1
|
Rahman MM, Tollefsbol TO. Combinatorial phenethyl isothiocyanate and withaferin A targets multiple epigenetics pathways to inhibit MCF-7 and MDA-MB-231 human breast cancer cells. Cancer Cell Int 2024; 24:422. [PMID: 39707321 DOI: 10.1186/s12935-024-03619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Epigenetic phytochemicals are considered as an efficacious and safe alternative to synthetic drugs in drug discovery. In this regard, combinatorial interventions enable simultaneously targeting various neoplastic pathways to eradicate multiple tumorigenic clones. Therefore, we evaluated the effects of the epigenetic-modifying compounds phenethyl isothiocyanate (PEITC) and withaferin A (WA) alone and in combination on cancer hallmarks and miRNome profiles of breast cancer (BC) cells in addition to their impact on multiple epigenetic regulatory pathways. METHODS We performed MTT assay, flow cytometry-based cell cycle analysis, apoptosis assay, stem cell population analysis, and mammosphere assay on MCF-7 and MDA-MB-231 BC cells to evaluate the effect of combinatorial PEITC and WA treatment on cancer hallmarks. To assess the epigenetic effects of the combinatorial PEITC and WA treatment, we conducted HDAC activity assay, DNMT activity assay, western blot analysis, siRNA-mediated gene knockdown, and RT-qPCR analysis. Additionally, we explored the effect of the PEITC + WA combination on miRNome profiles in MCF-7 and MDA-MB-231 BC cells through miRNA-seq analysis and miRNA Real-Time PCR assay. RESULTS Our results indicated a synergistic effect of PEITC and WA on inhibiting MCF-7 and MDA-MB-231 BC cells by triggering G2/M-phase arrest, apoptosis induction, tumor formation efficiency decrease, and stem cell population decline. Combinatorial PEITC and WA treatment significantly reduced global DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activity in addition to decreasing multiple Class I HDACs and de novo DNMTs expression in MCF-7 and MDA-MB-231 cells. PEITC + WA combination targets histone acetylation and DNA methylation pathways since the expressional changes of cell cycle and apoptosis-related proteins due to PEITC + WA treatment closely mimic the alterations seen when HDAC8 and DNMT3B are silenced. Furthermore, treating these cells with PEITC and WA significantly alters the expression of several BC-associated miRNAs. CONCLUSION Overall, our investigation demonstrated that combined PEITC and WA is effective in inhibiting MCF-7 and MDA-MB-231 BC cells by impacting multiple epigenetic regulatory pathways.
Collapse
Affiliation(s)
- Mohammad Mijanur Rahman
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL, 35294-1170, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL, 35294-1170, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, 1802 6th Avenue South, Birmingham, AL, 35294, USA.
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Blvd, Birmingham, AL, 35294, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA.
| |
Collapse
|
2
|
Cao T, Shen X, Pei F, Jiang T, Zhang J, Zhou H. Knockdown of Methylation-Related Gene MBD2 Blocks Cell Growth by Upregulating p21 Expression in Head and Neck Squamous Cell Carcinoma. Cancer Rep (Hoboken) 2024; 7:e70080. [PMID: 39676597 DOI: 10.1002/cnr2.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/22/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Methyl-CpG-binding domain 2 (MBD2) attaches to methylated DNA, which mediates methylated gene transcription, leading to gene silencing and affecting tumor progression. The molecular mechanisms of MBD2 in head and neck squamous cell carcinoma (HNSCC) remain insufficiently characterized. AIMS This study sought to assess the clinical relevance of MBD2 expression in HNSCC, with a particular focus on elucidating its functional role in tumor progression and its regulatory influence on p21 expression and cellular proliferation. METHODS We analyzed the relationships between MBD2 expression, clinicopathological features, and survival outcomes in HNSCC patients using data from the UALCAN, TCGA, and cBioPortal databases. The functional role of MBD2 in HNSCC was further investigated through in vitro experiments. p21 expression was assessed using western blotting and qRT-PCR in TU212 and AMC-HN8 cells. These cells were treated with either shRNA targeting MBD2, 5-azacytidine (5-Aza), or a combination of shRNA MBD2 and 5-Aza. Additionally, cell proliferation and viability were measured in each treatment group. RESULTS MBD2 was found to be frequently overexpressed in HNSCC tissues, and its altered expression was significantly associated with reduced overall survival (OS) and disease-free survival (DFS). Both shRNA-mediated MBD2 knockdown and 5-Aza treatment increased p21 expression in HNSCC cells, exhibiting similar functions with additive effects. Furthermore, both treatments significantly inhibited cell proliferation and viability. CONCLUSION These results indicated that shRNA-mediated MBD2 knockdown suppresses HNSCC cell growth by upregulating p21 expression. In addition to its role as an oncogene, MBD2 may serve as a prognostic biomarker and therapeutic target for HNSCC patients.
Collapse
Affiliation(s)
- Ting Cao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xia Shen
- Department of Otolaryngology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Fei Pei
- Department of Otolaryngology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Taogeng Jiang
- Department of Otolaryngology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Jun Zhang
- Department of Otolaryngology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Hong Zhou
- Department of Otolaryngology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Guo J, Meng F, Hu R, Chen L, Chang J, Zhao K, Ren H, Liu Z, Hu P, Wang G, Tai J. Inhibition of the NF-κB/HIF-1α signaling pathway in colorectal cancer by tyrosol: a gut microbiota-derived metabolite. J Immunother Cancer 2024; 12:e008831. [PMID: 39343509 PMCID: PMC11440206 DOI: 10.1136/jitc-2024-008831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The development and progression of colorectal cancer (CRC) are influenced by the gut environment, much of which is modulated by microbial-derived metabolites. Although some research has been conducted on the gut microbiota, there have been limited empirical investigations on the role of the microbial-derived metabolites in CRC. METHODS In this study, we used LC-MS and 16S rRNA sequencing to identify gut microbiome-associated fecal metabolites in patients with CRC and healthy controls. Moreover, we examined the effects of Faecalibacterium prausnitzii and tyrosol on CRC by establishing orthotopic and subcutaneous tumor mouse models. Additionally, we conducted in vitro experiments to investigate the mechanism through which tyrosol inhibits tumor cell growth. RESULTS Our study revealed changes in the gut microbiome and metabolome that are linked to CRC. We observed that Faecalibacterium prausnitzii, a bacterium known for its multiple anti-CRC properties, is significantly more abundant in the intestines of healthy individuals than in those of individuals with CRC. In mouse tumor models, our study illustrated that Faecalibacterium prausnitzii has the ability to inhibit tumor growth by reducing inflammatory responses and enhancing tumor immunity. Additionally, research investigating the relationship between CRC-associated features and microbe-metabolite interactions revealed a correlation between Faecalibacterium prausnitzii and tyrosol, both of which are less abundant in the intestines of tumor patients. Tyrosol demonstrated antitumor activity in vivo and specifically targeted CRC cells without affecting intestinal epithelial cells in cell experiments. Moreover, tyrosol treatment effectively reduced the levels of reactive oxygen species (ROS) and inflammatory cytokines in MC38 cells. Western blot analysis further revealed that tyrosol inhibited the activation of the NF-κB and HIF-1 signaling pathways. CONCLUSIONS This study investigated the relationship between CRC development and changes in the gut microbiota and microbial-derived metabolites. Specifically, the intestinal metabolite tyrosol exhibits antitumor effects by inhibiting HIF-1α/NF-κB signaling pathway activation, leading to a reduction in the levels of ROS and inflammatory factors. These findings indicate that manipulating the gut microbiota and its metabolites could be a promising approach for preventing and treating CRC and could provide insights for the development of anticancer drugs.
