël A. The pre-metastatic niche in lymph nodes: formation and characteristics. Cell Mol Life Sci 2021; 78:5987-6002. [PMID: 34241649 PMCID: PMC8316194 DOI: 10.1007/s00018-021-03873-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/10/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023]
Abstract
Lymph node metastasis is a crucial prognostic parameter in many different types of cancers and a gateway for further dissemination to distant organs. Prior to metastatic dissemination, the primary tumor prepares for the remodeling of the draining (sentinel) lymph node by secreting soluble factors or releasing extracellular vesicles that are transported by lymphatic vessels. These important changes occur before the appearance of the first metastatic cell and create what is known as a pre-metastatic niche giving rise to the subsequent survival and growth of metastatic cells. In this review, the lymph node structure, matrix composition and the emerging heterogeneity of cells forming it are described. Current knowledge of the major cellular and molecular processes associated with nodal pre-metastatic niche formation, including lymphangiogenesis, extracellular matrix remodeling, and immunosuppressive cell enlisting in lymph nodes are additionally summarized. Finally, future directions that research could possibly take and the clinical impact are discussed.
Collapse
Affiliation(s)
- Lionel Gillot
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, Avenue Hippocrate 13, 4000 Liege, Belgium
| | - Louis Baudin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, Avenue Hippocrate 13, 4000 Liege, Belgium
| | - Loïc Rouaud
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, Avenue Hippocrate 13, 4000 Liege, Belgium
| | - Frédéric Kridelka
- Department of Obstetrics and Gynecology, CHU of Liege, 4000 Liege, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, Avenue Hippocrate 13, 4000 Liege, Belgium
| |
Collapse
|
37
|
Erin N, Tavşan E, Akdeniz Ö, Isca VMS, Rijo P. Rebound increases in chemokines by CXCR2 antagonist in breast cancer can be prevented by PKCδ and PKCε activators. Cytokine 2021; 142:155498. [PMID: 33773907 DOI: 10.1016/j.cyto.2021.155498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Activation of CXCR2 by chemokines such as CXCL1 and CXCL2 increases aggressiveness of breast cancer, inducing chemoresistance, hence CXCR2 antagonists are in clinical trials. We previously reported that inhibition of CXCR2 increases MIP-2 (CXCL2), which may inhibit anti-tumoral effects of CXCR2 antagonists. This seems to be due to inhibition of protein kinase C (PKC) by CXCR2 antagonist since specific inhibitor of PKC also enhances MIP-2 secretion. We here examined whether CXCR2 inhibitor also increases KC (CXCL1) secretion, ligand for CXCR2 involved in metastasis and PKC activators can prevent increases in chemokine secretion. We used SB 225002, which is a specific CXCR2 antagonist. The effects of PKC activators that have documented anti-tumoral effects and activates multiple isozymes of PKC such as Ingenol-3-angelate (I3A) and bryostatin-1 were examined here. In addition, FR236924, PKCε selective and 7α-acetoxy-6β-benzoyloxy-12-O-benzoylroyleanone (Roy-Bz), PKCδ selective activators were also tested. The effects of activators were determined using brain metastatic (4TBM) and heart metastatic (4THM) subset of 4T1 breast carcinoma cells because these aggressive carcinoma cells with cancer stem cell features secrete high levels of KC and MIP-2. Inhibition of CXCR-2 activity increased KC (CXCL1) secretion. PKC activators prevented SB225002-induced increases in KC and MIP-2 secretion. Different activators/modulators induce differential changes in basal and SB225002-induced chemokine secretion as well as cell proliferation and the activators that act on PKCδ and/or PKCε such as bryostatin 1, FR236924 and Roy-Bz are the most effective. These activators alone also decrease cell proliferation or chemokine secretion or both. Given the role of KC and MIP-2 in drug resistance including chemotherapeutics, activators of PKCε and PKCδ may prevent emerging of resistance to CXCR2 inhibitors as well as other chemotherapeutics.
