1
|
Kona SV, Kalivendi SV. The USP10/13 inhibitor, spautin-1, attenuates the progression of glioblastoma by independently regulating RAF-ERK mediated glycolysis and SKP2. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167291. [PMID: 38857836 DOI: 10.1016/j.bbadis.2024.167291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
Glioblastoma is a malignant brain tumor with poor prognosis. Though several dysregulated pathways were found to mediate the tumor progression, hyperactivation of RAS-RAF-ERK pathway, enhanced glycolysis and SKP2 are associated with several glioblastomas. Recent findings on the role of USP10 in the transition from pro-neural to mesenchymal subtype of glioblastoma and, USP13 in the stabilization of RAF1 in mouse embryonic stem cells prompted us to examine their role in the mechanisms mediating the progression of glioblastoma. In the present study, we have examined the role of spautin-1, a pharmacological inhibitor of USP10 and USP13 in the mechanisms mediating glioblastoma. Our results indicate that spautin-1 as well as knockdown of its downstream targets, USP10 and USP13, reduced the proliferation and migration of glioblastoma cells. Also, spautin-1 mediated inhibition of RAF-ERK pathway or inhibition of RAF1 and MEK1 per se reduced the glycolytic function via PKM2/Glut-1 and inhibited the progression of glioblastoma. Further, the protooncogene, SKP2, which was shown to be a direct target of USP10 /USP13 was also reduced by spautin-1. While inhibition of SKP2 enhanced its downstream target p21, no apparent changes in the RAF-ERK levels or glycolytic function were evident. Also, inhibition of MEK1 did not affect SKP2 levels, indicating that these two pathways act independent of each other. Overall, our findings indicate that spautin-1 by virtue of its inhibitory effects on USP10/13 counteracts RAS-RAF-ERK mediated glycolysis and SKP2 that are critical in the progression of glioblastoma. Hence, further preclinical validation is warranted for taking the present observations forward.
Collapse
Affiliation(s)
- Swathi V Kona
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shasi V Kalivendi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Xi X, Chen S, Zhao X, Zhou Z, Zhu S, Ren X, Wang X, Wu J, Mu S, Li X, Shan E, Cui Y. TUBB4A Inhibits Glioma Development by Regulating ROS-PINK1/Parkin-Mitophagy Pathway. Mol Neurobiol 2024:10.1007/s12035-024-04459-z. [PMID: 39230869 DOI: 10.1007/s12035-024-04459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Glioma is a refractory malignant tumor with a powerful capacity for invasiveness and a poor prognosis. This study aims to investigate the role and mechanism of tubulin beta class IVA (TUBB4A) in glioma progression. The differential expression of TUBB4A in humans was obtained from databases and analyzed. Glioma cells U251-MG and U87-MG were intervened by pcDNA3.1(+) and TUBB4A overexpression plasmid. MTT, CCK8, LDH, wound healing, transwell, and western blotting were used to explore whether TUBB4A participates in the development of glioma. Reactive oxygen species (ROS) were detected by the DCFH-DA probe. Mitochondrial membrane potential (MMP) was examined by JC-1. It was found that TUBB4A expression level correlated with tumor grade, IDH1 status, 1p/19q status, and poor survival in glioma patients. In addition, TUBB4A overexpression inhibited the proliferation, migration, and invasion of U251-MG and U87-MG, while increasing the degree of apoptosis. Notably, TUBB4A overexpression promotes ROS generation and MMP depolarization, and induces mitophagy through the PINK1/Parkin pathway. Interestingly, mitochondria-targeted ROS scavenger reversed the effect of TUBB4A overexpression on PINK1/Parkin expression and mitophagy, whereas mitophagy inhibitor did not affect ROS production. And the effect of TUBB4A overexpression on mitophagy and glioma progression was consistent with that of PINK1/Parkin agonist. In conclusion, TUBB4A is a molecular marker for predicting the prognosis of glioma patients and an effective target for inhibiting glioma progression by regulating ROS-PINK1/Parkin-mitophagy pathway.
Collapse
Affiliation(s)
- Xueru Xi
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Suqin Chen
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Xiaoli Zhao
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Zimu Zhou
- The Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shanjie Zhu
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Xurui Ren
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Xiaomei Wang
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Jing Wu
- Department of Anesthesiology, The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Shuai Mu
- Department of Oncology, Senior Department of Oncology, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xianwen Li
- School of Nursing, Nanjing Medical University, Nanjing, China.
| | - Enfang Shan
- School of Nursing, Nanjing Medical University, Nanjing, China.
| | - Yan Cui
- School of Nursing, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Abyar S, Huang L, Husiev Y, Bretin L, Chau B, Ramu V, Wildeman JH, Belfor K, Wijaya LS, van der Noord VE, Harms AC, Siegler MA, Le Dévédec SE, Bonnet S. Oxygen-Dependent Interactions between the Ruthenium Cage and the Photoreleased Inhibitor in NAMPT-Targeted Photoactivated Chemotherapy. J Med Chem 2024; 67:11086-11102. [PMID: 38924492 PMCID: PMC11247496 DOI: 10.1021/acs.jmedchem.4c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Photoactivated chemotherapy agents form a new branch of physically targeted anticancer agents with potentially lower systemic side effects for patients. On the other hand, limited information exists on the intracellular interactions between the photoreleased metal cage and the photoreleased anticancer inhibitor. In this work, we report a new biological study of the known photoactivated compound Ru-STF31 in the glioblastoma cancer cell line, U87MG. Ru-STF31 targets nicotinamide phosphoribosyltransferase (NAMPT), an enzyme overexpressed in U87MG. Ru-STF31 is activated by red light irradiation and releases two photoproducts: the ruthenium cage and the cytotoxic inhibitor STF31. This study shows that Ru-STF31 can significantly decrease intracellular NAD+ levels in both normoxic (21% O2) and hypoxic (1% O2) U87MG cells. Strikingly, NAD+ depletion by light activation of Ru-STF31 in hypoxic U87MG cells could not be rescued by the addition of extracellular NAD+. Our data suggest an oxygen-dependent active role of the ruthenium photocage released by light activation.