Collapse
Affiliation(s)
- Jian Guo
- Department of Colorectal&anal surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Fanqi Meng
- Department of Colorectal&anal surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ruixue Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lei Chen
- Department of Colorectal&anal surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiang Chang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Ke Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Honglin Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zengshan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Pan Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Guangyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jiandong Tai
- Department of Colorectal&anal surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Rahman MM, Wu H, Tollefsbol TO. A novel combinatorial approach using sulforaphane- and withaferin A-rich extracts for prevention of estrogen receptor-negative breast cancer through epigenetic and gut microbial mechanisms. Sci Rep 2024; 14:12091. [PMID: 38802425 PMCID: PMC11130158 DOI: 10.1038/s41598-024-62084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Estrogen receptor-negative [ER(-)] mammary cancer is the most aggressive type of breast cancer (BC) with higher rate of metastasis and recurrence. In recent years, dietary prevention of BC with epigenetically active phytochemicals has received increased attention due to its feasibility, effectiveness, and ease of implementation. In this regard, combinatorial phytochemical intervention enables more efficacious BC inhibition by simultaneously targeting multiple tumorigenic pathways. We, therefore, focused on investigation of the effect of sulforaphane (SFN)-rich broccoli sprouts (BSp) and withaferin A (WA)-rich Ashwagandha (Ash) combination on BC prevention in estrogen receptor-negative [ER(-)] mammary cancer using transgenic mice. Our results indicated that combinatorial BSp + Ash treatment significantly reduced tumor incidence and tumor growth (~ 75%) as well as delayed (~ 21%) tumor latency when compared to the control treatment and combinatorial BSp + Ash treatment was statistically more effective in suppressing BC compared to single BSp or Ash intervention. At the molecular level, the BSp and Ash combination upregulated tumor suppressors (p53, p57) along with apoptosis associated proteins (BAX, PUMA) and BAX:BCL-2 ratio. Furthermore, our result indicated an expressional decline of epigenetic machinery HDAC1 and DNMT3A in mammary tumor tissue because of combinatorial treatment. Interestingly, we have reported multiple synergistic interactions between BSp and Ash that have impacted both tumor phenotype and molecular expression due to combinatorial BSp and Ash treatment. Our RNA-seq analysis results also demonstrated a transcriptome-wide expressional reshuffling of genes associated with multiple cell-signaling pathways, transcription factor activity and epigenetic regulations due to combined BSp and Ash administration. In addition, we discovered an alteration of gut microbial composition change because of combinatorial treatment. Overall, combinatorial BSp and Ash supplementation can prevent ER(-) BC through enhanced tumor suppression, apoptosis induction and transcriptome-wide reshuffling of gene expression possibly influencing multiple cell signaling pathways, epigenetic regulation and reshaping gut microbiota.
Collapse
Affiliation(s)
- Mohammad Mijanur Rahman
- Department of Biology, University of Alabama at Birmingham, 902 14th Street South, Birmingham, AL, 35294, USA
| | - Huixin Wu
- Department of Biology, University of Alabama at Birmingham, 902 14th Street South, Birmingham, AL, 35294, USA
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 902 14th Street South, Birmingham, AL, 35294, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL, 35294, USA.
- Integrative Center for Aging Research, University of Alabama at Birmingham, 933 19th Street South, Birmingham, AL, 35294, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Blvd, Birmingham, AL, 35294, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA.
- University of Alabama at Birmingham, 3100 East Science Hall, 902 14th Street South, Birmingham, AL, USA.
| |
Collapse
|
5
|
Falbo F, Gemma S, Koch A, Mazzotta S, Carullo G, Ramunno A, Butini S, Schneider-Stock R, Campiani G, Aiello F. Synthetic derivatives of natural cinnamic acids as potential anti-colorectal cancer agents. Chem Biol Drug Des 2024; 103:e14415. [PMID: 38230797 DOI: 10.1111/cbdd.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Accepted: 10/22/2023] [Indexed: 01/18/2024]
Abstract
Cinnamic acid and its derivatives represent attractive building blocks for the development of pharmacological tools. A series of piperoniloyl and cinnamoyl-based amides (6-9 a-f) have been synthesized and assayed against a wide panel of colorectal cancer (CRC) cells, with the aim of finding promising anticancer agents. Among all twenty-four synthesized molecules, 7a, 7e-f, 9c, and 9f displayed the best antiproliferative activity. The induced G1 cell cycle arrest and the increase in apoptotic cell death was seen in FACS analysis and western Blotting in the colon tumor cell lines HCT116, SW480, LoVo, and HT29, but not in the nontumor cell line HCEC. In particular, 9f overcame the resistance of HT29 cells, which have a mutant p53 and BRAF. Furthermore, 9f, amide of piperonilic acid with the 3,4-dichlorobenzyl substituent upregulated p21, which is involved in cell cycle arrest as well as in apoptosis induction. Cinnamic acid derivatives might be potential anticancer compounds, useful for the development of promising anti-CRC agents.
