1
|
Ning Q, Zhang X, Liu J, Li Z. CD3/PD-L1 bispecific aptamer enhances immune cytotoxicity against PD-L1 positive anaplastic thyroid cancer cells. Asian J Surg 2024; 47:4144-4146. [PMID: 38763821 DOI: 10.1016/j.asjsur.2024.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Affiliation(s)
- Qingyang Ning
- Division of Thyroid Surgery, Department of General Surgery, Laboratory of Thyroid and Parathyroid Diseases, Frontiers Science Center for Disease-Related Molecular Network, Department of Respiratory and Critical Care Medicine, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xinyue Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Jiaye Liu
- Division of Thyroid Surgery, Department of General Surgery, Laboratory of Thyroid and Parathyroid Diseases, Frontiers Science Center for Disease-Related Molecular Network, Department of Respiratory and Critical Care Medicine, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery, Laboratory of Thyroid and Parathyroid Diseases, Frontiers Science Center for Disease-Related Molecular Network, Department of Respiratory and Critical Care Medicine, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Camorani S, Caliendo A, Morrone E, Agnello L, Martini M, Cantile M, Cerrone M, Zannetti A, La Deda M, Fedele M, Ricciardi L, Cerchia L. Bispecific aptamer-decorated and light-triggered nanoparticles targeting tumor and stromal cells in breast cancer derived organoids: implications for precision phototherapies. J Exp Clin Cancer Res 2024; 43:92. [PMID: 38532439 PMCID: PMC10964525 DOI: 10.1186/s13046-024-03014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Based on the established role of cancer-stroma cross-talk in tumor growth, progression and chemoresistance, targeting interactions between tumor cells and their stroma provides new therapeutic approaches. Dual-targeted nanotherapeutics selectively acting on both tumor and stromal cells may overcome the limits of tumor cell-targeting single-ligand nanomedicine due to the complexity of the tumor microenvironment. METHODS Gold-core/silica-shell nanoparticles embedding a water-soluble iridium(III) complex as photosensitizer and luminescent probe (Iren-AuSiO2_COOH) were efficiently decorated with amino-terminated EGFR (CL4) and PDGFRβ (Gint4.T) aptamers (Iren-AuSiO2_Aptamer). The targeting specificity, and the synergistic photodynamic and photothermal effects of either single- and dual-aptamer-decorated nanoparticles have been assessed by confocal microscopy and cell viability assays, respectively, on different human cell types including mesenchymal subtype triple-negative breast cancer (MES-TNBC) MDA-MB-231 and BT-549 cell lines (both EGFR and PDGFRβ positive), luminal/HER2-positive breast cancer BT-474 and epidermoid carcinoma A431 cells (only EGFR positive) and adipose-derived mesenchymal stromal/stem cells (MSCs) (only PDGFRβ positive). Cells lacking expression of both receptors were used as negative controls. To take into account the tumor-stroma interplay, fluorescence imaging and cytotoxicity were evaluated in preclinical three-dimensional (3D) stroma-rich breast cancer models. RESULTS We show efficient capability of Iren-AuSiO2_Aptamer nanoplatforms to selectively enter into target cells, and kill them, through EGFR and/or PDGFRβ recognition. Importantly, by targeting EGFR+ tumor/PDGFRβ+ stromal cells in the entire tumor bulk, the dual-aptamer-engineered nanoparticles resulted more effective than unconjugated or single-aptamer-conjugated nanoparticles in either 3D spheroids cocultures of tumor cells and MSCs, and in breast cancer organoids derived from pathologically and molecularly well-characterized tumors. CONCLUSIONS Our study proposes smart, novel and safe multifunctional nanoplatforms simultaneously addressing cancer-stroma within the tumor microenvironment, which are: (i) actively delivered to the targeted cells through highly specific aptamers; (ii) localized by means of their luminescence, and (iii) activated via minimally invasive light, launching efficient tumor death, thus providing innovative precision therapeutics. Given the unique features, the proposed dual targeted nanoformulations may open a new door to precision cancer treatment.
Collapse
Affiliation(s)
- Simona Camorani
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Alessandra Caliendo
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Elena Morrone
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, Rende, CS, Italy
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende, CS, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Lisa Agnello
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Matteo Martini
- Institute of Light and Matter, UMR 5306, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Monica Cantile
- Institutional Biobank-Scientific Directorate, National Cancer Institute INT-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Margherita Cerrone
- Pathology Unit, National Cancer Institute INT-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, 80145, Naples, Italy
| | - Massimo La Deda
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, Rende, CS, Italy
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende, CS, Italy
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Loredana Ricciardi
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, Rende, CS, Italy.
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy.
| |
Collapse
|
3
|
Salimi A, Jang JH, Lee JY. Leveraging attention-enhanced variational autoencoders: Novel approach for investigating latent space of aptamer sequences. Int J Biol Macromol 2024; 255:127884. [PMID: 37926303 DOI: 10.1016/j.ijbiomac.2023.127884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Aptamers are increasingly recognized as potent alternatives to antibodies for diagnostic and therapeutic applications. The application of deep learning, particularly attention-based models, for aptamer (DNA/RNA) sequences is an innovative field. The ongoing advancements in aptamer sequencing technologies coupled with machine learning algorithms have resulted in novel developments. Further research is required to investigate the full potential of deep learning models and address the challenges associated with the generation of sequences, like the large search space of possible sequences. In this study, we propose a workflow that integrates an attention mechanism within a framework of a generative variational autoencoder, to generate novel sequences by expanding latent memory. They show 100 % novelty compared with the dataset, and approximately 88 % of them show negative values for the minimum free energy, which may indicate the likelihood of an RNA sequence folding into a functional structure. Because the field of aptamer discovery is affected by data scarcity, advanced strategies that facilitate the generation of diverse and superior sequences are necessitated. The utilization of our workflow can result in novel aptamers. Thus, investigations such as the present study can address the abovementioned challenge. Our research is anticipated to facilitate further discoveries and advancements in aptamer fields.
Collapse
Affiliation(s)
- Abbas Salimi
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jee Hwan Jang
- School of Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Ucaretron Inc., No. 3508, 40, Simin-daero 365 beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Republic of Korea.
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
4
|
Tripodi L, Feola S, Granata I, Whalley T, Passariello M, Capasso C, Coluccino L, Vitale M, Scalia G, Gentile L, De Lorenzo C, Guarracino MR, Castaldo G, D’Argenio V, Szomolay B, Cerullo V, Pastore L. Bifidobacterium affects antitumor efficacy of oncolytic adenovirus in a mouse model of melanoma. iScience 2023; 26:107668. [PMID: 37720092 PMCID: PMC10502363 DOI: 10.1016/j.isci.2023.107668] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Gut microbiota plays a key role in modulating responses to cancer immunotherapy in melanoma patients. Oncolytic viruses (OVs) represent emerging tools in cancer therapy, inducing a potent immunogenic cancer cell death (ICD) and recruiting immune cells in tumors, poorly infiltrated by T cells. We investigated whether the antitumoral activity of oncolytic adenovirus Ad5D24-CpG (Ad-CpG) was gut microbiota-mediated in a syngeneic mouse model of melanoma and observed that ICD was weakened by vancomycin-mediated perturbation of gut microbiota. Ad-CpG efficacy was increased by oral supplementation with Bifidobacterium, reducing melanoma progression and tumor-infiltrating regulatory T cells. Fecal microbiota was enriched in bacterial species belonging to the Firmicutes phylum in mice treated with both Bifidobacterium and Ad-CpG; furthermore, our data suggest that molecular mimicry between melanoma and Bifidobacterium-derived epitopes may favor activation of cross-reactive T cells and constitutes one of the mechanisms by which gut microbiota modulates OVs response.