Collapse
Affiliation(s)
- Selda Abyar
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, PO Box 9502, Leiden 2300 RA, The Netherlands
- Leiden
Academic Centre for Drug Research, Leiden
University, Gorlaeus Laboratories, PO Box 9502, Leiden 2300 RA, The Netherlands
| | - Luojiao Huang
- Leiden
Academic Centre for Drug Research, Leiden
University, Gorlaeus Laboratories, PO Box 9502, Leiden 2300 RA, The Netherlands
| | - Yurii Husiev
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, PO Box 9502, Leiden 2300 RA, The Netherlands
| | - Ludovic Bretin
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, PO Box 9502, Leiden 2300 RA, The Netherlands
| | - Bobby Chau
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, PO Box 9502, Leiden 2300 RA, The Netherlands
- Leiden
Academic Centre for Drug Research, Leiden
University, Gorlaeus Laboratories, PO Box 9502, Leiden 2300 RA, The Netherlands
| | - Vadde Ramu
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, PO Box 9502, Leiden 2300 RA, The Netherlands
| | - Jacob Hendricus Wildeman
- Leiden
Academic Centre for Drug Research, Leiden
University, Gorlaeus Laboratories, PO Box 9502, Leiden 2300 RA, The Netherlands
| | - Kimberley Belfor
- Leiden
Academic Centre for Drug Research, Leiden
University, Gorlaeus Laboratories, PO Box 9502, Leiden 2300 RA, The Netherlands
| | - Lukas S. Wijaya
- Leiden
Academic Centre for Drug Research, Leiden
University, Gorlaeus Laboratories, PO Box 9502, Leiden 2300 RA, The Netherlands
| | - Vera E. van der Noord
- Leiden
Academic Centre for Drug Research, Leiden
University, Gorlaeus Laboratories, PO Box 9502, Leiden 2300 RA, The Netherlands
| | - Amy C. Harms
- Leiden
Academic Centre for Drug Research, Leiden
University, Gorlaeus Laboratories, PO Box 9502, Leiden 2300 RA, The Netherlands
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218, United States
| | - Sylvia E. Le Dévédec
- Leiden
Academic Centre for Drug Research, Leiden
University, Gorlaeus Laboratories, PO Box 9502, Leiden 2300 RA, The Netherlands
| | - Sylvestre Bonnet
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, PO Box 9502, Leiden 2300 RA, The Netherlands
| |
Collapse
|
4
|
Kubelt C, Gilles L, Hellmold D, Blumenbecker T, Peschke E, Will O, Ahmeti H, Hövener JB, Jansen O, Lucius R, Synowitz M, Held-Feindt J. Temporal and regional expression changes and co-staining patterns of metabolic and stemness-related markers during glioblastoma progression. Eur J Neurosci 2024; 60:3572-3596. [PMID: 38708527 DOI: 10.1111/ejn.16357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
Glioblastomas (GBMs) are characterized by high heterogeneity, involving diverse cell types, including those with stem-like features contributing to GBM's malignancy. Moreover, metabolic alterations promote growth and therapeutic resistance of GBM. Depending on the metabolic state, antimetabolic treatments could be an effective strategy. Against this background, we investigated temporal and regional expression changes and co-staining patterns of selected metabolic markers [pyruvate kinase muscle isozyme 1/2 (PKM1/2), glucose transporter 1 (GLUT1), monocarboxylate transporter 1/4 (MCT1/4)] in a rodent model and patient-derived samples of GBM. To understand the cellular sources of marker expression, we also examined the connection of metabolic markers to markers related to stemness [Nestin, Krüppel-like factor 4 (KLF4)] in a regional and temporal context. Rat tumour biopsies revealed a temporally increasing expression of GLUT1, higher expression of MCT1/4, Nestin and KLF4, and lower expression of PKM1 compared to the contralateral hemisphere. Patient-derived tumours showed a higher expression of PKM2 and Nestin in the tumour centre vs. edge. Whereas rare co-staining of GLUT1/Nestin was found in tumour biopsies, PKM1/2 and MCT1/4 showed a more distinct co-staining with Nestin in rats and humans. KLF4 was mainly co-stained with GLUT1, MCT1 and PKM1/2 in rat and human tumours. All metabolic markers yielded individual co-staining patterns among themselves. Co-staining mainly occurred later in tumour progression and was more pronounced in tumour centres. Also, positive correlations were found amongst markers that showed co-staining. Our results highlight a link between metabolic alterations and stemness in GBM progression, with complex distinctions depending on studied markers, time points and regions.
Collapse
Affiliation(s)
- Carolin Kubelt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Lea Gilles
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Dana Hellmold
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Tjorven Blumenbecker
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Eva Peschke
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Olga Will
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Hajrullah Ahmeti
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Kiel University, Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
5
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, Liu B. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B 2024; 14:953-1008. [PMID: 38487001 PMCID: PMC10935242 DOI: 10.1016/j.apsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer reprogramming is an important facilitator of cancer development and survival, with tumor cells exhibiting a preference for aerobic glycolysis beyond oxidative phosphorylation, even under sufficient oxygen supply condition. This metabolic alteration, known as the Warburg effect, serves as a significant indicator of malignant tumor transformation. The Warburg effect primarily impacts cancer occurrence by influencing the aerobic glycolysis pathway in cancer cells. Key enzymes involved in this process include glucose transporters (GLUTs), HKs, PFKs, LDHs, and PKM2. Moreover, the expression of transcriptional regulatory factors and proteins, such as FOXM1, p53, NF-κB, HIF1α, and c-Myc, can also influence cancer progression. Furthermore, lncRNAs, miRNAs, and circular RNAs play a vital role in directly regulating the Warburg effect. Additionally, gene mutations, tumor microenvironment remodeling, and immune system interactions are closely associated with the Warburg effect. Notably, the development of drugs targeting the Warburg effect has exhibited promising potential in tumor treatment. This comprehensive review presents novel directions and approaches for the early diagnosis and treatment of cancer patients by conducting in-depth research and summarizing the bright prospects of targeting the Warburg effect in cancer.
Collapse
Affiliation(s)
- Minru Liao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaodan Luo
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiwen Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Pucci G, Minafra L, Bravatà V, Calvaruso M, Turturici G, Cammarata FP, Savoca G, Abbate B, Russo G, Cavalieri V, Forte GI. Glut-3 Gene Knockdown as a Potential Strategy to Overcome Glioblastoma Radioresistance. Int J Mol Sci 2024; 25:2079. [PMID: 38396757 PMCID: PMC10889562 DOI: 10.3390/ijms25042079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The hypoxic pattern of glioblastoma (GBM) is known to be a primary cause of radioresistance. Our study explored the possibility of using gene knockdown of key factors involved in the molecular response to hypoxia, to overcome GBM radioresistance. We used the U87 cell line subjected to chemical hypoxia generated by CoCl2 and exposed to 2 Gy of X-rays, as single or combined treatments, and evaluated gene expression changes of biomarkers involved in the Warburg effect, cell cycle control, and survival to identify the best molecular targets to be knocked-down, among those directly activated by the HIF-1α transcription factor. By this approach, glut-3 and pdk-1 genes were chosen, and the effects of their morpholino-induced gene silencing were evaluated by exploring the proliferative rates and the molecular modifications of the above-mentioned biomarkers. We found that, after combined treatments, glut-3 gene knockdown induced a greater decrease in cell proliferation, compared to pdk-1 gene knockdown and strong upregulation of glut-1 and ldha, as a sign of cell response to restore the anaerobic glycolysis pathway. Overall, glut-3 gene knockdown offered a better chance of controlling the anaerobic use of pyruvate and a better proliferation rate reduction, suggesting it is a suitable silencing target to overcome radioresistance.
Collapse
Affiliation(s)
- Gaia Pucci
- Institute of Molecular Bioimaging and Physiology (IBFM)-National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (V.B.); (M.C.); (F.P.C.); (G.R.); (G.I.F.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld.17, 90128 Palermo, Italy;
| | - Luigi Minafra
- Institute of Molecular Bioimaging and Physiology (IBFM)-National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (V.B.); (M.C.); (F.P.C.); (G.R.); (G.I.F.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld.17, 90128 Palermo, Italy;
| | - Valentina Bravatà
- Institute of Molecular Bioimaging and Physiology (IBFM)-National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (V.B.); (M.C.); (F.P.C.); (G.R.); (G.I.F.)
| | - Marco Calvaruso
- Institute of Molecular Bioimaging and Physiology (IBFM)-National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (V.B.); (M.C.); (F.P.C.); (G.R.); (G.I.F.)
| | - Giuseppina Turturici
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld.17, 90128 Palermo, Italy;
| | - Francesco P. Cammarata
- Institute of Molecular Bioimaging and Physiology (IBFM)-National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (V.B.); (M.C.); (F.P.C.); (G.R.); (G.I.F.)
| | - Gaetano Savoca
- Radiation Oncology, ARNAS-Civico Hospital, 90100 Palermo, Italy; (G.S.); (B.A.)
| | - Boris Abbate
- Radiation Oncology, ARNAS-Civico Hospital, 90100 Palermo, Italy; (G.S.); (B.A.)