Collapse
Affiliation(s)
- Nuray Erin
- Akdeniz University, Faculty of Medicine, Department of Medical Pharmacology, Antalya, Turkey; Immunopharmacology and Immunooncology Unit, Antalya, Turkey.
| | - Esra Tavşan
- Akdeniz University, Faculty of Medicine, Department of Medical Pharmacology, Antalya, Turkey; Immunopharmacology and Immunooncology Unit, Antalya, Turkey
| | - Özlem Akdeniz
- Akdeniz University, Faculty of Medicine, Department of Medical Pharmacology, Antalya, Turkey
| | - Vera M S Isca
- CBIOS-Center for Research in Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Patricia Rijo
- CBIOS-Center for Research in Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
38
|
Jana S, Muscarella RA, Jones D. The Multifaceted Effects of Breast Cancer on Tumor-Draining Lymph Nodes. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1353-1363. [PMID: 34043978 DOI: 10.1016/j.ajpath.2021.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer (BC) accounts for significant morbidity and mortality among women worldwide. About one in three patients with breast cancer present with lymph node (LN) metastasis and LN status is one of the most important prognostic predictors in patients with BC. In addition to their prognostic value, LNs initiate adaptive immunity against BC. Yet, BC cells often avoid immune-mediated destruction in LNs. This review provides an overview of the ways by which BC cells modulate LN stromal and hematopoietic cells to promote metastasis and immune evasion.
Collapse
Affiliation(s)
- Samir Jana
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Ronald A Muscarella
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Dennis Jones
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
39
|
Liu Z, Zhang D, Liu C, Li G, Chen H, Ling H, Zhang F, Huang D, Wang X, Liu Y, Zhang X. Comprehensive Analysis of Myeloid Signature Genes in Head and Neck Squamous Cell Carcinoma to Predict the Prognosis and Immune Infiltration. Front Immunol 2021; 12:659184. [PMID: 33995379 PMCID: PMC8116959 DOI: 10.3389/fimmu.2021.659184] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
Myeloid cells are a major heterogeneous cell population in the tumor immune microenvironment (TIME). Imbalance of myeloid response remains a major obstacle to a favorable prognosis and successful immune therapy. Therefore, we aimed to construct a risk model to evaluate the myeloid contexture, which may facilitate the prediction of prognosis and immune infiltration in patients with head and neck squamous cell carcinoma (HNSCC). In our study, six myeloid signature genes (including CCL13, CCR7, CD276, IL1B, LYVE1 and VEGFC) analyzed from 52 differentially expressed myeloid signature genes were finally pooled to establish a prognostic risk model, termed as myeloid gene score (MGS) in a training cohort and validated in a test cohort and an independent external cohort. Furthermore, based on the MGS subgroups, we were able to effectively identify patients with a poor prognosis, aggressive clinical parameters, immune cell infiltration status and immunotherapy response. Thus, MGS may serve as an effective prognostic signature and predictive indicator for immunotherapy response in patients with HNSCC.
Collapse
Affiliation(s)
- Zhifeng Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Hospital, Changsha, China.,Department of Otorhinolaryngology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Diekuo Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Hospital, Changsha, China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Hospital, Changsha, China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Hospital, Changsha, China
| | - Huihong Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Hospital, Changsha, China
| | - Hang Ling
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Hospital, Changsha, China
| | - Fengyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Hospital, Changsha, China
| | - Donghai Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Hospital, Changsha, China
| | - Xingwei Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Hospital, Changsha, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Hospital, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| |
Collapse
|
40
|
Molehin D, Rasha F, Rahman RL, Pruitt K. Regulation of aromatase in cancer. Mol Cell Biochem 2021; 476:2449-2464. [PMID: 33599895 DOI: 10.1007/s11010-021-04099-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
The regulation of aromatase, an enzyme involved in the biosynthesis of estrogen in normal and cancer cells, has been associated with growth factor signaling and immune response modulation. The tissue-specific regulatory roles of these factors are of particular importance as local aromatase expression is strongly linked to cancer development/progression and disease outcomes in patients. Therefore, aromatase has become a chemotherapeutic target and aromatase inhibitors (AIs) are used in the clinic for treating hormone-dependent cancers. Although AIs have shown promising results in the treatment of cancers, the emerging increase in AI-resistance necessitates the development of new and improved targeted therapies. This review discusses the role of tumor and stromal-derived growth factors and immune cell modulators in regulating aromatase. Current single-agent and combination therapies with or without AIs targeting growth factors and immune checkpoints are also discussed. This review highlights recent studies that show new connections between growth factors, mediators of immune response, and aromatase regulation.