Collapse
Affiliation(s)
- Lorella Tripodi
- CEINGE Biotecnologie Avanzate Franco Salvatore s.c.a.r.l, Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Sara Feola
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
| | - Ilaria Granata
- Institute for High-Performance Computing and Networking National Research Council Branch of Naples, 509066 Naples, Naples, Italy
| | - Thomas Whalley
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Margherita Passariello
- CEINGE Biotecnologie Avanzate Franco Salvatore s.c.a.r.l, Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Cristian Capasso
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
| | - Ludovica Coluccino
- CEINGE Biotecnologie Avanzate Franco Salvatore s.c.a.r.l, Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Maria Vitale
- CEINGE Biotecnologie Avanzate Franco Salvatore s.c.a.r.l, Napoli, Italy
| | - Giulia Scalia
- CEINGE Biotecnologie Avanzate Franco Salvatore s.c.a.r.l, Napoli, Italy
| | - Laura Gentile
- CEINGE Biotecnologie Avanzate Franco Salvatore s.c.a.r.l, Napoli, Italy
| | - Claudia De Lorenzo
- CEINGE Biotecnologie Avanzate Franco Salvatore s.c.a.r.l, Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Mario Rosario Guarracino
- University of Cassino and Southern Lazio Department of Economics and Law, 154984 Cassino, Frosinone, Italy
| | - Giuseppe Castaldo
- CEINGE Biotecnologie Avanzate Franco Salvatore s.c.a.r.l, Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Valeria D’Argenio
- CEINGE Biotecnologie Avanzate Franco Salvatore s.c.a.r.l, Napoli, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Rome, Italy
| | - Barbara Szomolay
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, UK
| | - Vincenzo Cerullo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
| | - Lucio Pastore
- CEINGE Biotecnologie Avanzate Franco Salvatore s.c.a.r.l, Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
5
|
Agnello L, d’Argenio A, Caliendo A, Nilo R, Zannetti A, Fedele M, Camorani S, Cerchia L. Tissue Inhibitor of Metalloproteinases-1 Overexpression Mediates Chemoresistance in Triple-Negative Breast Cancer Cells. Cells 2023; 12:1809. [PMID: 37443843 PMCID: PMC10340747 DOI: 10.3390/cells12131809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is among the most aggressive breast cancer subtypes. Despite being initially responsive to chemotherapy, patients develop drug-resistant and metastatic tumors. Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a secreted protein with a tumor suppressor function due to its anti-proteolytic activity. Nevertheless, evidence indicates that TIMP-1 binds to the CD63 receptor and activates noncanonical oncogenic signaling in several cancers, but its role in mediating TNBC chemoresistance is still largely unexplored. Here, we show that mesenchymal-like TNBC cells express TIMP-1, whose levels are further increased in cells generated to be resistant to cisplatin (Cis-Pt-R) and doxorubicin (Dox-R). Moreover, public dataset analyses indicate that high TIMP-1 levels are associated with a worse prognosis in TNBC subjected to chemotherapy. Knock-down of TIMP-1 in both Cis-Pt-R and Dox-R cells reverses their resistance by inhibiting AKT activation. Consistently, TNBC cells exposed to recombinant TIMP-1 or TIMP-1-enriched media from chemoresistant cells, acquire resistance to both cisplatin and doxorubicin. Importantly, released TIMP-1 reassociates with plasma membrane by binding to CD63 and, in the absence of CD63 expression, TIMP-1-mediated chemoresistance is blocked. Thus, our results identify TIMP-1 as a new biomarker of TNBC chemoresistance and lay the groundwork for evaluating whether blockade of TIMP-1 signal is a viable treatment strategy.
Collapse
Affiliation(s)
- Lisa Agnello
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| | - Annachiara d’Argenio
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| | - Alessandra Caliendo
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| | - Roberto Nilo
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council (CNR), 80145 Naples, Italy;
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| |
Collapse
|
6
|
Ai L, Jiang X, Zhang K, Cui C, Liu B, Tan W. Tools and techniques for the discovery of therapeutic aptamers: recent advances. Expert Opin Drug Discov 2023; 18:1393-1411. [PMID: 37840268 DOI: 10.1080/17460441.2023.2264187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION The pursuit of novel therapeutic agents for serious diseases such as cancer has been a global endeavor. Aptamers characteristic of high affinity, programmability, low immunogenicity, and rapid permeability hold great promise for the treatment of diseases. Yet obtaining the approval for therapeutic aptamers remains challenging. Consequently, researchers are increasingly devoted to exploring innovative strategies and technologies to advance the development of these therapeutic aptamers. AREAS COVERED The authors provide a comprehensive summary of the recent progress of the SELEX (Systematic Evolution of Ligands by EXponential enrichment) technique, and how the integration of modern tools has facilitated the identification of therapeutic aptamers. Additionally, the engineering of aptamers to enhance their functional attributes, such as inhibiting and targeting, is discussed, demonstrating the potential to broaden their scope of utility. EXPERT OPINION The grand potential of aptamers and the insufficient development of relevant drugs have spurred countless efforts for stimulating their discovery and application in the therapeutic field. While SELEX techniques have undergone significant developments with the aid of advanced analysis instruments and ingeniously updated aptameric engineering strategies, several challenges still impede their clinical translation. A key challenge lies in the insufficient understanding of binding conformation and susceptibility to degradation under physiological conditions. Despite the hurdles, our opinion is optimistic. With continued progress in overcoming these obstacles, the widespread utilization of aptamers for clinical therapy is envisioned to become a reality soon.
Collapse
Affiliation(s)
- Lili Ai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, The People's Republic of China
| | - Xinyi Jiang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, The People's Republic of China
| | - Kejing Zhang
- Department of Geriatrics and Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, The People's Republic of China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, The People's Republic of China
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, The People's Republic of China
| | - Bo Liu
- Department of Geriatrics and Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, The People's Republic of China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, The People's Republic of China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, The People's Republic of China
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, The People's Republic of China
| |
Collapse
|
7
|
Passariello M, Esposito S, Manna L, Rapuano Lembo R, Zollo I, Sasso E, Amato F, De Lorenzo C. Comparative Analysis of a Human Neutralizing mAb Specific for SARS-CoV-2 Spike-RBD with Cilgavimab and Tixagevimab for the Efficacy on the Omicron Variant in Neutralizing and Detection Assays. Int J Mol Sci 2023; 24:10053. [PMID: 37373201 DOI: 10.3390/ijms241210053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
The recent pandemic years have prompted the scientific community to increasingly search for and adopt new and more efficient therapeutic and diagnostic approaches to deal with a new infection. In addition to the development of vaccines, which has played a leading role in fighting the pandemic, the development of monoclonal antibodies has also represented a valid approach in the prevention and treatment of many cases of CoronaVirus Disease 2019 (COVID-19). Recently, we reported the development of a human antibody, named D3, showing neutralizing activity against different SARS-CoV-2 variants, wild-type, UK, Delta and Gamma variants. Here, we have further characterized with different methods D3's ability to bind the Omicron-derived recombinant RBD by comparing it with the antibodies Cilgavimab and Tixagevimab, recently approved for prophylactic use of COVID-19. We demonstrate here that D3 binds to a distinct epitope from that recognized by Cilgavimab and shows a different binding kinetic behavior. Furthermore, we report that the ability of D3 to bind the recombinant Omicron RBD domain in vitro results in a good ability to also neutralize Omicron-pseudotyped virus infection in ACE2-expressing cell cultures. We point out here that D3 mAb maintains a good ability to recognize both the wild-type and Omicron Spike proteins, either when used as recombinant purified proteins or when expressed on pseudoviral particles despite the different variants, making it particularly useful both from a therapeutic and diagnostic point of view. On the basis of these results, we propose to exploit this mAb for combinatorial treatments with other neutralizing mAbs to increase their therapeutic efficacy and for diagnostic use to measure the viral load in biological samples in the current and future pandemic waves of coronaviruses.