Collapse
Affiliation(s)
- Federica Falbo
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Rende, Cosenza, Italy
| | - Sandra Gemma
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Adrian Koch
- Experimental Tumorpathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sarah Mazzotta
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| | - Gabriele Carullo
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Anna Ramunno
- Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano, Salerno, Italy
| | - Stefania Butini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Giuseppe Campiani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Francesca Aiello
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Rende, Cosenza, Italy
| |
Collapse
|
6
|
Park SS, Lee YK, Park SH, Lim SB, Choi YW, Shin JS, Kim YH, Kim JH, Park TJ. p15 INK4B is an alternative marker of senescent tumor cells in colorectal cancer. Heliyon 2023; 9:e13170. [PMID: 36785830 PMCID: PMC9918768 DOI: 10.1016/j.heliyon.2023.e13170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Senescent tumor cells are nonproliferating tumor cells which are closely related to cancer progression by secreting senescence-related molecules, called senescence-associated secreting phenotypes. Therefore, the presence of senescent tumor cells is considered a prognostic factor in various cancer types. Although senescence-associated β-galactosidase staining is considered the best marker for detection of senescent tumor cells, it can only be performed in fresh-frozen tissues. p16INK4A, a cyclin-dependent inhibitor, has been used as an alternative marker to detect senescent tumor cells in formalin-fixed paraffin-embedded tissues. However, other reliable markers to detect senescent tumor cells is still lacking. In the present study, using public single-cell RNA-sequencing data, we found that p15INK4B, a cyclin-dependent kinase inhibitor, is a novel marker for detection of senescent tumor cells. Moreover, p15INK4B expression was positively correlated with that of p16INK4A in colorectal cancer tissues. In in vitro studies, mRNA expression of p15INK4B was increased together with that of p16INK4A in H2O2- and therapy-induced cancer senescence models. However, the mRNA level of p15INK4B did not increase in the oncogene-induced senescence model in primary colonic epithelial cells. In conclusion, p15INK4B is a potential alternative marker for detection of senescent tumor cells together with conventional markers in advanced stages of colorectal cancer.
Collapse
Key Words
- CDK, cyclin dependent kinase
- CRC, colorectal cancer
- Cellular senescence
- Colorectal cancer
- FBS, fetal bovine serum
- FFPE, formalin-fixed paraffin-embedded
- GSEA, gene set enrichent analysis
- H3K9me3, histone H3 lysine 9 trimethylation
- IHC, immunohistochemistry
- SA-β-Gal, senescence-associated β-galactosidase
- STC, senescent tumor cell
- Senescence marker
- Senescent tumor cells
- p15INK4B
- p16INK4A
- scRNA-seq, single cell RNA sequencing
Collapse
Affiliation(s)
- Soon Sang Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - Young-Kyoung Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - So Hyun Park
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Department of Pathology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - Yong Won Choi
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Department of Hematology and Oncology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Jun Sang Shin
- Department of Surgery, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Young Hwa Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - Jang-Hee Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Department of Pathology, Ajou University School of Medicine, Suwon, 16499, South Korea,Corresponding author. Department of Pathology, Ajou University School of Medicine, Suwon, 16499 South Korea.
| | - Tae Jun Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Corresponding author. Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499 South Korea.
| |
Collapse
|
7
|
Appiah CO, Singh M, May L, Bakshi I, Vaidyanathan A, Dent P, Ginder G, Grant S, Bear H, Landry J. The epigenetic regulation of cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Adv Cancer Res 2023; 158:337-385. [PMID: 36990536 DOI: 10.1016/bs.acr.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ultimate goal of cancer therapy is the elimination of disease from patients. Most directly, this occurs through therapy-induced cell death. Therapy-induced growth arrest can also be a desirable outcome, if prolonged. Unfortunately, therapy-induced growth arrest is rarely durable and the recovering cell population can contribute to cancer recurrence. Consequently, therapeutic strategies that eliminate residual cancer cells reduce opportunities for recurrence. Recovery can occur through diverse mechanisms including quiescence or diapause, exit from senescence, suppression of apoptosis, cytoprotective autophagy, and reductive divisions resulting from polyploidy. Epigenetic regulation of the genome represents a fundamental regulatory mechanism integral to cancer-specific biology, including the recovery from therapy. Epigenetic pathways are particularly attractive therapeutic targets because they are reversible, without changes in DNA, and are catalyzed by druggable enzymes. Previous use of epigenetic-targeting therapies in combination with cancer therapeutics has not been widely successful because of either unacceptable toxicity or limited efficacy. The use of epigenetic-targeting therapies after a significant interval following initial cancer therapy could potentially reduce the toxicity of combination strategies, and possibly exploit essential epigenetic states following therapy exposure. This review examines the feasibility of targeting epigenetic mechanisms using a sequential approach to eliminate residual therapy-arrested populations, that might possibly prevent recovery and disease recurrence.
Collapse
Affiliation(s)
- Christiana O Appiah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Manjulata Singh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Lauren May
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ishita Bakshi
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ashish Vaidyanathan
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Gordon Ginder
- Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Steven Grant
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Harry Bear
- Department of Surgery, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
8
|
Li J, Yuan J, Li Y, Wang J, Gong D, Xie Q, Ma R, Wang J, Ren M, Lu D, Xu Z. d-Borneol enhances cisplatin sensitivity via p21/p27-mediated S-phase arrest and cell apoptosis in non-small cell lung cancer cells and a murine xenograft model. Cell Mol Biol Lett 2022; 27:61. [PMID: 35883026 PMCID: PMC9327246 DOI: 10.1186/s11658-022-00362-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/06/2022] [Indexed: 12/28/2022] Open
Abstract
Background Cisplatin (CDDP) is commonly used to treat non-small cell lung cancer (NSCLC), but the appearance of drug resistance greatly hinders its efficacy. Borneol may promote drug absorption; however, synergism between borneol and CDDP in suppressing NSCLC is not clearly understood. Hence, we investigated borneol as a novel chemosensitizer to support chemotherapeutic efficacy and reduce side effects. Methods We compared viability after exposure to d-borneol, l-borneol, and synthetic borneol in two NSCLC cell lines, A549 and H460, and selected the most sensitive cells. We then assessed synergy between borneol forms and CDDP in cisplatin-resistant NSCLC cells, H460/CDDP. Next, we identified effective concentrations and exposure times. Subsequently, we evaluated cell migration via wound healing and cell proliferation via clone formation assay. Then, we focused on P-glycoprotein (P-gp) function, cell cycle, apoptosis, and RNA sequencing to elucidate underlying molecular mechanisms for synergy. Finally, we used an H460/CDDP xenograft tumor model to verify antitumor activity and safety in vivo. Data were examined using one-way analysis of variance (ANOVA) for multiple datasets or t-test for comparisons between two variables. Results d-Borneol was more effective in H460 than A549 cells. d-Borneol combined with CDDP showed greater inhibition of cell proliferation, migration, and clone formation in H460/CDDP cells than CDDP alone. RNA sequencing (RNA-seq) analysis identified differentially expressed genes enriched in cell cycle pathways. The impact of d-borneol on CDDP chemosensitivity involved arrest of the cell cycle at S phase via p27/p21-mediated cyclinA2/D3-CDK2/6 signaling and activation of intrinsic apoptosis via p21-mediated Bax/Bcl-2/caspase3 signaling. Further, d-borneol ameliorated drug resistance by suppressing levels and activity of P-gp. Cotreatment with d-borneol and CDDP inhibited tumor growth in vivo and reduced CDDP-caused liver and kidney toxicity. Conclusions d-Borneol increased the efficacy of cisplatin and reduced its toxicity. This compound has the potential to become a useful chemosensitizer for drug-resistance NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00362-4.