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology (IBFM)-National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (V.B.); (M.C.); (F.P.C.); (G.R.); (G.I.F.)
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld.17, 90128 Palermo, Italy;
| | - Giusi I. Forte
- Institute of Molecular Bioimaging and Physiology (IBFM)-National Research Council (CNR), Cefalù Secondary Site, C/da Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (V.B.); (M.C.); (F.P.C.); (G.R.); (G.I.F.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale delle Scienze Bld.17, 90128 Palermo, Italy;
| |
Collapse
|
7
|
Duan Q, Liu R, Luo JQ, Zhang JY, Zhou Y, Zhao J, Du JZ. Virus-Inspired Glucose and Polydopamine (GPDA)-Coating as an Effective Strategy for the Construction of Brain Delivery Platforms. NANO LETTERS 2024; 24:402-410. [PMID: 38153842 DOI: 10.1021/acs.nanolett.3c04175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The ability of drugs to cross the blood-brain barrier (BBB) is crucial for treating central nervous system (CNS) disorders. Inspired by natural viruses, here we report a glucose and polydopamine (GPDA) coating method for the construction of delivery platforms for efficient BBB crossing. Such platforms are composed of nanoparticles (NPs) as the inner core and surface functionalized with glucose-poly(ethylene glycol) (Glu-PEG) and polydopamine (PDA) coating. Glu-PEG provides selective targeting of the NPs to brain capillary endothelial cells (BCECs), while PDA enhances the transcytosis of the NPs. This strategy is applicable to gold NPs (AuNPs), silica, and polymeric NPs, which achieves as high as 1.87% of the injected dose/g of brain in healthy brain tissues. In addition, the GPDA coating manages to deliver NPs into the tumor tissue in the orthotopic glioblastoma model. Our study may provide a universal strategy for the construction of delivery platforms for efficient BBB crossing and brain drug delivery.
Collapse
Affiliation(s)
- Qijia Duan
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Rong Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jia-Qi Luo
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jing-Yang Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China
| | - Yubo Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junpeng Zhao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jin-Zhi Du
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Trejo-Solis C, Silva-Adaya D, Serrano-García N, Magaña-Maldonado R, Jimenez-Farfan D, Ferreira-Guerrero E, Cruz-Salgado A, Castillo-Rodriguez RA. Role of Glycolytic and Glutamine Metabolism Reprogramming on the Proliferation, Invasion, and Apoptosis Resistance through Modulation of Signaling Pathways in Glioblastoma. Int J Mol Sci 2023; 24:17633. [PMID: 38139462 PMCID: PMC10744281 DOI: 10.3390/ijms242417633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Elizabeth Ferreira-Guerrero
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | | |
Collapse
|
9
|
Amin A, Koul AM, Wani UM, Farooq F, Amin B, Wani Z, Lone A, Qadri A, Qadri RA. Dissection of paracrine/autocrine interplay in lung tumor microenvironment mimicking cancer cell-monocyte co-culture models reveals proteins that promote inflammation and metastasis. BMC Cancer 2023; 23:926. [PMID: 37784035 PMCID: PMC10544320 DOI: 10.1186/s12885-023-11428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Tumor cell-monocyte interactions play crucial roles in shaping up the pro-tumorigenic phenotype and functional output of tumor-associated macrophages. Within the tumor microenvironment, such heterotypic cell-cell interactions are known to occur via secretory proteins. Secretory proteins establish a diabolic liaison between tumor cells and monocytes, leading to their recruitment, subsequent polarization and consequent tumor progression. METHODS We co-cultured model lung adenocarcinoma cell line A549 with model monocytes, THP-1 to delineate the interactions between them. The levels of prototypical pro-inflammatory cytokines like TNF-𝛼, IL-6 and anti-inflammatory cytokines like IL-10 were measured by ELISA. Migration, invasion and attachment independence of lung cancer cells was assessed by wound healing, transwell invasion and colony formation assays respectively. The status of EMT was evaluated by immunofluorescence. Identification of secretory proteins differentially expressed in monocultures and co-culture was carried out using SILAC LC-MS/MS. Various insilico tools like Cytoscape, Reacfoam, CHAT and Kaplan-Meier plotter were utilized for association studies, pathway analysis, functional classification, cancer hallmark relevance and predicting the prognostic potential of the candidate secretory proteins respectively. RESULTS Co-culture of A549 and THP-1 cells in 1:10 ratio showed early release of prototypical pro-inflammatory cytokines TNF-𝛼 and IL-6, however anti-inflammatory cytokine, IL-10 was observed to be released at the highest time point. The conditioned medium obtained from this co-culture ratio promoted the migration, invasion and colony formation as well as the EMT of A549 cells. Co-culturing of A549 with THP-1 cells modulated the secretion of proteins involved in cell proliferation, migration, invasion, EMT, inflammation, angiogenesis and inhibition of apoptosis. Among these proteins Versican, Tetranectin, IGFBP2, TUBB4B, C2 and IFI30 were found to correlate with the inflammatory and pro-metastatic milieu observed in our experimental setup. Furthermore, dysregulated expression of these proteins was found to be associated with poor prognosis and negative disease outcomes in lung adenocarcinoma compared to other cancer types. Pharmacological interventions targeting these proteins may serve as useful therapeutic approaches in lung adenocarcinoma. CONCLUSION In this study, we have demonstrated that the lung cancer cell-monocyte cross-talk modulates the secretion of IFI30, RNH1, CLEC3B, VCAN, IGFBP2, C2 and TUBB4B favoring tumor growth and metastasis.
Collapse
Affiliation(s)
- Asif Amin
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, J&K, 190006, India
| | - Aabid Mustafa Koul
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, J&K, 190006, India
| | - Umer Majeed Wani
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, J&K, 190006, India
| | - Faizah Farooq
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, J&K, 190006, India
| | - Basit Amin
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, J&K, 190006, India
| | - Zubair Wani
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, J&K, 190006, India
| | - Asif Lone
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110608, India
| | - Ayub Qadri
- Abdul Kalam Chair for Translational Research, Islamic University of Science and Technology, Awantipora, J&K, 192122, India
| | - Raies A Qadri
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, J&K, 190006, India.
| |
Collapse
|
10
|
El-Baba C, Ayache Z, Goli M, Hayar B, Kawtharani Z, Pisano C, Kobeissy F, Mechref Y, Darwiche N. The Antitumor Effect of the DNA Polymerase Alpha Inhibitor ST1926 in Glioblastoma: A Proteomics Approach. Int J Mol Sci 2023; 24:14069. [PMID: 37762371 PMCID: PMC10531065 DOI: 10.3390/ijms241814069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastoma Multiforme (GBM) is the most aggressive form of malignant brain tumor. The median survival rate does not exceed two years, indicating an imminent need to develop novel therapies. The atypical adamantyl retinoid ST1926 induces apoptosis and growth inhibition in different cancer types. We have shown that ST1926 is an inhibitor of the catalytic subunit of DNA polymerase alpha (POLA1), which is involved in initiating DNA synthesis in eukaryotic cells. POLA1 levels are elevated in GBM versus normal brain tissues. Therefore, we studied the antitumor effects of ST1926 in several human GBM cell lines. We further explored the global protein expression profiles in GBM cell lines using liquid chromatography coupled with tandem mass spectrometry to identify new targets of ST1926. Low sub-micromolar concentrations of ST1926 potently decreased cell viability, induced cell damage and apoptosis, and reduced POLA1 protein levels in GBM cells. The proteomics profiles revealed 197 proteins significantly differentially altered upon ST1926 treatment of GBM cells involved in various cellular processes. We explored the differential gene and protein expression of significantly altered proteins in GBM compared to normal brain tissues.