Collapse
Affiliation(s)
- Margherita Passariello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, NA, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Speranza Esposito
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Lorenzo Manna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, NA, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Rosa Rapuano Lembo
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
- European School of Molecular Medicine, University of Milan, 20122 Milan, MI, Italy
| | - Immacolata Zollo
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Emanuele Sasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, NA, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, NA, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Claudia De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, NA, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| |
Collapse
|
8
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
9
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
10
|
Li W, Lu W, Liu Z. A phosphatase-recruiting bispecific antibody-aptamer chimera for enhanced suppression of tumor growth. Chem Commun (Camb) 2023; 59:6572-6575. [PMID: 37170857 DOI: 10.1039/d3cc01137b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The development of agents against abnormal activation of receptor tyrosine kinases (RTKs) for therapeutic interventions is in high demand. Using mesenchymal epithelial transition (Met) protein as a proof-of-concept RTK, here we developed a CD148-recruiting bispecific antibody-aptamer chimera for simultaneous inhibition of extra- and intra-cellular functions of Met in cancer cells. This chimera exhibited remarkable migration-suppressive and antiproliferative effects. This strategy is highly promising for developing kinase inhibitors for use in therapies of a broad range of cancers.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Weihua Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
11
|
Kara N, Ayoub N, Ilgu H, Fotiadis D, Ilgu M. Aptamers Targeting Membrane Proteins for Sensor and Diagnostic Applications. Molecules 2023; 28:molecules28093728. [PMID: 37175137 PMCID: PMC10180177 DOI: 10.3390/molecules28093728] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Many biological processes (physiological or pathological) are relevant to membrane proteins (MPs), which account for almost 30% of the total of human proteins. As such, MPs can serve as predictive molecular biomarkers for disease diagnosis and prognosis. Indeed, cell surface MPs are an important class of attractive targets of the currently prescribed therapeutic drugs and diagnostic molecules used in disease detection. The oligonucleotides known as aptamers can be selected against a particular target with high affinity and selectivity by iterative rounds of in vitro library evolution, known as Systematic Evolution of Ligands by EXponential Enrichment (SELEX). As an alternative to antibodies, aptamers offer unique features like thermal stability, low-cost, reuse, ease of chemical modification, and compatibility with various detection techniques. Particularly, immobilized-aptamer sensing platforms have been under investigation for diagnostics and have demonstrated significant value compared to other analytical techniques. These "aptasensors" can be classified into several types based on their working principle, which are commonly electrochemical, optical, or mass-sensitive. In this review, we review the studies on aptamer-based MP-sensing technologies for diagnostic applications and have included new methodological variations undertaken in recent years.
Collapse
Affiliation(s)
- Nilufer Kara
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Nooraldeen Ayoub
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Huseyin Ilgu
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Muslum Ilgu
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
- Aptalogic Inc., Ames, IA 50014, USA
| |
Collapse
|
12
|
Shishparenok AN, Furman VV, Zhdanov DD. DNA-Based Nanomaterials as Drug Delivery Platforms for Increasing the Effect of Drugs in Tumors. Cancers (Basel) 2023; 15:2151. [PMID: 37046816 PMCID: PMC10093432 DOI: 10.3390/cancers15072151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
DNA nanotechnology has significantly advanced and might be used in biomedical applications, drug delivery, and cancer treatment during the past few decades. DNA nanomaterials are widely used in biomedical research involving biosensing, bioimaging, and drug delivery since they are remarkably addressable and biocompatible. Gradually, modified nucleic acids have begun to be employed to construct multifunctional DNA nanostructures with a variety of architectural designs. Aptamers are single-stranded nucleic acids (both DNAs and RNAs) capable of self-pairing to acquire secondary structure and of specifically binding with the target. Diagnosis and tumor therapy are prospective fields in which aptamers can be applied. Many DNA nanomaterials with three-dimensional structures have been studied as drug delivery systems for different anticancer medications or gene therapy agents. Different chemical alterations can be employed to construct a wide range of modified DNA nanostructures. Chemically altered DNA-based nanomaterials are useful for drug delivery because of their improved stability and inclusion of functional groups. In this work, the most common oligonucleotide nanomaterials were reviewed as modern drug delivery systems in tumor cells.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Vitalina V. Furman
- Center of Chemical Engineering, ITMO University, Kronverkskiy Prospekt 49A, 197101 St. Petersburg, Russia
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
13
|
He J, Duan Q, Ran C, Fu T, Liu Y, Tan W. Recent progress of aptamer‒drug conjugates in cancer therapy. Acta Pharm Sin B 2023; 13:1358-1370. [PMID: 37139427 PMCID: PMC10150127 DOI: 10.1016/j.apsb.2023.01.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/18/2022] [Accepted: 12/15/2022] [Indexed: 01/28/2023] Open
Abstract
Aptamers are single-stranded DNA or RNA sequences that can specifically bind with the target protein or molecule via specific secondary structures. Compared to antibody-drug conjugates (ADC), aptamer‒drug conjugate (ApDC) is also an efficient, targeted drug for cancer therapy with a smaller size, higher chemical stability, lower immunogenicity, faster tissue penetration, and facile engineering. Despite all these advantages, several key factors have delayed the clinical translation of ApDC, such as in vivo off-target effects and potential safety issues. In this review, we highlight the most recent progress in the development of ApDC and discuss solutions to the problems noted above.
Collapse
Affiliation(s)
- Jiaxuan He
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Qiao Duan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyan Ran
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ting Fu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yuan Liu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Weihong Tan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Agnello L, d’Argenio A, Nilo R, Fedele M, Camorani S, Cerchia L. Aptamer-Based Strategies to Boost Immunotherapy in TNBC. Cancers (Basel) 2023; 15:cancers15072010. [PMID: 37046670 PMCID: PMC10093095 DOI: 10.3390/cancers15072010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The immune system (IS) may play a crucial role in preventing tumor development and progression, leading, over the last years, to the development of effective cancer immunotherapies. Nevertheless, immune evasion, the capability of tumors to circumvent destructive host immunity, remains one of the main obstacles to overcome for maximizing treatment success. In this context, promising strategies aimed at reshaping the tumor immune microenvironment and promoting antitumor immunity are rapidly emerging. Triple-negative breast cancer (TNBC), an aggressive breast cancer subtype with poor outcomes, is highly immunogenic, suggesting immunotherapy is a viable strategy. As evidence of this, already, two immunotherapies have recently become the standard of care for patients with PD-L1 expressing tumors, which, however, represent a low percentage of patients, making more active immunotherapeutic approaches necessary. Aptamers are short, highly structured, single-stranded oligonucleotides that bind to their protein targets at high affinity and specificity. They are used for therapeutic purposes in the same way as monoclonal antibodies; thus, various aptamer-based strategies are being actively explored to stimulate the IS’s response against cancer cells. The aim of this review is to discuss the potential of the recently reported aptamer-based approaches to boost the IS to fight TNBC.