Collapse
Affiliation(s)
- Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Daoyin Gong
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Yang J, Hu Y, Zhang B, Liang X, Li X. The JMJD Family Histone Demethylases in Crosstalk Between Inflammation and Cancer. Front Immunol 2022; 13:881396. [PMID: 35558079 PMCID: PMC9090529 DOI: 10.3389/fimmu.2022.881396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Inflammation has emerged as a key player in regulating cancer initiation, progression, and therapeutics, acting as a double edged sword either facilitating cancer progression and therapeutic resistance or inducing anti-tumor immune responses. Accumulating evidence has linked the epigenetic modifications of histones to inflammation and cancer, and histone modifications-based strategies have shown promising therapeutic potentials against cancer. The jumonji C domain-containing (JMJD) family histone demethylases have exhibited multiple regulator functions in inflammatory processes and cancer development, and a number of therapeutic strategies targeting JMJD histone demethylases to modulate inflammatory cells and their products have been successfully evaluated in clinical or preclinical tumor models. This review summarizes current understanding of the functional roles and mechanisms of JMJD histone demethylases in crosstalk between inflammation and cancer, and highlights recent clinical and preclinical progress on harnessing the JMJD histone demethylases to regulate cancer-related inflammation for future cancer therapeutics.
Collapse
Affiliation(s)
- Jia Yang
- Department of Gynecology and Obstetrics and Pediatric Nephrology Nursing, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yuan Hu
- Department of Gynecology and Obstetrics and Pediatric Nephrology Nursing, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Binjing Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Liang
- Department of Gynecology and Obstetrics and Pediatric Nephrology Nursing, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xin Li
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Kumar VE, Nambiar R, De Souza C, Nguyen A, Chien J, Lam KS. Targeting Epigenetic Modifiers of Tumor Plasticity and Cancer Stem Cell Behavior. Cells 2022; 11:cells11091403. [PMID: 35563709 PMCID: PMC9102449 DOI: 10.3390/cells11091403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor heterogeneity poses one of the greatest challenges to a successful treatment of cancer. Tumor cell populations consist of different subpopulations that have distinct phenotypic and genotypic profiles. Such variability poses a challenge in successfully targeting all tumor subpopulations at the same time. Relapse after treatment has been previously explained using the cancer stem cell model and the clonal evolution model. Cancer stem cells are an important subpopulation of tumor cells that regulate tumor plasticity and determine therapeutic resistance. Tumor plasticity is controlled by genetic and epigenetic changes of crucial genes involved in cancer cell survival, growth and metastasis. Targeting epigenetic modulators associated with cancer stem cell survival can unlock a promising therapeutic approach in completely eradicating cancer. Here, we review various factors governing epigenetic dysregulation of cancer stem cells ranging from the role of epigenetic mediators such as histone and DNA methyltransferases, histone deacetylases, histone methyltransferases to various signaling pathways associated with cancer stem cell regulation. We also discuss current treatment regimens targeting these factors and other promising inhibitors in clinical trials.
Collapse
Affiliation(s)
- Vigneshwari Easwar Kumar
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| | - Roshni Nambiar
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| | - Cristabelle De Souza
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
- Department of Stem Cell Research and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Audrey Nguyen
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
- Department of Obstetrics and Gynecology, UC Davis Medical Center, Sacramento, CA 95817, USA
- Correspondence:
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| |
Collapse
|
11
|
Bencivenga D, Stampone E, Vastante A, Barahmeh M, Della Ragione F, Borriello A. An Unanticipated Modulation of Cyclin-Dependent Kinase Inhibitors: The Role of Long Non-Coding RNAs. Cells 2022; 11:cells11081346. [PMID: 35456025 PMCID: PMC9028986 DOI: 10.3390/cells11081346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
It is now definitively established that a large part of the human genome is transcribed. However, only a scarce percentage of the transcriptome (about 1.2%) consists of RNAs that are translated into proteins, while the large majority of transcripts include a variety of RNA families with different dimensions and functions. Within this heterogeneous RNA world, a significant fraction consists of sequences with a length of more than 200 bases that form the so-called long non-coding RNA family. The functions of long non-coding RNAs range from the regulation of gene transcription to the changes in DNA topology and nucleosome modification and structural organization, to paraspeckle formation and cellular organelles maturation. This review is focused on the role of long non-coding RNAs as regulators of cyclin-dependent kinase inhibitors’ (CDKIs) levels and activities. Cyclin-dependent kinases are enzymes necessary for the tuned progression of the cell division cycle. The control of their activity takes place at various levels. Among these, interaction with CDKIs is a vital mechanism. Through CDKI modulation, long non-coding RNAs implement control over cellular physiology and are associated with numerous pathologies. However, although there are robust data in the literature, the role of long non-coding RNAs in the modulation of CDKIs appears to still be underestimated, as well as their importance in cell proliferation control.
Collapse
|
12
|
Ghosh K, Chatterjee B, Nalla K, Behera B, Mukherjee A, Kanade SR. Di-(2-ethylhexyl) phthalate triggers DNA methyltransferase 1 expression resulting in elevated CpG-methylation and enrichment of MECP2 in the p21 promoter in vitro. CHEMOSPHERE 2022; 293:133569. [PMID: 35033518 DOI: 10.1016/j.chemosphere.2022.133569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Leaching of the plastic constituents leading to their chronic exposure to humans is a major concern for our environmental and occupational health. Our previous and other numerous studies have demonstrated that environmental chemicals like di (2-Ethylhexyl)-phthalate (DEHP) could pose a risk towards the epigenetic mechanisms. Yet, the mechanisms underlying its possible epigenotoxicity are poorly understood. We aimed to assess the impact of DEHP exposure to the human breast cancer cells (MCF-7) and resultant changes in DNA methylation regulators ultimately altering the expression of the cell cycle regulator p21 as a model gene. The MCF-7 cells were exposed to environmentally relevant concentrations (50-500 nM) for 24 h. The results showed that DEHP was proliferative towards the MCF-7 cells while it induced global DNA hypermethylation with selective upregulation of DNMT1 and MECP2. In addition, DEHP significantly reduced p53 protein and its enrichment to the DNMT1 promoter binding site, while elevating SP1 and E2F1 transcription factor levels, stimulating their binding to the promoter DNA. Coincidently, increased DNMT1 level was highly associated with loss of p21 expression and increased cyclin D1 levels. Importantly, the p21, but not cyclin D1 promoter CpG-dinucleotides were hypermethylated after exposure to 500 nM DEHP for 24 h. Furthermore, it was observed that DEHP significantly enriched DNMT1 and MECP2 to the p21 promoter to induce DNA methylation-based epigenetic silencing of p21, resulting in increased cell proliferation. Our results suggest DEHP could potentially induce the epigenetic alterations that might increase the risk of breast cancer, given that the underlying mechanisms should be fully elucidated.