Collapse
Affiliation(s)
- Chirine El-Baba
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (C.E.-B.); (Z.A.); (B.H.); (Z.K.); (F.K.)
| | - Zeinab Ayache
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (C.E.-B.); (Z.A.); (B.H.); (Z.K.); (F.K.)
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Berthe Hayar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (C.E.-B.); (Z.A.); (B.H.); (Z.K.); (F.K.)
| | - Zeinab Kawtharani
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (C.E.-B.); (Z.A.); (B.H.); (Z.K.); (F.K.)
| | - Claudio Pisano
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy;
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (C.E.-B.); (Z.A.); (B.H.); (Z.K.); (F.K.)
- Department of Neurobiology, Center for Neurotrauma, Multiomics and Biomarkers (CNMB), Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (C.E.-B.); (Z.A.); (B.H.); (Z.K.); (F.K.)
| |
Collapse
|
11
|
Martins F, van der Kellen D, Gonçalves LG, Serpa J. Metabolic Profiles Point Out Metabolic Pathways Pivotal in Two Glioblastoma (GBM) Cell Lines, U251 and U-87MG. Biomedicines 2023; 11:2041. [PMID: 37509679 PMCID: PMC10377067 DOI: 10.3390/biomedicines11072041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma (GBM) is the most lethal central nervous system (CNS) tumor, mainly due to its high heterogeneity, invasiveness, and proliferation rate. These tumors remain a therapeutic challenge, and there are still some gaps in the GBM biology literature. Despite the significant amount of knowledge produced by research on cancer metabolism, its implementation in cancer treatment has been limited. In this study, we explored transcriptomics data from the TCGA database to provide new insights for future definition of metabolism-related patterns useful for clinical applications. Moreover, we investigated the impact of key metabolites (glucose, lactate, glutamine, and glutamate) in the gene expression and metabolic profile of two GBM cell lines, U251 and U-87MG, together with the impact of these organic compounds on malignancy cell features. GBM cell lines were able to adapt to the exposure to each tested organic compound. Both cell lines fulfilled glycolysis in the presence of glucose and were able to produce and consume lactate. Glutamine dependency was also highlighted, and glutamine and glutamate availability favored biosynthesis observed by the increase in the expression of genes involved in fatty acid (FA) synthesis. These findings are relevant and point out metabolic pathways to be targeted in GBM and also reinforce that patients' metabolic profiling can be useful in terms of personalized medicine.
Collapse
Affiliation(s)
- Filipa Martins
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - David van der Kellen
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Luís G Gonçalves
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| |
Collapse
|
12
|
Shoda K, Tsuji S, Nakamura S, Egashira Y, Enomoto Y, Nakayama N, Shimazawa M, Iwama T, Hara H. Canagliflozin Inhibits Glioblastoma Growth and Proliferation by Activating AMPK. Cell Mol Neurobiol 2023; 43:879-892. [PMID: 35435536 DOI: 10.1007/s10571-022-01221-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/26/2022] [Indexed: 12/17/2022]
Abstract
Sodium-glucose transporter 2 (SGLT2) inhibitors are antidiabetic drugs affecting SGLT2. Recent studies have shown various cancers expressing SGLT2, and SGLT2 inhibitors attenuating tumor proliferation. We evaluated the antitumor activities of canagliflozin, a SGLT2 inhibitor, on glioblastoma (GBM). Three GBM cell lines, U251MG (human), U87MG (human), and GL261 (murine), were used. We assessed the expression of SGLT2 of GBM through immunoblotting, specimen-use, cell viability assays, and glucose uptake assay with canagliflozin. Then, we assessed phosphorylation of AMP-activated protein kinase (AMPK), p70 S6 kinase, and S6 ribosomal protein by immunoblotting. Concentrations of 5, 10, 20, and 40 μM canagliflozin were used in these tests. We also evaluated cell viability and immunoblotting using U251MG with siRNA knockdown of SGLT2. Furthermore, we divided the mice into vehicle group and canagliflozin group. The canagliflozin group was administrated with 100 mg/kg of canagliflozin orally for 10 days starting from the third days post-GBM transplant. The brains were removed and the tumor volume was evaluated using sections. SGLT2 was expressed in GBM cell and GBM allograft mouse. Canagliflozin administration at 40 μM significantly inhibited cell proliferation and glucose uptake into the cell. Additionally, canagliflozin at 40 μM significantly increased the phosphorylation of AMPK and suppressed that of p70 S6 kinase and S6 ribosomal protein. Similar results of cell viability assays and immunoblotting were obtained using siRNA SGLT2. Furthermore, although less effective than in vitro, the canagliflozin group significantly suppressed tumor growth in GBM-transplanted mice. This suggests that canagliflozin can be used as a potential treatment for GBM.
Collapse
Affiliation(s)
- Kenji Shoda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.,Department of Neurosurgery, Gifu University School of Medicine, Gifu, Japan
| | - Shohei Tsuji
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Yusuke Egashira
- Department of Neurosurgery, Gifu University School of Medicine, Gifu, Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University School of Medicine, Gifu, Japan
| | - Noriyuki Nakayama
- Department of Neurosurgery, Gifu University School of Medicine, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University School of Medicine, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
13
|
SREBP2/Rab11s/GLUT1/6 network regulates proliferation and migration of glioblastoma. Pathol Res Pract 2022; 240:154176. [PMID: 36327817 DOI: 10.1016/j.prp.2022.154176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Cholesterol serves a vital role in the occurrence and development of glioblastoma multiforme (GBM). Furthermore, cholesterol synthesis is regulated by sterol regulatory element-binding protein 2 (SREBP2), and certain glucose transporters (GLUTs) and Ras-related protein Rab11 (Rab11) small GTPase family members (Rab11s) may contribute to the process. The Cancer Genome Atlas was used to analyze the relationship between prognosis and GLUT gene expressions. To investigate the regulatory effect of Rab11s and SREBP2 on GLUTs during tumor progression, single cell RNA sequencing (scRNA-seq), western blotting and reverse transcription-quantitative PCR were performed on glioma tissues and the T98G GBM cell line. Cell viability and migration were assessed by performing MTT and wound healing assays, respectively. Moreover, the dual-luciferase reporter gene assay was conducted to predict the sterol regulatory elements in the promoter regions of the target genes. The results demonstrated that high SREBP2, GLUT1 and GLUT6 expression was associated with poor survival of patients with GBM. ScRNA-seq distinguished glioblastoma cells by EGFR and indicated the related lipid metabolism signaling pathways. Moreover, the results indicated that GLUT1 and GLUT6 were regulated by SREBP2 and Rab11s. Rab11s and SREBP2 also contributed to T98G cell viability and migration. Additionally, the results indicated that Rab11s, GLUT1 and GLUT6 were transcriptionally regulated by SREBP2. Therefore, the present study suggested that the SREBP2/Rab11/GLUT network promoted T98G cell growth, thus, identifying potential therapeutic targets for GBM.