Collapse
|
15
|
Tommy Gambles M, Li J, Christopher Radford D, Sborov D, Shami P, Yang J, Kopeček J. Simultaneous crosslinking of CD20 and CD38 receptors by drug-free macromolecular therapeutics enhances B cell apoptosis in vitro and in vivo. J Control Release 2022; 350:584-599. [PMID: 36037975 PMCID: PMC9561060 DOI: 10.1016/j.jconrel.2022.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
Drug-Free Macromolecular Therapeutics (DFMT) is a new paradigm in macromolecular therapeutics that induces apoptosis in target cells by crosslinking receptors without the need of low molecular weight drugs. Programmed cell death is initiated via a biomimetic receptor crosslinking strategy using a two-step approach: i) recognition of cell surface antigen by a morpholino oligonucleotide-modified antibody Fab' fragment (Fab'-MORF1), ii) followed by crosslinking with a multivalent effector motif - human serum albumin (HSA) grafted with multiple complementary morpholino oligonucleotides (HSA-(MORF2)x). This approach is effective in vitro, in vivo, and ex vivo on cells from patients diagnosed with various B cell malignancies. We have previously demonstrated DFMT can be applied to crosslink CD20 and CD38 receptors to successfully initiate apoptosis. Herein, we show simultaneous engagement, and subsequent crosslinking of both targets ("heteroreceptor crosslinking"), can further enhance the apoptosis induction capacity of this system. To accomplish this, we incubated Raji (CD20+; CD38+) cells simultaneously with anti-CD20 and anti-CD38 Fab'-MORF1 conjugates, followed by addition of the macromolecular crosslinker, HSA-(MORF2)x to co-cluster the bound receptors. Fab' fragments from Rituximab and Obinutuzumab were employed in the synthesis of anti-CD20 bispecific engagers (Fab'RTX-MORF1 and Fab'OBN-MORF1), whereas Fab' fragments from Daratumumab and Isatuximab (Fab'DARA-MORF1 and Fab'ISA-MORF1) targeted CD38. All heteroreceptor crosslinking DFMT combinations demonstrated potent apoptosis induction and exhibited synergistic effects as determined by Chou-Talalay combination index studies (CI < 1). In vitro fluorescence resonance energy transfer (FRET) experiments confirmed the co-clustering of the two receptors on the cell surface in response to the combination treatment. The source of this synergistic therapeutic effect was further explored by evaluating the effect of combination DFMT on key apoptosis signaling events such as mitochondrial depolarization, caspase activation, lysosomal enlargement, and homotypic cell adhesion. Finally, a xenograft mouse model of CD20+/CD38+ Non Hodgkin lymphoma was employed to demonstrate in vivo the enhanced efficacy of the heteroreceptor-crosslinking DFMT design versus single-target systems.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiahui Li
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - D Christopher Radford
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Douglas Sborov
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Paul Shami
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
16
|
Passariello M, Ferrucci V, Sasso E, Manna L, Lembo RR, Pascarella S, Fusco G, Zambrano N, Zollo M, De Lorenzo C. A Novel Human Neutralizing mAb Recognizes Delta, Gamma and Omicron Variants of SARS-CoV-2 and Can Be Used in Combination with Sotrovimab. Int J Mol Sci 2022; 23:5556. [PMID: 35628365 PMCID: PMC9146290 DOI: 10.3390/ijms23105556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/13/2023] Open
Abstract
The dramatic experience with SARS-CoV-2 has alerted the scientific community to be ready to face new epidemics/pandemics caused by new variants. Among the therapies against the pandemic SARS-CoV-2 virus, monoclonal Antibodies (mAbs) targeting the Spike glycoprotein have represented good drugs to interfere in the Spike/ Angiotensin Converting Enzyme-2 (ACE-2) interaction, preventing virus cell entry and subsequent infection, especially in patients with a defective immune system. We obtained, by an innovative phage display selection strategy, specific binders recognizing different epitopes of Spike. The novel human antibodies specifically bind to Spike-Receptor Binding Domain (RBD) in a nanomolar range and interfere in the interaction of Spike with the ACE-2 receptor. We report here that one of these mAbs, named D3, shows neutralizing activity for virus infection in cell cultures by different SARS-CoV-2 variants and retains the ability to recognize the Omicron-derived recombinant RBD differently from the antibodies Casirivimab or Imdevimab. Since anti-Spike mAbs, used individually, might be unable to block the virus cell entry especially in the case of resistant variants, we investigated the possibility to combine D3 with the antibody in clinical use Sotrovimab, and we found that they recognize distinct epitopes and show additive inhibitory effects on the interaction of Omicron-RBD with ACE-2 receptor. Thus, we propose to exploit these mAbs in combinatorial treatments to enhance their potential for both diagnostic and therapeutic applications in the current and future pandemic waves of coronavirus.
Collapse
Affiliation(s)
- Margherita Passariello
- Ceinge—Biotecnologie Avanzate s.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy; (M.P.); (V.F.); (E.S.); (L.M.); (R.R.L.); (N.Z.); (M.Z.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Veronica Ferrucci
- Ceinge—Biotecnologie Avanzate s.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy; (M.P.); (V.F.); (E.S.); (L.M.); (R.R.L.); (N.Z.); (M.Z.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Emanuele Sasso
- Ceinge—Biotecnologie Avanzate s.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy; (M.P.); (V.F.); (E.S.); (L.M.); (R.R.L.); (N.Z.); (M.Z.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Lorenzo Manna
- Ceinge—Biotecnologie Avanzate s.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy; (M.P.); (V.F.); (E.S.); (L.M.); (R.R.L.); (N.Z.); (M.Z.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Rosa Rapuano Lembo
- Ceinge—Biotecnologie Avanzate s.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy; (M.P.); (V.F.); (E.S.); (L.M.); (R.R.L.); (N.Z.); (M.Z.)
- European School of Molecular Medicine, University of Milan, 20122 Milan, Italy
| | - Stefano Pascarella
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Viale Regina Elena 332, 00185 Rome, Italy;
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici Naples, Italy;
| | - Nicola Zambrano
- Ceinge—Biotecnologie Avanzate s.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy; (M.P.); (V.F.); (E.S.); (L.M.); (R.R.L.); (N.Z.); (M.Z.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Massimo Zollo
- Ceinge—Biotecnologie Avanzate s.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy; (M.P.); (V.F.); (E.S.); (L.M.); (R.R.L.); (N.Z.); (M.Z.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Claudia De Lorenzo
- Ceinge—Biotecnologie Avanzate s.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy; (M.P.); (V.F.); (E.S.); (L.M.); (R.R.L.); (N.Z.); (M.Z.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
17
|
Zon G. Recent advances in aptamer applications for analytical biochemistry. Anal Biochem 2022; 644:113894. [PMID: 32763306 PMCID: PMC7403853 DOI: 10.1016/j.ab.2020.113894] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/24/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Aptamers are typically defined as relatively short (20-60 nucleotides) single-stranded DNA or RNA molecules that bind with high affinity and specificity to various types of targets. Aptamers are frequently referred to as "synthetic antibodies" but are easier to obtain, less expensive to produce, and in several ways more versatile than antibodies. The beginnings of aptamers date back to 1990, and since then there has been a continual increase in aptamer publications. The intent of the present account was to focus on recent original research publications, i.e., those appearing in 2019 through April 2020, when this account was written. A Google Scholar search of this recent literature was performed for relevance-ranking of articles. New methods for selection of aptamers were not included. Nine categories of applications were organized and representative examples of each are given. Finally, an outlook is offered focusing on "faster, better, cheaper" application performance factors as key drivers for future innovations in aptamer applications.
Collapse
|
18
|
Camorani S, d’Argenio A, Agnello L, Nilo R, Zannetti A, Ibarra LE, Fedele M, Cerchia L. Optimization of Short RNA Aptamers for TNBC Cell Targeting. Int J Mol Sci 2022; 23:3511. [PMID: 35408872 PMCID: PMC8998535 DOI: 10.3390/ijms23073511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive cancer with limited targeted therapies. RNA aptamers, suitably chemically modified, work for therapeutic purposes in the same way as antibodies. We recently generated 2'Fluoro-pyrimidines RNA-aptamers that act as effective recognition elements for functional surface signatures of TNBC cells. Here, we optimized three of them by shortening and proved the truncated aptamers as optimal candidates to enable active targeting to TNBC. By using prediction of secondary structure to guide truncation, we identified structural regions that account for the binding motifs of the full-length aptamers. Their chemical synthesis led to short aptamers with superb nuclease resistance, which specifically bind to TNBC target cells and rapidly internalize into acidic compartments. They interfere with the growth of TNBC cells as mammospheres, thus confirming their potential as anti-tumor agents. We propose sTN145, sTN58 and sTN29 aptamers as valuable tools for selective TNBC targeting and promising candidates for effective treatments, including therapeutic agents and targeted delivery nanovectors.
Collapse
Affiliation(s)
- Simona Camorani
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), 80131 Naples, Italy; (A.d.); (L.A.); (R.N.); (M.F.)
| | - Annachiara d’Argenio
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), 80131 Naples, Italy; (A.d.); (L.A.); (R.N.); (M.F.)
| | - Lisa Agnello
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), 80131 Naples, Italy; (A.d.); (L.A.); (R.N.); (M.F.)