Collapse
Affiliation(s)
- Krishna Ghosh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Biji Chatterjee
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - KiranKumar Nalla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Central University P.O., Hyderabad, 500046, Telangana, India
| | - Bablu Behera
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Amit Mukherjee
- Rajiv Gandhi Centre for Diabetes and Endocrinology, JN Medical College, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Santosh R Kanade
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Central University P.O., Hyderabad, 500046, Telangana, India.
| |
Collapse
|
13
|
Malagraba G, Yarmohammadi M, Javed A, Barceló C, Rubio-Tomás T. The Role of LSD1 and LSD2 in Cancers of the Gastrointestinal System: An Update. Biomolecules 2022; 12:462. [PMID: 35327654 PMCID: PMC8946813 DOI: 10.3390/biom12030462] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Epigenetic mechanisms are known to play a key role in cancer progression. Specifically, histone methylation involves reversible post-translational modification of histones that govern chromatin structure remodelling, genomic imprinting, gene expression, DNA damage repair, and meiotic crossover recombination, among other chromatin-based activities. Demethylases are enzymes that catalyse the demethylation of their substrate using a flavin adenine dinucleotide-dependent amine oxidation process. Lysine-specific demethylase 1 (LSD1) and its homolog, lysine-specific demethylase 2 (LSD2), are overexpressed in a variety of human cancer types and, thus, regulate tumour progression. In this review, we focus on the literature from the last 5 years concerning the role of LSD1 and LSD2 in the main gastrointestinal cancers (i.e., gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer).
Collapse
Affiliation(s)
- Gianluca Malagraba
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBA), 07120 Palma de Mallorca, Spain;
| | - Mahdieh Yarmohammadi
- Central Tehran Branch, Department of Biology, Faculty of Sciences, Islamic Azad University, Tehran 1955847881, Iran;
| | - Aadil Javed
- Cancer Biology Laboratory, Department of Bioengineering, Faculty of Engineering, Ege University, Izmir 35040, Turkey;
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBA), 07120 Palma de Mallorca, Spain;
| | - Teresa Rubio-Tomás
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
| |
Collapse
|
14
|
Yuan B, Liu H, Pan X, Dong X, Qu LF, Sun J, Pan LL. LSD1 downregulates p21 expression in vascular smooth muscle cells and promotes neointima formation. Biochem Pharmacol 2022; 198:114947. [PMID: 35143753 DOI: 10.1016/j.bcp.2022.114947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 01/10/2023]
Abstract
Neointima formation is characterized by the proliferation of vascular smooth muscle cells (VSMC). Although lysine-specific demethylase 1 (LSD1) has critical functions in several diseases, its role in neointima formation remains to be clarified. In this study, we aimed to explore the crucial role of LSD1 on neointima formation using a carotid artery injury model in mice. We observed that aberrant LSD1 expression was increased in human and mouse stenotic arteries and platelet-derived growth factor-BB (PDGF-BB)-treated VSMC. Furthermore, LSD1 knockdown significantly mitigated neointima formation in vivo and inhibited PDGF-BB-induced VSMC proliferation in vitro. We further uncovered that LSD1 overexpression exhibited opposite phenotypes in vivo and in vitro. Finally, LSD1 knockdown inhibited VSMC proliferation by increasing p21 expression, which is associated with LSD1 mediated di-methylated histone H3 on lysine 4 (H3K4me2) modification. Taken together, our data suggest that LSD1 may be a potential therapeutic target for the treatment of neointima formation.
Collapse
Affiliation(s)
- Baohui Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - He Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoliang Dong
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Le-Feng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
15
|
Kong D, Hou Y, Li W, Ma X, Jiang J. LncRNA-ZXF1 stabilizes P21 expression in endometrioid endometrial carcinoma by inhibiting ubiquitination-mediated degradation and regulating the miR-378a-3p/PCDHA3 axis. Mol Oncol 2022; 16:813-829. [PMID: 33751805 PMCID: PMC8807357 DOI: 10.1002/1878-0261.12940] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/25/2021] [Accepted: 02/20/2021] [Indexed: 01/09/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have a profound effect on biological processes in various malignancies. However, few studies have investigated their functions and specific mechanisms in endometrial cancer. In this study, we focused on the role and mechanism of lncRNA-ZXF1 in endometrial cancer. Bioinformatics and in vitro and in vivo experiments were used to explore the expression and function of lncRNA-ZXF1. We found that lncRNA-ZXF1 altered the migration and invasion of endometrioid endometrial cancer (EEC) cells. Furthermore, our results suggest that lncRNA-ZXF1 regulates EEC cell proliferation. This regulation may be achieved by the lncRNA-ZXF1-mediated alteration in the expression of P21 through two mechanisms. One is that lncRNA-ZXF1 functions as a molecular sponge of miR-378a-3p to regulate PCDHA3 expression and then modulate the expression of P21. The other is that lncRNA-ZXF1 inhibits CDC20-mediated degradation of ubiquitination by directly binding to P21. To the best of our knowledge, this study is the first to explore lncRNA-ZXF1 functioning as a tumor-suppressing lncRNA in EEC. LncRNA-ZXF1 may become therapeutic, diagnostic, and prognostic indicator in the future.