Collapse
|
14
|
Zhang CW, Zhou B, Liu YC, Su LW, Meng J, Li SL, Wang XL. LINC00365 inhibited lung adenocarcinoma progression and glycolysis via sponging miR-429/KCTD12 axis. ENVIRONMENTAL TOXICOLOGY 2022; 37:1853-1866. [PMID: 35426242 DOI: 10.1002/tox.23532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/15/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
This study researched the function of long non-coding RNA LINC00365 in lung adenocarcinoma (LAD) progression. LINC00365, miR-429, and KCTD12 expression in the LAD clinical tissues and cells were detcetd by qRT-PCR and Western blot. LINC00365, miR-429, and KCTD12 effects on H1975 cells malignant phenotype were detected by cell counting kit-8 assay, clone formation experiment, Transwell experiment, and glycolysis. Dual luciferase reporter gene assay and RNA pull-down assay were implemented. LINC00365 effect on H1975 cells in vivo growth was detected. LINC00365 was low expressed in the LAD patients and cells, associating with poor outcome. LINC00365 up-regulation attenuated H1975 cells proliferation, migration, invasion, glycolysis and in vivo growth. LINC00365 inhibited KCTD12 expression by sponging miR-429. miR-429 up-regulation and KCTD12 down-regulation partial reversed LINC00365 inhibition on H1975 cells malignant phenotype. Thus, LINC00365 inhibited LAD progression and glycolysis via targeting miR-429/KCTD12 axis. LINC00365 might be a potential candidate for LAD target treatment clinically.
Collapse
Affiliation(s)
- Cheng-Wei Zhang
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| | - Bin Zhou
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| | - Yan-Chao Liu
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| | - Li-Wei Su
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| | - Jie Meng
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| | - Shao-Lei Li
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xue-Long Wang
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China
| |
Collapse
|
15
|
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022; 65:8596-8685. [PMID: 35786935 PMCID: PMC9297300 DOI: 10.1021/acs.jmedchem.1c01946] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glioblastoma (GBM) is a highly malignant
brain tumor characterized
by a heterogeneous population of genetically unstable and highly infiltrative
cells that are resistant to chemotherapy. Although substantial efforts
have been invested in the field of anti-GBM drug discovery in the
past decade, success has primarily been confined to the preclinical
level, and clinical studies have often been hampered due to efficacy-,
selectivity-, or physicochemical property-related issues. Thus, expansion
of the list of molecular targets coupled with a pragmatic design of
new small-molecule inhibitors with central nervous system (CNS)-penetrating
ability is required to steer the wheels of anti-GBM drug discovery
endeavors. This Perspective presents various aspects of drug discovery
(challenges in GBM drug discovery and delivery, therapeutic targets,
and agents under clinical investigation). The comprehensively covered
sections include the recent medicinal chemistry campaigns embarked
upon to validate the potential of numerous enzymes/proteins/receptors
as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chetna Faujdar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Basant Malik
- Department of Sterile Product Development, Research and Development-Unit 2, Jubiliant Generics Ltd., Noida 201301, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
16
|
Maliekal TT, Dharmapal D, Sengupta S. Tubulin Isotypes: Emerging Roles in Defining Cancer Stem Cell Niche. Front Immunol 2022; 13:876278. [PMID: 35693789 PMCID: PMC9179084 DOI: 10.3389/fimmu.2022.876278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Although the role of microtubule dynamics in cancer progression is well-established, the roles of tubulin isotypes, their cargos and their specific function in the induction and sustenance of cancer stem cells (CSCs) were poorly explored. But emerging reports urge to focus on the transport function of tubulin isotypes in defining orchestrated expression of functionally critical molecules in establishing a stem cell niche, which is the key for CSC regulation. In this review, we summarize the role of specific tubulin isotypes in the transport of functional molecules that regulate metabolic reprogramming, which leads to the induction of CSCs and immune evasion. Recently, the surface expression of GLUT1 and GRP78 as well as voltage-dependent anion channel (VDAC) permeability, regulated by specific isotypes of β-tubulins have been shown to impart CSC properties to cancer cells, by implementing a metabolic reprogramming. Moreover, βIVb tubulin is shown to be critical in modulating EphrinB1signaling to sustain CSCs in oral carcinoma. These tubulin-interacting molecules, Ephrins, GLUT1 and GRP78, are also important regulators of immune evasion, by evoking PD-L1 mediated T-cell suppression. Thus, the recent advances in the field implicate that tubulins play a role in the controlled transport of molecules involved in CSC niche. The indication of tubulin isotypes in the regulation of CSCs offers a strategy to specifically target those tubulin isotypes to eliminate CSCs, rather than the general inhibition of microtubules, which usually leads to therapy resistance.
Collapse
Affiliation(s)
- Tessy Thomas Maliekal
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Regional Centre for Biotechnology, Faridabad, India
- *Correspondence: Tessy Thomas Maliekal, ; Suparna Sengupta,
| | - Dhrishya Dharmapal
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- University of Kerala, Department of Biotechnology, Thiruvananthapuram, India
| | - Suparna Sengupta
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Regional Centre for Biotechnology, Faridabad, India
- University of Kerala, Department of Biotechnology, Thiruvananthapuram, India
- *Correspondence: Tessy Thomas Maliekal, ; Suparna Sengupta,
| |
Collapse
|
17
|
Gao S, Wang S, Zhao Z, Zhang C, Liu Z, Ye P, Xu Z, Yi B, Jiao K, Naik GA, Wei S, Rais-Bahrami S, Bae S, Yang WH, Sonpavde G, Liu R, Wang L. TUBB4A interacts with MYH9 to protect the nucleus during cell migration and promotes prostate cancer via GSK3β/β-catenin signalling. Nat Commun 2022; 13:2792. [PMID: 35589707 PMCID: PMC9120517 DOI: 10.1038/s41467-022-30409-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/28/2022] [Indexed: 01/22/2023] Open
Abstract
Human tubulin beta class IVa (TUBB4A) is a member of the β-tubulin family. In most normal tissues, expression of TUBB4A is little to none, but it is highly expressed in human prostate cancer. Here we show that high expression levels of TUBB4A are associated with aggressive prostate cancers and poor patient survival, especially for African-American men. Additionally, in prostate cancer cells, TUBB4A knockout (KO) reduces cell growth and migration but induces DNA damage through increased γH2AX and 53BP1. Furthermore, during constricted cell migration, TUBB4A interacts with MYH9 to protect the nucleus, but either TUBB4A KO or MYH9 knockdown leads to severe DNA damage and reduces the NF-κB signaling response. Also, TUBB4A KO retards tumor growth and metastasis. Functional analysis reveals that TUBB4A/GSK3β binds to the N-terminal of MYH9, and that TUBB4A KO reduces MYH9-mediated GSK3β ubiquitination and degradation, leading to decreased activation of β-catenin signaling and its relevant epithelial-mesenchymal transition. Likewise, prostate-specific deletion of Tubb4a reduces spontaneous tumor growth and metastasis via inhibition of NF-κB, cyclin D1, and c-MYC signaling activation. Our results suggest an oncogenic role of TUBB4A and provide a potentially actionable therapeutic target for prostate cancers with TUBB4A overexpression. The β-tubulin family protein TUBB4A is highly expressed in cancer but it’s molecular role is unclear. Here, the authors show that TUBB4A is required to protect the nucleus from genomic instability during migration and that it’s over expression promotes cancer progression.