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Roberto Nilo
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), 80131 Naples, Italy; (A.d.); (L.A.); (R.N.); (M.F.)
| | - Antonella Zannetti
- National Research Council (CNR), Institute of Biostructures and Bioimaging (IBB), 80145 Naples, Italy;
| | - Luis Exequiel Ibarra
- Institute of Environmental Biotechnology and Health (INBIAS), National University of Rio Cuarto (UNRC), National Council for Scientific and Technological Research (CONICET), Río Cuarto X5800BIA, Argentina;
| | - Monica Fedele
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), 80131 Naples, Italy; (A.d.); (L.A.); (R.N.); (M.F.)
| | - Laura Cerchia
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), 80131 Naples, Italy; (A.d.); (L.A.); (R.N.); (M.F.)
| |
Collapse
|
19
|
Novel Bi-Specific Immuno-Modulatory Tribodies Potentiate T Cell Activation and Increase Anti-Tumor Efficacy. Int J Mol Sci 2022; 23:ijms23073466. [PMID: 35408827 PMCID: PMC8998846 DOI: 10.3390/ijms23073466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer immunotherapy has already shown significant improvements by combining different antibodies specific for distinct immune checkpoints, such as Ipilimumab and Nivolumab. Here, we tested combinatorial treatments of immunomodulatory antibodies, previously generated in our laboratory, for their effects on hPBMC activation, either upon stimulation with SEB or in co-cultures with tumor cells by cytokine secretion assays. We found that some of them showed additive or synergistic effects, and on the basis of these observations, we constructed, for the first time, four novel bispecific tribodies (TR), made up of a Fab derived from one anti-IC mAb and two scFvs derived from another mAb targeting a different IC. All four TRs cotargeting either programmed cell death protein 1 (PD-1) and Lymphocyte Activating 3 (LAG-3) or programmed death-ligand 1 (PD-L1) and LAG-3 retained binding affinity for their targets and the antagonistic effects of their parental mAbs, but some of them also showed an increased ability to induce lymphocyte activation and increased in vitro cytotoxicity against tumor cells compared to parental antibodies used either alone or in combinatorial treatments. Furthermore, none of the tribodies showed significant increased cytotoxicity on human cardiomyocytes. Considering that the tribody format reduces production costs (as only one construct provides the inhibitory effects of two antibodies), has an intermediate molecular size (100 kDa) which is well suited for both tumor penetration and an acceptable half-life, we think that these novel immunomodulatory TRBs have the potential to become precious tools for therapeutic applications, particularly in monotherapy-resistant cancer patients.
Collapse
|
20
|
Liu M, Wang L, Lo Y, Shiu SCC, Kinghorn AB, Tanner JA. Aptamer-Enabled Nanomaterials for Therapeutics, Drug Targeting and Imaging. Cells 2022; 11:159. [PMID: 35011722 PMCID: PMC8750369 DOI: 10.3390/cells11010159] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
A wide variety of nanomaterials have emerged in recent years with advantageous properties for a plethora of therapeutic and diagnostic applications. Such applications include drug delivery, imaging, anti-cancer therapy and radiotherapy. There is a critical need for further components which can facilitate therapeutic targeting, augment their physicochemical properties, or broaden their theranostic applications. Aptamers are single-stranded nucleic acids which have been selected or evolved to bind specifically to molecules, surfaces, or cells. Aptamers can also act as direct biologic therapeutics, or in imaging and diagnostics. There is a rich field of discovery at the interdisciplinary interface between nanomaterials and aptamer science that has significant potential across biomedicine. Herein, we review recent progress in aptamer-enabled materials and discuss pending challenges for their future biomedical application.
Collapse
Affiliation(s)
- Mengping Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Lin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Young Lo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Simon Chi-Chin Shiu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Andrew B. Kinghorn
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Julian A. Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, China
| |
Collapse
|
21
|
Spanu C, Camorani S, Tortorella S, Agnello L, Maturi M, Comes Franchini M, Cerchia L, Locatelli E. Synthesis and functionalization of casein nanoparticles with aptamers for triple-negative breast cancer targeting. NEW J CHEM 2022. [DOI: 10.1039/d2nj03367d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This work shows the synthesis of a drug delivery system made of casein nanoparticles able to host hydrophobic molecules and be functionalized with aptamers targeting the epidermal growth factor receptor.
Collapse
Affiliation(s)
- Chiara Spanu
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy
| | - Silvia Tortorella
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy
| | - Lisa Agnello
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy
| | - Mirko Maturi
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy
| | - Erica Locatelli
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| |
Collapse
|
22
|
Shigdar S, Agnello L, Fedele M, Camorani S, Cerchia L. Profiling Cancer Cells by Cell-SELEX: Use of Aptamers for Discovery of Actionable Biomarkers and Therapeutic Applications Thereof. Pharmaceutics 2021; 14:28. [PMID: 35056924 PMCID: PMC8781458 DOI: 10.3390/pharmaceutics14010028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
The identification of tumor cell-specific surface markers is a key step towards personalized cancer medicine, allowing early assessment and accurate diagnosis, and development of efficacious targeted therapies. Despite significant efforts, currently the spectrum of cell membrane targets associated with approved treatments is still limited, causing an inability to treat a large number of cancers. What mainly limits the number of ideal clinical biomarkers is the high complexity and heterogeneity of several human cancers and still-limited methods for molecular profiling of specific cancer types. Thanks to the simplicity, versatility and effectiveness of its application, cell-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technology is a valid complement to the present strategies for biomarkers' discovery. We and other researchers worldwide are attempting to apply cell-SELEX to the generation of oligonucleotide aptamers as tools for both identifying new cancer biomarkers and targeting them by innovative therapeutic strategies. In this review, we discuss the potential of cell-SELEX for increasing the currently limited repertoire of actionable cancer cell-surface biomarkers and focus on the use of the selected aptamers as components of innovative conjugates and nano-formulations for cancer therapy.
Collapse
Affiliation(s)
- Sarah Shigdar
- School of Medicine, Deakin University, Geelong 3220, Australia;
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong 3220, Australia
| | - Lisa Agnello
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy; (L.A.); (M.F.); (S.C.)
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, S. Andrea Delle Dame-Via L. De Crecchio 7, 80138 Naples, Italy
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy; (L.A.); (M.F.); (S.C.)
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy; (L.A.); (M.F.); (S.C.)
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy; (L.A.); (M.F.); (S.C.)
| |
Collapse
|
23
|
Passariello M, Vetrei C, Amato F, De Lorenzo C. Interactions of Spike-RBD of SARS-CoV-2 and Platelet Factor 4: New Insights in the Etiopathogenesis of Thrombosis. Int J Mol Sci 2021; 22:ijms22168562. [PMID: 34445266 PMCID: PMC8395316 DOI: 10.3390/ijms22168562] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022] Open
Abstract
The rare but dangerous adverse events evidenced after massive vaccination against SARS-CoV-2 are represented by thrombosis and thrombocytopenia. The patients diagnosed with severe COVID-19 may develop a pro-thrombotic state with a much higher frequency, thus we decided to investigate the role of Spike protein (the only common product of the two conditions) or the anti-Spike antibodies in the etiopathogenesis of thrombosis. A pathogenic Platelet Factor 4 (PF4)-dependent syndrome, unrelated to the use of heparin therapy, has been reported after the administration of vaccines in the patients manifesting acute thrombocytopenia and thrombosis. Thus, we aimed at shedding light on the structural similarities of Spike of SARS-CoV-2 and PF4 on their eventual biochemical interactions and on the role of their specific antibodies. The similarities between PF4 and Spike-RBD proteins were evaluated by a comparison of the structures and by testing the cross-reactivity of their specific antibodies by ELISA assays. We found that the anti-Spike antibodies do not recognize PF4, on the contrary, the anti-PF4 antibodies show some cross-reactivity for Spike-RBD. More interestingly, we report for the first time that the PF4 and Spike-RBD proteins can bind each other. These data suggest that the interaction of the two proteins could be involved in the generation of anti-PF4 antibodies, their binding to Spike-RBD, which could lead to platelets aggregation due also to their high expression of ACE2.