Collapse
Affiliation(s)
- Deshui Kong
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinanChina
| | - Yixin Hou
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinanChina
| | - Wenzhi Li
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinanChina
| | - Xiaohong Ma
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinanChina
| | - Jie Jiang
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
16
|
Ruzic D, Djoković N, Srdić-Rajić T, Echeverria C, Nikolic K, Santibanez JF. Targeting Histone Deacetylases: Opportunities for Cancer Treatment and Chemoprevention. Pharmaceutics 2022; 14:pharmaceutics14010209. [PMID: 35057104 PMCID: PMC8778744 DOI: 10.3390/pharmaceutics14010209] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The dysregulation of gene expression is a critical event involved in all steps of tumorigenesis. Aberrant histone and non-histone acetylation modifications of gene expression due to the abnormal activation of histone deacetylases (HDAC) have been reported in hematologic and solid types of cancer. In this sense, the cancer-associated epigenetic alterations are promising targets for anticancer therapy and chemoprevention. HDAC inhibitors (HDACi) induce histone hyperacetylation within target proteins, altering cell cycle and proliferation, cell differentiation, and the regulation of cell death programs. Over the last three decades, an increasing number of synthetic and naturally derived compounds, such as dietary-derived products, have been demonstrated to act as HDACi and have provided biological and molecular insights with regard to the role of HDAC in cancer. The first part of this review is focused on the biological roles of the Zinc-dependent HDAC family in malignant diseases. Accordingly, the small-molecules and natural products such as HDACi are described in terms of cancer therapy and chemoprevention. Furthermore, structural considerations are included to improve the HDACi selectivity and combinatory potential with other specific targeting agents in bifunctional inhibitors and proteolysis targeting chimeras. Additionally, clinical trials that combine HDACi with current therapies are discussed, which may open new avenues in terms of the feasibility of HDACi’s future clinical applications in precision cancer therapies.
Collapse
Affiliation(s)
- Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Nemanja Djoković
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Tatjana Srdić-Rajić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Copayapu 485, Copiapo 1531772, Chile;
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Juan F. Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
- Correspondence: ; Tel.: +381-11-2685-788; Fax: +381-11-2643-691
| |
Collapse
|
17
|
Chatterjee B, Ghosh K, Swain A, Nalla KK, Ravula H, Pan A, Kanade SR. The phytochemical brazilin suppress DNMT1 expression by recruiting p53 to its promoter resulting in the epigenetic restoration of p21 in MCF7cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153885. [PMID: 34920321 DOI: 10.1016/j.phymed.2021.153885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cancer is an outcome of uncontrolled cell division eventually associated with dysregulated epigenetic mechanisms, including DNA methylation. DNA methyltransferase 1 is ubiquitously expressed in the proliferating cells and is essential for the maintenance of DNA methylation. It causes the abnormal silencing of tumor suppressor genes in human cancer which is necessary for proliferation, cell cycle progression, and survival. DNMT1 is involved in tumorigenesis of several cancers, its upregulation potentially upscale the promoter level inactivation of transcription of a tumor inhibitory gene by introducing repressive methylation marks on the CpG islands. This epigenetic perturbation caused by DNMT is targeted for cancer therapeutics. PURPOSE To demonstrate the proliferative inhibitory potential of brazilin in human breast cancer cell line (MCF-7) with concurrent mitigation of DNMT1 functional expression and to understand its effect on downstream targets like cell cycle inhibitor p21. STUDY DESIGN/ METHODS The impact of brazilin on the growth and proliferation of the MCF-7 cells was determined using the XTT assay. The global DNA 5-methyl cytosine methylation pattern was analyzed upon brazilin treatment. The gene and protein expression of DNMTs were determined with quantitative RTPCR and western blots respectively. The potential binding sites of transcription factors in the human DNMT1 promoter were predicted using the MatInspector tool on the Genomatix software. The chromatin immunoprecipitation (ChIP) assay was performed to demonstrate the transcription factors occupancy at the promoter. Methylation of promoter CpG islands was determined by the methylation-specific PCR (MSP) upon brazilin treatment. The molecular docking of the human DNMT1 with brazilin (ligand) was performed using the Schrödinger suite. RESULTS The heterotetracyclic compound brazilin, present in the wood of Caesalpinia sappan, inhibited the proliferation of the human breast cancer cell line (MCF-7) and reduced the DNMT1 expression with a decrease in global DNA methylation. Brazilin, by activating p38 MAPK and elevating p53 levels within the exposed cells. The elevated level of p53 enriched the occupancy at binding sites within 200 bp upstream to the transcription start site in the DNMT1 promoter, resulting in reduced DNMT1 gene expression. Furthermore, the brazilin restored the p21 levels in the exposed cells as the CpGs in the p21 promoter (-128 bp/+17 bp) were significantly demethylated as observed in the methylation-specific PCR (MSP). CONCLUSION Highly potential anti-proliferative molecule brazilin can modulate the DNMT1 functional expression and restore the cell cycle inhibitor p21expression. We propose that brazilin can be used in therapeutic interventions to restore the deregulated epigenetic mechanisms in cancer.
Collapse
Affiliation(s)
- Biji Chatterjee
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod-671316, Kerala, India
| | - Krishna Ghosh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod-671316, Kerala, India
| | - Aishwarya Swain
- Centre for Bioinformatics, Pondicherry University, Puducherry-605014, India
| | - Kiran Kumar Nalla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Central University P.O., Hyderabad-500046, Telangana, India
| | - Haritha Ravula
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Central University P.O., Hyderabad-500046, Telangana, India
| | - Archana Pan
- Centre for Bioinformatics, Pondicherry University, Puducherry-605014, India
| | - Santosh R Kanade
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Central University P.O., Hyderabad-500046, Telangana, India.
| |
Collapse
|
18
|
Rashid M, Zadeh LR, Baradaran B, Molavi O, Ghesmati Z, Sabzichi M, Ramezani F. Up-down regulation of HIF-1α in cancer progression. Gene 2021; 798:145796. [PMID: 34175393 DOI: 10.1016/j.gene.2021.145796] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022]
Abstract
Hypoxia induicible factor-1 alpha (HIF-1α) is a key transcription factor in cancer progression and target therapy in cancer. HIF-1α acts differently depending on presence or absence of Oxygen. In an oxygen-immersed environment, HIF-1α completely deactivated and destroyed by the ubiquitin proteasome pathway (UPP). In contrast, in the oxygen-free environment, it escapes destruction and enters to the nucleus of cells then upregulates many genes involved in cancer progression. Overexpressed HIF-1α and downstream genes support cancer progression through various mechanisms including angiogenesis, proliferation and survival of cells, metabolism reprogramming, invasion and metastasis, cancer stem cell maintenance, induction of genetic instability, and treatment resistance. HIF-1α can be provoked by signaling pathways unrelated to hypoxia during cancer progression. Therefore, cancer development and progression can be modulated by targeting HIF-1α and its downstream signaling molecules. In this regard, HIF-1α inhibitors which are categorized into the agents that regulate HIF-1α in gene, mRNA and protein levels used as an efficient way in cancer treatment. Also, HIF-1α expression can be negatively affected by the agents suppressing the activation of mTOR, PI3k/Akt and MAPK pathways.