Collapse
Affiliation(s)
- Deborah Molehin
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Fahmida Rasha
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Kevin Pruitt
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA. .,Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430-6591, USA.
| |
Collapse
|
41
|
Groth C, Arpinati L, Shaul ME, Winkler N, Diester K, Gengenbacher N, Weber R, Arkhypov I, Lasser S, Petrova V, Augustin HG, Altevogt P, Utikal J, Fridlender ZG, Umansky V. Blocking Migration of Polymorphonuclear Myeloid-Derived Suppressor Cells Inhibits Mouse Melanoma Progression. Cancers (Basel) 2021; 13:cancers13040726. [PMID: 33578808 PMCID: PMC7916588 DOI: 10.3390/cancers13040726] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Myeloid-derived suppressor cells (MDSC) represent a heterogeneous myeloid cell population that is expanded in tumor bearing hosts and substantially contributes to immunosuppression, representing thereby a valuable therapeutic target. Our study analyzes polymorphonuclear (PMN) and monocytic (M) MDSC subsets regarding their immunosuppressive capacity and recruitment mechanisms in murine melanoma. The immunosuppressive activity of both subsets was comparable. We identified the C-X-C Motif Chemokine Receptor (CXCR) 2/chemokine C-X-C motif ligand (CXCL) 1 axis as an important mediator of PMN-MDSC recruitment. Inhibition of CXCR2 resulted in a decreased infiltration of tumors with PMN-MDSC and increased survival of melanoma bearing mice. Furthermore, adjuvant treatment of mice with resected tumors reduced the infiltration of pre-metastatic sites with PMN-MDSC and the occurrence of distant metastasis. The decrease in PMN-MDSC infiltration was accompanied by an increase in natural killer (NK) cell frequency, suggesting an important role of PMN-MDSC in suppressing the NK cell-mediated anti-tumor response. Abstract Background: Despite recent improvement in the treatment of malignant melanoma by immune-checkpoint inhibitors, the disease can progress due to an immunosuppressive tumor microenvironment (TME) mainly represented by myeloid-derived suppressor cells (MDSC). However, the relative contribution of the polymorphonuclear (PMN) and monocytic (M) MDSC subsets to melanoma progression is not clear. Here, we compared both subsets regarding their immunosuppressive capacity and recruitment mechanisms. Furthermore, we inhibited PMN-MDSC migration in vivo to determine its effect on tumor progression. Methods: Using the RET transgenic melanoma mouse model, we investigated the immunosuppressive function of MDSC subsets and chemokine receptor expression on these cells. The effect of CXCR2 inhibition on PMN-MDSC migration and tumor progression was studied in RET transgenic mice and in C57BL/6 mice after surgical resection of primary melanomas. Results: Immunosuppressive capacity of intratumoral M- and PMN-MDSC was comparable in melanoma bearing mice. Anti-CXCR2 therapy prolonged survival of these mice and decreased the occurrence of distant metastasis. Furthermore, this therapy reduced the infiltration of melanoma lesions and pre-metastatic sites with PMN-MDSC that was associated with the accumulation of natural killer (NK) cells. Conclusions: We provide evidence for the tumor−promoting properties of PMN-MDSC as well as for the anti-tumor effects upon their targeting in melanoma bearing mice.
Collapse
Affiliation(s)
- Christopher Groth
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, 69120 Heidelberg, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Ludovica Arpinati
- Institute of Pulmonary Medicine, Hebrew University Hadassah Medical Center, POB 12000, Jerusalem 9112001, Israel; (L.A.); (M.E.S.); (Z.G.F.)
| | - Merav E. Shaul
- Institute of Pulmonary Medicine, Hebrew University Hadassah Medical Center, POB 12000, Jerusalem 9112001, Israel; (L.A.); (M.E.S.); (Z.G.F.)
| | - Nina Winkler
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, 69120 Heidelberg, Germany
| | - Klara Diester
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, 69120 Heidelberg, Germany
| | - Nicolas Gengenbacher
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.G.); (H.G.A.)
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rebekka Weber
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Ihor Arkhypov
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Samantha Lasser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, 69120 Heidelberg, Germany
| | - Vera Petrova
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Hellmut G. Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.G.); (H.G.A.)
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Zvi G. Fridlender
- Institute of Pulmonary Medicine, Hebrew University Hadassah Medical Center, POB 12000, Jerusalem 9112001, Israel; (L.A.); (M.E.S.); (Z.G.F.)