Collapse
Affiliation(s)
- Margherita Passariello
- Ceinge—Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy; (M.P.); (C.V.); (F.A.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Cinzia Vetrei
- Ceinge—Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy; (M.P.); (C.V.); (F.A.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Felice Amato
- Ceinge—Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy; (M.P.); (C.V.); (F.A.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Claudia De Lorenzo
- Ceinge—Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy; (M.P.); (C.V.); (F.A.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-3737868
| |
Collapse
|
24
|
Agnello L, Tortorella S, d'Argenio A, Carbone C, Camorani S, Locatelli E, Auletta L, Sorrentino D, Fedele M, Zannetti A, Franchini MC, Cerchia L. Optimizing cisplatin delivery to triple-negative breast cancer through novel EGFR aptamer-conjugated polymeric nanovectors. J Exp Clin Cancer Res 2021; 40:239. [PMID: 34294133 PMCID: PMC8299618 DOI: 10.1186/s13046-021-02039-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Management of triple-negative breast cancer (TNBC) is still challenging because of its aggressive clinical behavior and limited targeted treatment options. Cisplatin represents a promising chemotherapeutic compound in neoadjuvant approaches and in the metastatic setting, but its use is limited by scarce bioavailability, severe systemic side effects and drug resistance. Novel site-directed aptamer-based nanotherapeutics have the potential to overcome obstacles of chemotherapy. In this study we investigated the tumor targeting and the anti-tumorigenic effectiveness of novel cisplatin-loaded and aptamer-decorated nanosystems in TNBC. METHODS Nanotechnological procedures were applied to entrap cisplatin at high efficacy into polymeric nanoparticles (PNPs) that were conjugated on their surface with the epidermal growth factor receptor (EGFR) selective and cell-internalizing CL4 aptamer to improve targeted therapy. Internalization into TNBC MDA-MB-231 and BT-549 cells of aptamer-decorated PNPs, loaded with BODIPY505-515, was monitored by confocal microscopy using EGFR-depleted cells as negative control. Tumor targeting and biodistribution was evaluated by fluorescence reflectance imaging upon intravenously injection of Cyanine7-labeled nanovectors in nude mice bearing subcutaneous MDA-MB-231 tumors. Cytotoxicity of cisplatin-loaded PNPs toward TNBC cells was evaluated by MTT assay and the antitumor effect was assessed by tumor growth experiments in vivo and ex vivo analyses. RESULTS We demonstrate specific, high and rapid uptake into EGFR-positive TNBC cells of CL4-conjugated fluorescent PNPs which, when loaded with cisplatin, resulted considerably more cytotoxic than the free drug and nanovectors either unconjugated or conjugated with a scrambled aptamer. Importantly, animal studies showed that the CL4-equipped PNPs achieve significantly higher tumor targeting efficiency and enhanced therapeutic effects, without any signs of systemic toxicity, compared with free cisplatin and untargeted PNPs. CONCLUSIONS Our study proposes novel and safe drug-loaded targeted nanosystems for EGFR-positive TNBC with excellent potential for the application in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Lisa Agnello
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
- University of Campania "L.Vanvitelli" Department of Precision Medicine, S. Andrea delle Dame - Via L. De Crecchio, 7 - 80138, Naples, Italy
| | - Silvia Tortorella
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Annachiara d'Argenio
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Clarissa Carbone
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Erica Locatelli
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Luigi Auletta
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145, Naples, Italy
| | - Domenico Sorrentino
- Ceinge-Biotecnologie Avanzate s.c.a.r.l, via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145, Naples, Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
25
|
Immunomodulatory mAbs as Tools to Investigate on Cis-Interaction of PD-1/PD-L1 on Tumor Cells and to Set Up Methods for Early Screening of Safe and Potent Combinatorial Treatments. Cancers (Basel) 2021; 13:cancers13122858. [PMID: 34201082 PMCID: PMC8230074 DOI: 10.3390/cancers13122858] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/18/2021] [Accepted: 06/02/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary A novel challenge in cancer immunotherapy is the identification of the most potent combinations of immunomodulatory mAbs that are capable of maximizing therapeutic benefits while minimizing irAEs. We set up an in vitro system to quickly predict the efficacy and eventual cardiotoxic side effects of combinatorial treatments, thus allowing for the early screening of most potent and safe combinatorial therapeutic regimens for both validated and emerging immunomodulatory mAbs against different immune checkpoints (ICs). Furthermore, we provide for the first time evidence on cis-interactions of ICs in tumor cells. Abstract Antibodies targeting Immune Checkpoints (IC) on tumor infiltrating lymphocytes improve immune responses against cancer. Recently, the expression of some ICs has also been reported on cancer cells. We used the clinically validated Ipilimumab and Nivolumab and other novel human antibodies targeting Cytotoxic T- lymphocyte-antigen 4 (CTLA-4), Programmed Death receptor-1 (PD-1) and Programmed Death Ligand 1 (PD-L1) to shed light on the functions of these ICs in cancer cells. We show here for the first time that all these antagonistic mAbs are able to reduce Erk phosphorylation and, unexpectedly, to induce a significant increase of ICs expression on tumor cells, involving a hyperphosphorylation of NF-kB. On the contrary, agonistic PD-L1 and PD-1 recombinant proteins showed opposite effects by leading to a significant reduction of PD-1 and PD-L1, thus also suggesting the existence of a crosstalk in tumor cells between multiple ICs. Since the immunomodulatory mAbs show their higher anti-tumor efficacy by activating lymphocytes against cancer cells, we also investigated whether it was possible to identify the most efficient combinations of immunomodulatory mAbs for achieving potent anti-tumor efficacy associated with the lowest adverse side effects by setting up novel simple and predictive in vitro models based on co-cultures of tumor cells or human fetal cardiomyocytes with lymphocytes. We demonstrate here that novel combinations of immunomodulatory mAbs with more potent anti-cancer activity than Ipilimumab and Nivolumab combination can be identified with no or lower cardiotoxic side effects. Thus, we propose these co-cultures-based assays as useful tools to test also other combinatorial treatments of emerging immunomodulatory mAbs against different ICs for the early screening of most potent and safe combinatorial therapeutic regimens.
Collapse
|
26
|
Passariello M, Gentile C, Ferrucci V, Sasso E, Vetrei C, Fusco G, Viscardi M, Brandi S, Cerino P, Zambrano N, Zollo M, De Lorenzo C. Novel human neutralizing mAbs specific for Spike-RBD of SARS-CoV-2. Sci Rep 2021; 11:11046. [PMID: 34040046 PMCID: PMC8155001 DOI: 10.1038/s41598-021-90348-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 02/04/2023] Open
Abstract
Among the therapies against the pandemic SARS-CoV-2 virus, monoclonal Antibodies (mAbs) targeting the Spike glycoprotein represent good candidates to interfere in the Spike/ACE2 interaction, preventing virus cell entry. Since anti-spike mAbs, used individually, might be unable to block the virus entry in the case of resistant mutations, we designed an innovative strategy for the isolation of multiple novel human scFvs specific for the binding domain (RBD) of Spike. By panning a large phage display antibody library on immobilized RBD, we obtained specific binders by eluting with ACE2 in order to identify those scFvs recognizing the epitope of Spike interacting with its receptor. We converted the novel scFvs into full size IgG4, differently from the previously isolated IgG1 mAbs, to avoid unwanted potential side effects of IgG1 potent effector functions on immune system. The novel antibodies specifically bind to RBD in a nanomolar range and interfere in the interaction of Spike with ACE2 receptor, either used as purified protein or when expressed on cells in its native conformation. Furthermore, some of them have neutralizing activity for virus infection in cell cultures by using two different SARS-CoV-2 isolates including the highly contagious VOC 202012/01 variant and could become useful therapeutic tools to fight against the SARS-CoV-2 virus.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/metabolism
- Antibodies, Monoclonal
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- COVID-19/immunology
- COVID-19/therapy
- Cells, Cultured
- Epitopes
- Humans
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Immunotherapy/methods
- Pandemics
- Protein Binding
- Protein Domains/genetics
- SARS-CoV-2/physiology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
- Margherita Passariello
- Ceinge - Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Napoli, NA, Italy
| | - Chiara Gentile
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Napoli, NA, Italy
| | - Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Napoli, NA, Italy
| | - Emanuele Sasso
- Ceinge - Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Cinzia Vetrei
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Napoli, NA, Italy
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055, Portici Naples, Italy
| | - Maurizio Viscardi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055, Portici Naples, Italy
| | - Sergio Brandi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055, Portici Naples, Italy
| | - Pellegrino Cerino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055, Portici Naples, Italy
| | - Nicola Zambrano
- Ceinge - Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Napoli, NA, Italy.
| | - Massimo Zollo
- Ceinge - Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Napoli, NA, Italy.
| | - Claudia De Lorenzo
- Ceinge - Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Napoli, NA, Italy.
| |
Collapse
|
27
|
Emami N, Ferdousi R. AptaNet as a deep learning approach for aptamer-protein interaction prediction. Sci Rep 2021; 11:6074. [PMID: 33727685 PMCID: PMC7971039 DOI: 10.1038/s41598-021-85629-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
Aptamers are short oligonucleotides (DNA/RNA) or peptide molecules that can selectively bind to their specific targets with high specificity and affinity. As a powerful new class of amino acid ligands, aptamers have high potentials in biosensing, therapeutic, and diagnostic fields. Here, we present AptaNet-a new deep neural network-to predict the aptamer-protein interaction pairs by integrating features derived from both aptamers and the target proteins. Aptamers were encoded by using two different strategies, including k-mer and reverse complement k-mer frequency. Amino acid composition (AAC) and pseudo amino acid composition (PseAAC) were applied to represent target information using 24 physicochemical and conformational properties of the proteins. To handle the imbalance problem in the data, we applied a neighborhood cleaning algorithm. The predictor was constructed based on a deep neural network, and optimal features were selected using the random forest algorithm. As a result, 99.79% accuracy was achieved for the training dataset, and 91.38% accuracy was obtained for the testing dataset. AptaNet achieved high performance on our constructed aptamer-protein benchmark dataset. The results indicate that AptaNet can help identify novel aptamer-protein interacting pairs and build more-efficient insights into the relationship between aptamers and proteins. Our benchmark dataset and the source codes for AptaNet are available in: https://github.com/nedaemami/AptaNet .