Collapse
Affiliation(s)
- Song Gao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shuaibin Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhiying Zhao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chao Zhang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhicao Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ping Ye
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhifang Xu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baozhu Yi
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gurudatta A Naik
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shi Wei
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Soroush Rais-Bahrami
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sejong Bae
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | | | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
18
|
Miao Z, Geng L, Xu L, Ye Y, Wu C, Tian W, Liu N. Integrated analysis reveals prognostic value and mesenchymal identity suppression by glycoprotein M6B in glioma. Am J Transl Res 2022; 14:3052-3065. [PMID: 35702116 PMCID: PMC9185087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM) stem cells (GSCs) possess multilineage differentiation potential, which is responsible for cancer progression. Glycoprotein M6B (GPM6B) is a pivotal enzyme in regulating intracranial cell differentiation and neuronal myelination, and is widely studied in several cancers. However, research on GPM6B in glioma is limited. In this study, we analyzed the clinical and molecular characteristics of GPM6B using RNA sequencing data of glioma samples from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) datasets. Quantitative real-time PCR (qRT-PCR), western blot (WB), and immunohistochemistry (IHC) were performed for further validation. Moreover, a neurosphere formation assay, extreme limiting dilution assay, and bioluminescent imaging were employed to validate the therapeutic effects targeted on GPM6B in vitro and in vivo. We found lower expression of GPM6B in aggressive glioma. Receiver operating characteristic (ROC) analysis suggested that GPM6B is an indicator of mesenchymal subtype. Kaplan-Meier analysis also revealed that patients with glioma with high GPM6B expression levels had a tendency toward prolonged survival. The GPM6B expression level could predict favorable prognosis of patients independent of age, grade, IDH status, and 1p/19q status. Additionally, targeting GPM6B impaired the self-renewal and tumorgenicity of mesenchymal GSCs by inhibiting the activation of the Wnt pathway in vitro and in vivo. Our results demonstrated that GPM6B is a crucial predictor in glioma prognosis and represents an underlying therapeutic target in GSC therapy.
Collapse
Affiliation(s)
- Zong Miao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Liangyuan Geng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Lei Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Yangfan Ye
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Chao Wu
- Nantong UniversityNantong, Jiangsu, China
| | - Wei Tian
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Jiangnan UniversityWuxi, Jiangsu, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| |
Collapse
|
19
|
Gorick CM, Saucerman JJ, Price RJ. Computational model of brain endothelial cell signaling pathways predicts therapeutic targets for cerebral pathologies. J Mol Cell Cardiol 2022; 164:17-28. [PMID: 34798125 PMCID: PMC8958390 DOI: 10.1016/j.yjmcc.2021.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/13/2021] [Accepted: 11/13/2021] [Indexed: 11/25/2022]
Abstract
Brain endothelial cells serve many critical homeostatic functions. In addition to sensing and regulating blood flow, they maintain blood-brain barrier function, including precise control of nutrient exchange and efflux of xenobiotics. Many signaling pathways in brain endothelial cells have been implicated in both health and disease; however, our understanding of how these signaling pathways functionally integrate is limited. A model capable of integrating these signaling pathways could both advance our understanding of brain endothelial cell signaling networks and potentially identify promising molecular targets for endothelial cell-based drug or gene therapies. To this end, we developed a large-scale computational model, wherein brain endothelial cell signaling pathways were reconstructed from the literature and converted into a network of logic-based differential equations. The model integrates 63 nodes (including proteins, mRNA, small molecules, and cell phenotypes) and 82 reactions connecting these nodes. Specifically, our model combines signaling pathways relating to VEGF-A, BDNF, NGF, and Wnt signaling, in addition to incorporating pathways relating to focused ultrasound as a therapeutic delivery tool. To validate the model, independently established relationships between selected inputs and outputs were simulated, with the model yielding correct predictions 73% of the time. We identified influential and sensitive nodes under different physiological or pathological contexts, including altered brain endothelial cell conditions during glioma, Alzheimer's disease, and ischemic stroke. Nodes with the greatest influence over combinations of desired model outputs were identified as potential druggable targets for these disease conditions. For example, the model predicts therapeutic benefits from inhibiting AKT, Hif-1α, or cathepsin D in the context of glioma - each of which are currently being studied in clinical or pre-clinical trials. Notably, the model also permits testing multiple combinations of node alterations for their effects on the network and the desired outputs (such as inhibiting AKT and overexpressing the P75 neurotrophin receptor simultaneously in the context of glioma), allowing for the prediction of optimal combination therapies. In all, our approach integrates results from over 100 past studies into a coherent and powerful model, capable of both revealing network interactions unapparent from studying any one pathway in isolation and predicting therapeutic targets for treating devastating brain pathologies.
Collapse
Affiliation(s)
- Catherine M. Gorick
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA,Corresponding authors at: Department of Biomedical Engineering, Box 800759, Health System, University of Virginia, Charlottesville, VA 22908, USA. (J.J. Saucerman), (R.J. Price)
| | - Richard J. Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA,Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, USA,Corresponding authors at: Department of Biomedical Engineering, Box 800759, Health System, University of Virginia, Charlottesville, VA 22908, USA. (J.J. Saucerman), (R.J. Price)
| |
Collapse
|
20
|
Dharmapal D, Jyothy A, Mohan A, Balagopal PG, George NA, Sebastian P, Maliekal TT, Sengupta S. β-Tubulin Isotype, TUBB4B, Regulates The Maintenance of Cancer Stem Cells. Front Oncol 2021; 11:788024. [PMID: 35004310 PMCID: PMC8733585 DOI: 10.3389/fonc.2021.788024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent advancements in cancer research have shown that cancer stem cell (CSC) niche is a crucial factor modulating tumor progression and treatment outcomes. It sustains CSCs by orchestrated regulation of several cytokines, growth factors, and signaling pathways. Although the features defining adult stem cell niches are well-explored, the CSC niche is poorly characterized. Since membrane trafficking proteins have been shown to be essential for the localization of critical proteins supporting CSCs, we investigated the role of TUBB4B, a probable membrane trafficking protein that was found to be overexpressed in the membranes of stem cell enriched cultures, in sustaining CSCs in oral cancer. Here, we show that the knockdown of TUBB4B downregulates the expression of pluripotency markers, depletes ALDH1A1+ population, decreases in vitro sphere formation, and diminishes the tumor initiation potential in vivo. As TUBB4B is not known to have any role in transcriptional regulation nor cell signaling, we suspected that its membrane trafficking function plays a role in constituting a CSC niche. The pattern of its expression in tissue sections, forming a gradient in and around the CSCs, reinforced the notion. Later, we explored its possible cooperation with a signaling protein, Ephrin-B1, the abrogation of which reduces the self-renewal of oral cancer stem cells. Expression and survival analyses based on the TCGA dataset of head and neck squamous cell carcinoma (HNSCC) samples indicated that the functional cooperation of TUBB4 and EFNB1 results in a poor prognosis. We also show that TUBB4B and Ephrin-B1 cohabit in the CSC niche. Moreover, depletion of TUBB4B downregulates the membrane expression of Ephrin-B1 and reduces the CSC population. Our results imply that the dynamics of TUBB4B is decisive for the surface localization of proteins, like Ephrin-B1, that sustain CSCs by their concerted signaling.