Collapse
Affiliation(s)
- Mohsen Rashid
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rostami Zadeh
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Ghesmati
- Department of Medical Biotechnology, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sabzichi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fatemeh Ramezani
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Brabson JP, Leesang T, Mohammad S, Cimmino L. Epigenetic Regulation of Genomic Stability by Vitamin C. Front Genet 2021; 12:675780. [PMID: 34017357 PMCID: PMC8129186 DOI: 10.3389/fgene.2021.675780] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe2+) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.
Collapse
Affiliation(s)
- John P Brabson
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Tiffany Leesang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sofia Mohammad
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Luisa Cimmino
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
20
|
Nguyen L, Dobiasch S, Schneider G, Schmid RM, Azimzadeh O, Kanev K, Buschmann D, Pfaffl MW, Bartzsch S, Schmid TE, Schilling D, Combs SE. Impact of DNA repair and reactive oxygen species levels on radioresistance in pancreatic cancer. Radiother Oncol 2021; 159:265-276. [PMID: 33839203 DOI: 10.1016/j.radonc.2021.03.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE Radioresistance in pancreatic cancer patients remains a critical obstacle to overcome. Understanding the molecular mechanisms underlying radioresistance may achieve better response to radiotherapy and thereby improving the poor treatment outcome. The aim of the present study was to elucidate the mechanisms leading to radioresistance by detailed characterization of isogenic radioresistant and radiosensitive cell lines. METHODS The human pancreatic cancer cell lines, Panc-1 and MIA PaCa-2 were repeatedly exposed to radiation to generate radioresistant (RR) isogenic cell lines. The surviving cells were expanded, and their radiosensitivity was measured using colony formation assay. Tumor growth delay after irradiation was determined in a mouse pancreatic cancer xenograft model. Gene and protein expression were analyzed using RNA sequencing and Western blot, respectively. Cell cycle distribution and apoptosis (Caspase 3/7) were measured by FACS analysis. Reactive oxygen species generation and DNA damage were analyzed by detection of CM-H2DCFDA and γH2AX staining, respectively. Transwell chamber assays were used to investigate cell migration and invasion. RESULTS The acquired radioresistance of RR cell lines was demonstrated in vitro and validated in vivo. Ingenuity pathway analysis of RNA sequencing data predicted activation of cell viability in both RR cell lines. RR cancer cell lines demonstrated greater DNA repair efficiency and lower basal and radiation-induced reactive oxygen species levels. Migration and invasion were differentially affected in RR cell lines. CONCLUSIONS Our data indicate that repeated exposure to irradiation increases the expression of genes involved in cell viability and thereby leads to radioresistance. Mechanistically, increased DNA repair capacity and reduced oxidative stress might contribute to the radioresistant phenotype.
Collapse
Affiliation(s)
- Lily Nguyen
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, Germany; Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Germany
| | - Sophie Dobiasch
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, Germany; Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany
| | - Günter Schneider
- Department of Medicine II, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Germany; Deutsches Krebsforschungszentrum (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Roland M Schmid
- Department of Medicine II, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Germany
| | - Omid Azimzadeh
- Institute of Radiation Biology (ISB), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, Germany
| | - Kristiyan Kanev
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Dominik Buschmann
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Michael W Pfaffl
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Stefan Bartzsch
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, Germany; Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Germany
| | - Thomas E Schmid
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, Germany; Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Germany
| | - Daniela Schilling
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, Germany; Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Germany
| | - Stephanie E Combs
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, Germany; Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany.
| |
Collapse
|
21
|
Ye X, Liu X, Gao M, Gong L, Tian F, Shen Y, Hu H, Sun G, Zou Y, Gong Y. CUL4B Promotes Temozolomide Resistance in Gliomas by Epigenetically Repressing CDNK1A Transcription. Front Oncol 2021; 11:638802. [PMID: 33869025 PMCID: PMC8050354 DOI: 10.3389/fonc.2021.638802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/19/2021] [Indexed: 01/10/2023] Open
Abstract
Resistance to temozolomide (TMZ), the first-line chemotherapeutic drug for glioblastoma (GBM) and anaplastic gliomas, is one of the most significant obstacles in clinical treatment. TMZ resistance is regulated by complex genetic and epigenetic networks. Understanding the mechanisms of TMZ resistance can help to identify novel drug targets and more effective therapies. CUL4B has been shown to be upregulated and promotes progression and chemoresistance in several cancer types. However, its regulatory effect and mechanisms on TMZ resistance have not been elucidated. The aim of this study was to decipher the role and mechanism of CUL4B in TMZ resistance. Western blot and public datasets analysis showed that CUL4B was upregulated in glioma specimens. CUL4B elevation positively correlated with advanced pathological stage, tumor recurrence, malignant molecular subtype and poor survival in glioma patients receiving TMZ treatment. CUL4B expression was correlated with TMZ resistance in GBM cell lines. Knocking down CUL4B restored TMZ sensitivity, while upregulation of CUL4B promoted TMZ resistance in GBM cells. By employing senescence β-galactosidase staining, quantitative reverse transcription PCR and Chromatin immunoprecipitation experiments, we found that CUL4B coordinated histone deacetylase (HDAC) to co-occupy the CDKN1A promoter and epigenetically silenced CDKN1A transcription, leading to attenuation of TMZ-induced senescence and rendering the GBM cells TMZ resistance. Collectively, our findings identify a novel mechanism by which GBM cells develop resistance to TMZ and suggest that CUL4B inhibition may be beneficial for overcoming resistance.