Collapse
Affiliation(s)
- Neda Emami
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Emrani S, Lamar M, Price CC, Baliga S, Wasserman V, Matusz E, Swenson R, Baliga G, Libon DJ. Assessing the capacity for mental manipulation in patients with statically-determined mild cognitive impairment using digital technology. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aims: Prior research employing a standard backward digit span test has been successful in operationally defining neurocognitive constructs associated with the Fuster’s model of executive attention. The current research sought to test if similar behavior could be obtained using a cross-modal mental manipulation test.
Methods: Memory clinic patients were studied. Using Jak-Bondi criteria, 24 patients were classified with mild cognitive impairment (MCI), and 33 memory clinic patients did not meet criteria for MCI (i.e. non-MCI). All patients were assessed with the digital version of the WRAML-2 Symbolic Working Memory Test-Part 1, a cross-modal mental manipulation task where patients hear digits, but respond by touching digits from lowest to highest on an answer key. Only 4 and 5-span trials were analyzed. Using an iPad, all test stimuli were played; and, all responses were obtained with a touch key. Only correct trials were analyzed. Average time to complete trials and latency for each digit was recorded.
Results: Groups did not differ when average time to complete 4-span trials was calculated. MCI patients displayed slower latency, or required more time to re-order the 1st and 3rd digits. Regression analyses, primarily involving initial and latter response latencies, were associated with better, but different underlying neuropsychological abilities. Almost no 5-span analyses were significant.
Conclusions: This cross-modal test paradigm found no difference for total average time. MCI patients generated slower 1st and 3rd response latency, suggesting differences in time allocation to achieve correct serial order recall. Moreover, different neuropsychological abilities were associated with different time-based test components. These data extend prior findings using a standard backward digit span test. Differences in time epochs are consistent with constructs underlying the model of executive attention and help explain mental manipulation deficits in MCI. These latency measures could constitute neurocognitive biomarkers that track emergent disease.
Collapse
Affiliation(s)
- Sheina Emrani
- Department of Psychology, Rowan University, Glassboro, NJ 08028, USA
| | - Melissa Lamar
- Department of Behavioral Sciences and the Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Catherine C. Price
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610, USA
| | - Satya Baliga
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Victor Wasserman
- Department of Psychology, Rowan University, Glassboro, NJ 08028, USA
| | - Emily Matusz
- 5New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Rod Swenson
- Department Psychiatry and Behavioral Science, University of North Dakota School of Medicine and Health Sciences, Grand Fork, Fargo, ND 58103, USA
| | - Ganesh Baliga
- Department of Computer Science, Rowan University, Glassboro, NJ 08028, USA
| | - David J. Libon
- Department of Psychology, Rowan University, Glassboro, NJ 08028, USA 5New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| |
Collapse
|
29
|
Agnello L, Camorani S, Fedele M, Cerchia L. Aptamers and antibodies: rivals or allies in cancer targeted therapy? EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:107-121. [PMID: 36046085 PMCID: PMC9400792 DOI: 10.37349/etat.2021.00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 12/29/2022] Open
Abstract
The goal of an efficacious cancer therapy is to specifically target diseased cells at high accuracy while sparing normal, healthy cells. Over the past three decades, immunotherapy, based on the use of monoclonal antibodies (mAbs) directed against tumor-associated antigens, to inhibit their oncogenic function, or against immune checkpoints, to modulate specific T cell responses against cancer, has proven to be an important strategy for cancer therapy. Nevertheless, the number of mAbs approved for clinical use is still limited because of significant drawbacks to their applicability. Oligonucleotide aptamers, similarly to antibodies, form high-affinity bonds with their specific protein targets, thus representing an effective tool for active cancer targeting. Compared to antibodies, aptamers’ use as therapeutic agents benefits from their low size, low/no immunogenicity, simple synthesis and design flexibility for improving efficacy and stability. This review intends to highlight recently emerged applications of aptamers as recognition elements, from biomarker discovery to targeted drug delivery and targeted treatment, showing aptamers’ potential to work in conjunction with antibodies for attacking cancer from multiple flanks.
Collapse
Affiliation(s)
- Lisa Agnello
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
30
|
Abstract
Over the past 3 decades, monoclonal antibodies and their related derivatives, including recently approved antibody-drug conjugates, conquered a central role in cancer therapy because of their contribution to improve survival, time to progression and quality of life of patients compared to chemotherapy protocols. This review summarizes information on approved original and biosimilar products, as well as investigational antibody-based therapeutics, targeting ErbB2. This target has been selected as a paradigmatic example because of its relevant role in sustaining the malignancy of major cancer diseases including, breast, gastric and other chemotherapy-resistant solid tumors. This work analyzes the drivers affecting research and development of next-generation anti-ErbB2 immunotherapeutics, taking into account unmet medical needs and pharmacoeconomic issues related to sustainability. The analysis may help with the design of future research and development strategies.
Collapse
Affiliation(s)
- Rita De Santis
- Biotechnology Research and Development, Alfasigma SpA, Rome, Italy
| |
Collapse
|
31
|
Shah A, Grimberg D, Inman BA. Immunotherapy: From Discovery to Bedside. Bioanalysis 2021. [DOI: 10.1007/978-3-030-78338-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Bifunctional Aptamer Drug Carrier Enabling Selective and Efficient Incorporation of an Approved Anticancer Drug Irinotecan to Fibrin Gels. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have previously developed a bifunctional aptamer (bApt) binding to both human thrombin and camptothecin derivative (CPT1), and showed that bApt acts as a drug carrier under the phenomenon named selective oligonucleotide entrapment in fibrin polymers (SOEF), which enables efficient enrichment of CPT1 into fibrin gels, resulting in significant inhibition of tumor cell growth. However, although the derivative CPT1 exhibits anticancer activity, it is not an approved drug. In this study, we evaluated the binding properties of bApt to irinotecan, a camptothecin analog commonly used for anticancer drug therapy, in addition to unmodified camptothecin (CPT). Furthermore, we have revealed that irinotecan binds to bApt like CPT1 and is selectively concentrated on fibrin gels formed around the tumor cells under the SOEF phenomenon to suppress cell proliferation.