Collapse
Affiliation(s)
- Dhrishya Dharmapal
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, India
| | - Athira Jyothy
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, India
| | - Amrutha Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Manipal Academy of Higher Education, Manipal, India
| | - P. G. Balagopal
- Surgical Oncology, Regional Cancer Centre, Thiruvananthapuram, India
| | | | - Paul Sebastian
- Surgical Oncology, Regional Cancer Centre, Thiruvananthapuram, India
| | | | - Suparna Sengupta
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
21
|
Kang H, Lee S, Kim K, Jeon J, Kang SG, Youn H, Kim HY, Youn B. Downregulated CLIP3 induces radioresistance by enhancing stemness and glycolytic flux in glioblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:282. [PMID: 34488821 PMCID: PMC8420000 DOI: 10.1186/s13046-021-02077-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022]
Abstract
Background Glioblastoma Multiforme (GBM) is a malignant primary brain tumor in which the standard treatment, ionizing radiation (IR), achieves a median survival of about 15 months. GBM harbors glioblastoma stem-like cells (GSCs), which play a crucial role in therapeutic resistance and recurrence. Methods Patient-derived GSCs, GBM cell lines, intracranial GBM xenografts, and GBM sections were used to measure mRNA and protein expression and determine the related molecular mechanisms by qRT-PCR, immunoblot, immunoprecipitation, immunofluorescence, OCR, ECAR, live-cell imaging, and immunohistochemistry. Orthotopic GBM xenograft models were applied to investigate tumor inhibitory effects of glimepiride combined with radiotherapy. Results We report that GSCs that survive standard treatment radiation upregulate Speedy/RINGO cell cycle regulator family member A (Spy1) and downregulate CAP-Gly domain containing linker protein 3 (CLIP3, also known as CLIPR-59). We discovered that Spy1 activation and CLIP3 inhibition coordinately shift GBM cell glucose metabolism to favor glycolysis via two cellular processes: transcriptional regulation of CLIP3 and facilitating Glucose transporter 3 (GLUT3) trafficking to cellular membranes in GBM cells. Importantly, in combination with IR, glimepiride, an FDA-approved medication used to treat type 2 diabetes mellitus, disrupts GSCs maintenance and suppresses glycolytic activity by restoring CLIP3 function. In addition, combining radiotherapy and glimepiride significantly reduced GBM growth and improved survival in a GBM orthotopic xenograft mouse model. Conclusions Our data suggest that radioresistant GBM cells exhibit enhanced stemness and glycolytic activity mediated by the Spy1-CLIP3 axis. Thus, glimepiride could be an attractive strategy for overcoming radioresistance and recurrence by rescuing CLIP3 expression. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02077-4.
Collapse
Affiliation(s)
- Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea.,Present address: Institute of Bioinnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Kyeongmin Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Jaewan Jeon
- Department of Radiation Oncology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Medical Sciences, Yonsei University Graduate School, Seoul, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Hae Yu Kim
- Department of Neurosurgery, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea. .,Department of Biological Sciences, Pusan National University, Busandaehak-ro 63beon-gil 2, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
22
|
Firdous S, Abid R, Nawaz Z, Bukhari F, Anwer A, Cheng LL, Sadaf S. Dysregulated Alanine as a Potential Predictive Marker of Glioma-An Insight from Untargeted HRMAS-NMR and Machine Learning Data. Metabolites 2021; 11:507. [PMID: 34436448 PMCID: PMC8402070 DOI: 10.3390/metabo11080507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 01/04/2023] Open
Abstract
Metabolic alterations play a crucial role in glioma development and progression and can be detected even before the appearance of the fatal phenotype. We have compared the circulating metabolic fingerprints of glioma patients versus healthy controls, for the first time, in a quest to identify a panel of small, dysregulated metabolites with potential to serve as a predictive and/or diagnostic marker in the clinical settings. High-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HRMAS-NMR) was used for untargeted metabolomics and data acquisition followed by a machine learning (ML) approach for the analyses of large metabolic datasets. Cross-validation of ML predicted NMR spectral features was done by statistical methods (Wilcoxon-test) using JMP-pro16 software. Alanine was identified as the most critical metabolite with potential to detect glioma with precision of 1.0, recall of 0.96, and F1 measure of 0.98. The top 10 metabolites identified for glioma detection included alanine, glutamine, valine, methionine, N-acetylaspartate (NAA), γ-aminobutyric acid (GABA), serine, α-glucose, lactate, and arginine. We achieved 100% accuracy for the detection of glioma using ML algorithms, extra tree classifier, and random forest, and 98% accuracy with logistic regression. Classification of glioma in low and high grades was done with 86% accuracy using logistic regression model, and with 83% and 79% accuracy using extra tree classifier and random forest, respectively. The predictive accuracy of our ML model is superior to any of the previously reported algorithms, used in tissue- or liquid biopsy-based metabolic studies. The identified top metabolites can be targeted to develop early diagnostic methods as well as to plan personalized treatment strategies.
Collapse
Affiliation(s)
- Safia Firdous
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan; (S.F.); (R.A.)
- Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore 54770, Pakistan
| | - Rizwan Abid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan; (S.F.); (R.A.)
| | - Zubair Nawaz
- Department of Data Science, Punjab University College of Information Technology, University of the Punjab, Lahore 54590, Pakistan; (Z.N.); (F.B.)
| | - Faisal Bukhari
- Department of Data Science, Punjab University College of Information Technology, University of the Punjab, Lahore 54590, Pakistan; (Z.N.); (F.B.)
| | - Ammar Anwer
- Punjab Institute of Neurosciences (PINS), Lahore General Hospital, Lahore 54000, Pakistan;
| | - Leo L. Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA;
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan; (S.F.); (R.A.)
| |
Collapse
|
23
|
Yang R, Wang M, Zhang G, Li Y, Wang L, Cui H. POU2F2 regulates glycolytic reprogramming and glioblastoma progression via PDPK1-dependent activation of PI3K/AKT/mTOR pathway. Cell Death Dis 2021; 12:433. [PMID: 33931589 PMCID: PMC8087798 DOI: 10.1038/s41419-021-03719-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 01/08/2023]
Abstract
The POU Class Homeobox 2 (POU2F2) is a member of POU transcription factors family, which involves in cell immune response by regulating B cell proliferation and differentiation genes. Recent studies have shown that POU2F2 acts as tumor-promoting roles in some cancers, but the underlying mechanism remains little known. Here, we identified that the highly expressed POU2F2 significantly correlated with poor prognosis of glioblastoma (GBM) patients. POU2F2 promoted cell proliferation and regulated glycolytic reprogramming. Mechanistically, the AKT/mTOR signaling pathway played important roles in the regulation of POU2F2-mediated aerobic glycolysis and cell growth. Furthermore, we demonstrated that POU2F2 activated the transcription of PDPK1 by directly binding to its promoter. Reconstituted the expression of PDPK1 in POU2F2-knockdown GBM cells reactivated AKT/mTOR pathway and recovered cell glycolysis and proliferation, whereas this effect was abolished by the PDPK1/AKT interaction inhibitor. In addition, we showed that POU2F2-PDPK1 axis promoted tumorigenesis by regulating glycolysis in vivo. In conclusion, our findings indicate that POU2F2 leads a metabolic shift towards aerobic glycolysis and promotes GBM progression in PDPK1-dependent activation of PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China. .,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.