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.G.); (N.W.); (K.D.); (R.W.); (I.A.); (S.L.); (V.P.); (P.A.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Correspondence: ; Tel.: +49-621-3833773
| |
Collapse
|
42
|
Lahmar Q, Schouppe E, Morias Y, Van Overmeire E, De Baetselier P, Movahedi K, Laoui D, Sarukhan A, Van Ginderachter JA. Monocytic myeloid-derived suppressor cells home to tumor-draining lymph nodes via CCR2 and locally modulate the immune response. Cell Immunol 2021; 362:104296. [PMID: 33556903 DOI: 10.1016/j.cellimm.2021.104296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
Efficient priming of anti-tumor T cells requires the uptake and presentation of tumor antigens by immunogenic dendritic cells (DCs) and occurs mainly in lymph nodes draining the tumor (tdLNs). However, tumors expand and activate myeloid-derived suppressor cells (MDSCs) that inhibit CTL functions by several mechanisms. While the immune-suppressive nature of the tumor microenvironment is largely documented, it is not known whether similar immune-suppressive mechanisms operate in the tdLNs. In this study, we analyzed MDSC characteristics within tdLNs. We show that, in a metastasis-free context, MO-MDSCs are the dominant MDSC population within tdLNs, that they are highly suppressive and that tumor proximity enhances their recruitment to tdLN via a CCR2/CCL2-dependent pathway. Altogether our results uncover a mechanism by which tumors evade the immune system that involves MDSC-mediated recruitment to the tdLN and the inhibition of T-cell activation even before reaching the highly immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Qods Lahmar
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elio Schouppe
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick Morias
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva Van Overmeire
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Patrick De Baetselier
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kiavash Movahedi
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Adelaida Sarukhan
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; INSERM, 101 rue Tolbiac, Paris 75013, France
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
43
|
Lugo-Cintrón KM, Ayuso JM, White BR, Harari PM, Ponik S, Beebe DJ, Gong MM, Virumbrales-Muñoz M. Matrix density drives 3D organotypic lymphatic vessel activation in a microfluidic model of the breast tumor microenvironment. LAB ON A CHIP 2020; 20:1586-1600. [PMID: 32297896 PMCID: PMC7330815 DOI: 10.1039/d0lc00099j] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Lymphatic vessels (LVs) have been suggested as a preferential conduit for metastatic progression in breast cancer, where a correlation between the occurrence of lymph node metastasis and an increased extracellular matrix (ECM) density has been reported. However, the effect of ECM density on LV function is largely unknown. To better understand these effects, we used a microfluidic device to recreate tubular LVs in a collagen type I matrix. The density of the matrix was tailored to mimic normal breast tissue using a low-density collagen (LD-3 mg mL-1) and cancerous breast tissue using a high-density collagen (HD-6 mg mL-1). We investigated the effect of ECM density on LV morphology, growth, cytokine secretion, and barrier function. LVs cultured in HD matrices showed morphological changes as compared to LVs cultured in a LD matrix. Specifically, LVs cultured in HD matrices had a 3-fold higher secretion of the pro-inflammatory cytokine, IL-6, and a leakier phenotype, suggesting LVs acquired characteristics of activated vessels. Interestingly, LV leakiness was mitigated by blocking the IL-6 receptor on the lymphatic ECs, maintaining endothelium permeability at similar levels of LV cultured in a LD matrix. To recreate a more in vivo microenvironment, we incorporated metastatic breast cancer cells (MDA-MB-231) into the LD and HD matrices. For HD matrices, co-culture with MDA-MB-231 cells exacerbated vessel leakiness and secretion of IL-6. In summary, our data suggest that (1) ECM density is an important microenvironmental cue that affects LV function in the breast tumor microenvironment (TME), (2) dense matrices condition LVs towards an activated phenotype and (3) blockade of IL-6 signaling may be a potential therapeutic target to mitigate LV dysfunction. Overall, modeling LVs and their interactions with the TME can help identify novel therapeutic targets and, in turn, advance therapeutic discovery.
Collapse
Affiliation(s)
- Karina M. Lugo-Cintrón
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - José M. Ayuso
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Bridget R. White
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Suzanne Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Max M. Gong
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Biomedical Engineering, Trine University, Angola, IN, USA
| | - María Virumbrales-Muñoz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|