Collapse
|
33
|
Camorani S, Passariello M, Agnello L, Esposito S, Collina F, Cantile M, Di Bonito M, Ulasov IV, Fedele M, Zannetti A, De Lorenzo C, Cerchia L. Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer. J Exp Clin Cancer Res 2020; 39:180. [PMID: 32892748 PMCID: PMC7487859 DOI: 10.1186/s13046-020-01694-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a uniquely aggressive cancer with high rates of relapse due to resistance to chemotherapy. TNBC expresses higher levels of programmed cell death-ligand 1 (PD-L1) compared to other breast cancers, providing the rationale for the recently approved immunotherapy with anti-PD-L1 monoclonal antibodies (mAbs). A huge effort is dedicated to identify actionable biomarkers allowing for combination therapies with immune-checkpoint blockade. Platelet-derived growth factor receptor β (PDGFRβ) is highly expressed in invasive TNBC, both on tumor cells and tumor microenvironment. We recently proved that tumor growth and lung metastases are impaired in mouse models of human TNBC by a high efficacious PDGFRβ aptamer. Hence, we aimed at investigating the effectiveness of a novel combination treatment with the PDGFRβ aptamer and anti-PD-L1 mAbs in TNBC. METHODS The targeting ability of the anti-human PDGFRβ aptamer toward the murine receptor was verified by streptavidin-biotin assays and confocal microscopy, and its inhibitory function by transwell migration assays. The anti-proliferative effects of the PDGFRβ aptamer/anti-PD-L1 mAbs combination was assessed in human MDA-MB-231 and murine 4 T1 TNBC cells, both grown as monolayer or co-cultured with lymphocytes. Tumor cell lysis and cytokines secretion by lymphocytes were analyzed by LDH quantification and ELISA, respectively. Orthotopic 4 T1 xenografts in syngeneic mice were used for dissecting the effect of aptamer/mAb combination on tumor growth, metastasis and lymphocytes infiltration. Ex vivo analyses through immunohistochemistry, RT-qPCR and immunoblotting were performed. RESULTS We show that the PDGFRβ aptamer potentiates the anti-proliferative activity of anti-PD-L1 mAbs on both human and murine TNBC cells, according to its human/mouse cross-reactivity. Further, by binding to activated human and mouse lymphocytes, the aptamer enhances the anti-PD-L1 mAb-induced cytotoxicity of lymphocytes against tumor cells. Importantly, the aptamer heightens the antibody efficacy in inhibiting tumor growth and lung metastases in mice. It acts on both tumor cells, inhibiting Akt and ERK1/2 signaling pathways, and immune populations, increasing intratumoral CD8 + T cells and reducing FOXP3 + Treg cells. CONCLUSION Co-treatment of PDGFRβ aptamer with anti-PD-L1 mAbs is a viable strategy, thus providing for the first time an evidence of the efficacy of PDGFRβ/PD-L1 co-targeting combination therapy in TNBC.
Collapse
Affiliation(s)
- Simona Camorani
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Margherita Passariello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
- Ceinge-Biotecnologie Avanzate s.c.a.r.l., via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Lisa Agnello
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Silvia Esposito
- Ceinge-Biotecnologie Avanzate s.c.a.r.l., via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Francesca Collina
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Maurizio Di Bonito
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Ilya V Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145, Naples, Italy
| | - Claudia De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
- Ceinge-Biotecnologie Avanzate s.c.a.r.l., via Gaetano Salvatore 486, 80145, Naples, Italy.
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
34
|
Isolation of Two Novel Human Anti-CTLA-4 mAbs with Intriguing Biological Properties on Tumor and NK Cells. Cancers (Basel) 2020; 12:cancers12082204. [PMID: 32781690 PMCID: PMC7464132 DOI: 10.3390/cancers12082204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
The cytotoxic T lymphocyte-antigen 4 (CTLA-4) has been considered an IC exclusively expressed on T cells, where it counteracts the co-stimulatory CD28 receptor, by competing for its binding to CD-80 and CD-86. We recently found that it is expressed also on tumor and NK cells, suggesting other possible unknown roles of CTLA-4. To shed light on these novel aspects of CTLA-4, we used Ipilimumab, the first FDA approved human antibody targeting CTLA-4, in parallel studies with two novel human mAbs we isolated by using an efficient phage display selection strategy on live activated lymphocytes and purified mouse and human CTLA-4. The selection for cross-reactive mAbs was guaranteed by a high throughput sequencing to identify the sequences commonly enriched by two parallel pannings on human and mouse CTLA-4. Two isolated antibodies were found to bind with high affinity to both human and mouse CTLA-4 and lymphocytes, showing nanomolar or sub-nanomolar Kd values. They were able to kill Treg cells by ADCC, and to activate both human and mouse PBMCs, by strongly increasing cytokines secretion. Interestingly, they activated NK cells, exhibited cytotoxicity against cancer cells by inducing ADCC and inhibited tumor cell growth by affecting CTLA-4 downstream pathways in a similar fashion to CD-80 and CD-86 ligands and differently from Ipilimumab. Moreover, the novel mAbs showed a reduced ability to interfere in the binding of CD-80 ligands to CTLA-4 on T cells with respect to Ipilimumab, suggesting that they could allow for anti-tumor effects without the irAEs associated with the potent antagonistic activity of Ipilimumab.
Collapse
|
35
|
Qiu Z, Hu J, Li Z, Yang X, Hu J, You Q, Bai S, Mao Y, Hua D, Yin J. Graphene oxide-based nanocomposite enabled highly efficient targeted synergistic therapy for colorectal cancer. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Zhong Y, Zhao J, Li J, Liao X, Chen F. Advances of aptamers screened by Cell-SELEX in selection procedure, cancer diagnostics and therapeutics. Anal Biochem 2020; 598:113620. [PMID: 32087127 DOI: 10.1016/j.ab.2020.113620] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/23/2022]
Abstract
Aptamers are a class of short artificial single-stranded oligo(deoxy) nucleotides that can bind to different targets, which generated by Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Due to excellent selectivity and high affinity to targets, aptamers hold considerable potential as molecular probe in diverse applications ranging from ensuring food safety, monitoring environment, disease diagnosis to therapy. This review highlights recent development and challenges about aptamers screened by Cell-SELEX, and its application about cancer diagnostics and therapeutics. Advances about some operation methods such as seperation method and culture method in aptamers selection procedure were summarized in this paper. Some common challenges and technological difficulties such as nonspecific binding and biostability were discussed. Up to now, the recent endeavors about cancer diagnostic and therapeutic applications of aptamers are summarized and expatiated. Most of aptamers screened by Cell-SELEX took tumor cells as target cells, and such aptamers have been assembled to various aptasensor for cancer diagnosis. Aptamers conjugated various drugs or nanomaterials are functioned for cancer target therapy to improve drugs delivery efficiency and reduce side effects. Furthermore, the duplexed aptamer is discussed to be applied for cancer cells detection and some conflicts of theories about duplexed aptamer designs are analyzed.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China; National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiayao Zhao
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China; National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiazhao Li
- Qionglai maternal&Child health care hospital, Chengdu, 611530, Sichuan, China
| | - Xin Liao
- School of laboratory medical and Life science, Wenzhou Medical University, Wenzhou, 325000, Fujian, China
| | - Fengling Chen
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
37
|
Passariello M, Camorani S, Vetrei C, Ricci S, Cerchia L, De Lorenzo C. Ipilimumab and Its Derived EGFR Aptamer-Based Conjugate Induce Efficient NK Cell Activation against Cancer Cells. Cancers (Basel) 2020; 12:E331. [PMID: 32024070 PMCID: PMC7072174 DOI: 10.3390/cancers12020331] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 01/05/2023] Open
Abstract
The immune checkpoint CTLA-4 (cytotoxic T-lymphocyte-antigen 4), which inhibits the co-stimulatory CD28 signal on T cells, has been recently found expressed on other cell populations, such as tumor and natural killer (NK) cells. We tested for the first time the effects of ipilimumab, the human anti-CTLA4 mAb in clinical use, on these cells and found that it inhibits the growth of tumor cells expressing CTLA-4 also in the absence of lymphocytes, and efficiently activates NK cells, thus suggesting an important unexplored role of NK cells in ipilimumab-modulated immune responses. Interestingly, the epidermal growth factor receptor (EGFR) has been shown to play a key role in tumor cell escape from immune surveillance, and in cytotoxic T lymphocyte inhibition. Thus, we tested combinatorial treatments of ipilimumab with an anti-EGFR aptamer endowed with anti-tumor activity, and constructed for the first time a novel bispecific immunoconjugate, made up of these two compounds. The novel immunoconjugate binds to the target cells, induces the activation of lymphocytes, including NK cells, and inhibits the growth of tumor target cells more efficiently than the parental compounds, by strongly enhancing the cytotoxic activity of both human peripheral blood mononuclear cells and NK cells against tumor cells.
Collapse
Affiliation(s)
- Margherita Passariello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (M.P.); (C.V.); (S.R.)
- Ceinge – Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), CNR, Via S. Pansini 5, 80131 Naples, Italy
| | - Cinzia Vetrei
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (M.P.); (C.V.); (S.R.)
- Ceinge – Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Stefania Ricci
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (M.P.); (C.V.); (S.R.)
- Ceinge – Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), CNR, Via S. Pansini 5, 80131 Naples, Italy
| | - Claudia De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (M.P.); (C.V.); (S.R.)
- Ceinge – Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy
| |
Collapse
|