| | - Mei Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Cancer center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yanping Li
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Lulin Wang
- Key Laboratory of Molecular Pharmacology, Liaocheng People's Hospital, Liaocheng, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China. .,Cancer center, Medical Research Institute, Southwest University, Chongqing, China.
| |
Collapse
|
24
|
Lv X, Li R, Li Z, Wang J. Purification of Gekko Small Peptide Fraction and Its Effect of Inducing Apoptosis of EC 9706 Esophageal Cancer Cells by Inhibiting PI3K/Akt/GLUT1 Signaling Pathway. Chem Biodivers 2021; 18:e2000720. [PMID: 33534194 DOI: 10.1002/cbdv.202000720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/02/2021] [Indexed: 11/07/2022]
Abstract
This study aimed to isolate and purify a cytotoxic extraction from Gekko japonicus, identify its components and determine its cytotoxic activity in vitro. We isolated and identified the most potent cytotoxic Gekko small peptide LH-20-15. The identification and analysis of peptide sequences of LH-20-15 were performed by de novo peptide sequencing, and two new peptides were found. LH-20-15 significantly inhibited the proliferation of human esophageal squamous carcinoma EC 9706 cells in a dose-dependent manner. Furthermore, LH-20-15 induced apoptosis in esophageal cancer cells by activating the mitochondrial apoptotic pathway. Further research showed that LH-20-15 inhibited the PI3 K/Akt/GLUT1 signaling pathway. In conclusion, LH-20-15 from Gekko japonicus is a peptide mixture and may inhibit EC 9706 cell proliferation and induce apoptosis by activating the mitochondrial apoptotic pathway. It also regulates glucose metabolism by targeting the PI3 K/Akt/GLUT1 signaling pathway. These small peptides could be new sources of natural cytotoxic ingredients against esophageal cancer with potential drug values.
Collapse
Affiliation(s)
- Xingzhi Lv
- Department of Pharmacology, Medical College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang, 471023, Henan Province, P. R. China
| | - Ruifang Li
- Department of Pharmacology, Medical College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang, 471023, Henan Province, P. R. China
| | - Zhongjie Li
- Department of Pharmacology, Medical College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang, 471023, Henan Province, P. R. China
| | - Jiangang Wang
- Department of Pharmacology, Medical College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang, 471023, Henan Province, P. R. China
| |
Collapse
|
25
|
Collagen type VIII alpha 2 chain (COL8A2), an important component of the basement membrane of the corneal endothelium, facilitates the malignant development of glioblastoma cells via inducing EMT. J Bioenerg Biomembr 2021; 53:49-59. [PMID: 33405048 DOI: 10.1007/s10863-020-09865-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
Glioblastoma (GBM) is one of the most lethal tumor of all human cancers. Due to its poor response to chemotherapy and radiotherapy as well as its high rate of recurrence after treatment, the treatment is still undesired. The identification of potential related genes and bio-markers in the development of GBM could provide some new targets for the treatment of GBM. Our purpose in this study was to evaluate the mission of COL8A2 in GBM. Combined with TCGA, Oncomine databases, CGGA, GEPIA website and qRT-PCR analyses, we found that COL8A2 was up-regulated both in GBM tissues and cells compared to the controls. Moreover, the high COL8A2 expression was associated with the shorter overall survival of patients with GBM. The expression of COL8A2 was also positively correlated with metastasis-associated genes including vimentin, snail, slug, MMP2 and MMP7 according to GEPIA website. Knockdown of COL8A2 could suppress the cell proliferation, cell migration and invasion, whereas the overexpression of COL8A2 significantly expedited these processes. What's more, the outcome of western blot analysis manifested that COL8A2 could induced the expression of vimentin, snail, slug, MMP2 and MMP7. Taken together, COL8A2 activated cell proliferation, cell migration and invasion via raising the relative expression of EMT-related proteins in GBM. Therefore, our investigation suggests the oncogenic role of COL8A2 in GBM and provides a potential application of COL8A2 for GBM therapy.
Collapse
|
26
|
Lopez-Juarez A, Gonzalez-Vega A, Kleinert-Altamirano A, Piazza V, Garduno-Robles A, Alata M, Villaseñor-Mora C, Eguibar JR, Cortes C, Padierna LC, Hernandez VH. Auditory impairment in H-ABC tubulinopathy. J Comp Neurol 2020; 529:957-968. [PMID: 32681585 DOI: 10.1002/cne.24990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a neurodegenerative disease due to mutations in TUBB4A. Patients suffer from extrapyramidal movements, spasticity, ataxia, and cognitive deficits. Magnetic resonance imaging features are hypomyelination and atrophy of the striatum and cerebellum. A correlation between the mutations and their cellular, tissue and organic effects is largely missing. The effects of these mutations on sensory functions have not been described so far. We have previously reported a rat carrying a TUBB4A (A302T) mutation and sharing most of the clinical and radiological signs with H-ABC patients. Here, for the first time, we did a comparative study of the hearing function in an H-ABC patient and in this mutant model. By analyzing hearing function, we found that there are no significant differences in the auditory brainstem response (ABR) thresholds between mutant rats and WT controls. Nevertheless, ABRs show longer latencies in central waves (II-IV) that in some cases disappear when compared to WT. The patient also shows abnormal AEPs presenting only Waves I and II. Distortion product of otoacoustic emissions and immunohistochemistry in the rat show that the peripheral hearing function and morphology of the organ of Corti are normal. We conclude that the tubulin mutation severely impairs the central hearing pathway most probably by progressive central white matter degeneration. Hearing function might be affected in a significant fraction of patients with H-ABC; therefore, screening for auditory function should be done on patients with tubulinopathies to evaluate hearing support therapies.
Collapse
Affiliation(s)
| | - Arturo Gonzalez-Vega
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| | | | | | - Angeles Garduno-Robles
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico.,Center of Research in Optics, Leon, Mexico
| | | | | | - Jose R Eguibar
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Carmen Cortes
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Luis Carlos Padierna
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| | - Victor H Hernandez
- Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
27
|
Metabolic Reprogramming and Vulnerabilities in Cancer. Cancers (Basel) 2019; 12:cancers12010090. [PMID: 31905922 PMCID: PMC7016671 DOI: 10.3390/cancers12010090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
Metabolic programs are rewired in tumors to support growth, progression, and immune evasion. A wealth of work in the past decade has delineated how these metabolic rearrangements are facilitated by signaling pathways downstream of oncogene activation and tumor suppressor loss. More recently, this field has expanded to include metabolic interactions among the diverse cell types that exist within a tumor and how this impacts the immune system. In this special issue, 17 review articles discuss these phenomena, and, alongside four original research manuscripts, the vulnerabilities associated with deregulated metabolic programming are highlighted and examined.
Collapse
|