Collapse
Affiliation(s)
- Xiang Ye
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaochen Liu
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Gao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Li Gong
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Tian
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yangli Shen
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huili Hu
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gongping Sun
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
22
|
Tong D, Zhang J, Wang X, Li Q, Liu L, Lu A, Guo B, Yang J, Ni L, Qin H, Zhao L, Huang C. MiR-22, regulated by MeCP2, suppresses gastric cancer cell proliferation by inducing a deficiency in endogenous S-adenosylmethionine. Oncogenesis 2020; 9:99. [PMID: 33168819 PMCID: PMC7652948 DOI: 10.1038/s41389-020-00281-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023] Open
Abstract
This study investigated the effect of methyl-CpG-binding protein 2 (MeCP2) on miRNA transcription. Our results of miRNA chip assay and ChIP-seq showed that MeCP2 inhibited the expressions of numerous miRNAs by binding to their upstream elements, including not only the promoter but also the distal enhancer. Among the affected miRNAs, miR-22 was identified to remarkably suppress gastric cancer (GC) cell proliferation, arrest G1-S cell cycle transition, and induce cell apoptosis by targeting MeCP2, MTHFD2, and MTHFR. Understanding GC metabolism characteristics is the key to developing novel therapies that target GC metabolic pathways. Our study revealed that the metabolic profiles in GC tissues were altered. SAM (S-adenosylmethionine), a universal methyl donor for histone and DNA methylation, which is specifically involved in the epigenetic maintenance of cancer cells, was found increased. The production of SAM is promoted by the folate cycle. Knockdown of MTHFD2 and MTHFR, two key enzymes in folate metabolism and methyl donor SAM production, significantly suppressed GC cell proliferation. MiR-22 overexpression reduced the level of endogenous SAM by suppressing MTHFD2 and MTHFR, inducing P16, PTEN, and RASSF1A hypomethylation. In conclusion, our study suggests that miR-22 was inhibited by MeCP2, resulting in deficiency of endogenous SAM, and ultimately leading to tumor suppressor dysregulation.
Collapse
Affiliation(s)
- Dongdong Tong
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Jing Zhang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shanxi, China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Qian Li
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Liying Liu
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Axin Lu
- Instrument Analysis Center, Xi'an Jiaotong University, 710049, Shaanxi Province, China
| | - Bo Guo
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Juan Yang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Lei Ni
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Hao Qin
- Department of peripheral vascular disease, 1st Affiliated Hospital of Xi'an Jiaotong University, 710061, Shaanxi Province, China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Chen Huang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
23
|
The protective effect of 1,25(OH) 2D 3 against cardiac hypertrophy is mediated by the cyclin-dependent kinase inhibitor p21. Eur J Pharmacol 2020; 888:173510. [PMID: 32861664 DOI: 10.1016/j.ejphar.2020.173510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/29/2022]
Abstract
As a critical regulator of the cell cycle, cyclin-dependent kinase (CDK) inhibitor p21 or p21 is involved in the development of cardiac hypertrophy and heart failure. Calcitriol, or 1,25(OH)2D3, the bioactive form of vitamin D (VD), can activate p21 expression and attenuate cardiac hypertrophy. To simulate cardiac hypertrophy in vitro and ex vivo, respectively, mice and cardiomyocytes were treated with isoproterenol (ISO). Moreover, the p21 signaling pathway was examined in ISO + VD and ISO + VD p21 inhibitor-treated cardiomyocytes. We found that calcitriol treatment led to a significant decrease in cardiac size and the mRNA levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in ISO-treated mice. Furthermore, the surface area of cardiomyocytes and the expression of ANP and BNP were decreased, and the expression of p21 was increased in the ISO + VD group compared with those in the ISO group. Furthermore, the surface area of cardiomyocytes and the expression of ANP and BNP were markedly upregulated in the ISO + VD p21 inhibitor group relative to the ISO + VD group, whereas the difference was not statistically significant compared with those of the ISO p21 inhibitor group. Therefore, our findings indicate that 1,25(OH)2D3 protects against cardiac hypertrophy in mice through upregulating p21 expression.
Collapse
|
24
|
Wang S, Liu X, Khan AA, Li H, Tahir M, Yan X, Wang J, Huang H. miR-216a-mediated upregulation of TSPAN1 contributes to pancreatic cancer progression via transcriptional regulation of ITGA2. Am J Cancer Res 2020; 10:1115-1129. [PMID: 32368389 PMCID: PMC7191091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/05/2020] [Indexed: 06/11/2023] Open
Abstract
Pancreatic cancer (PC) is recognized as the most aggressive and deadliest malignancy because it has the highest mortality of all cancers in humans. Mutations in multiple tumor suppressors and oncogenes have been documented to be involved in pancreatic cancer progression and metastasis. The upregulation of tetraspanin 1 (TSPAN1), a transmembrane protein, has been reportedly observed in many human cancers. However, the role of TSPAN1 and its underlying molecular mechanisms in PC progression have not been fully elucidated. In this study, we validated the oncogenic role of TSPAN1 in PC, showing that TSPAN1 reinforces cell proliferation, migration, invasion and tumorigenesis. To investigate the upregulation of TSPAN1 in PC, we showed that miR-216a is the upstream negative regulator of TSPAN1 via direct binding to the TSPAN1 3'-untranslated region. Through RNA-Seq analysis, we for the first time revealed that TSPAN1 expression transcriptionally regulates ITGA2, which is involved in the actin cytoskeleton pathway. The stimulated cell proliferation and invasion initiated by TSPAN1 overexpression could be abolished by knockdown of ITGA2 in PC cells. Furthermore, TSPAN1 epigenetically regulates the expression of ITGA2 by modulating the levels of TET2 DNMT3B and DNMT1, resulting in hypomethylation of the CpG island of the ITGA2 promoter. In conclusion, the newly identified miR-216a/TSPAN1/ITGA2 axis is involved in the modulation of PC progression and represents a novel therapeutic strategy for future pancreatic cancer treatment.
Collapse
Affiliation(s)
- Shensen Wang
- College of Life Science and Bioengineering, Beijing University of Technology Beijing 100124, China
| | - Xinhui Liu
- College of Life Science and Bioengineering, Beijing University of Technology Beijing 100124, China
| | - Aamir Ali Khan
- College of Life Science and Bioengineering, Beijing University of Technology Beijing 100124, China
| | - Huan Li
- College of Life Science and Bioengineering, Beijing University of Technology Beijing 100124, China
| | - Muhammad Tahir
- College of Life Science and Bioengineering, Beijing University of Technology Beijing 100124, China
| | - Xinlong Yan
- College of Life Science and Bioengineering, Beijing University of Technology Beijing 100124, China
| | - Juan Wang
- College of Life Science and Bioengineering, Beijing University of Technology Beijing 100124, China
| | - Hua Huang
- College of Life Science and Bioengineering, Beijing University of Technology Beijing 100124, China
| |
Collapse
|
25
|
Upregulation of DPY30 promotes cell proliferation and predicts a poor prognosis in cholangiocarcinoma. Biomed Pharmacother 2019; 123:109766. [PMID: 31846841 DOI: 10.1016/j.biopha.2019.109766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/23/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Modification of lysine 4 on histone H3 methylation by SET1 and MLL family methyltransferase complexes is tightly linked to cancer progression. DPY30 is an important subunit of SET1 and MLL complexes, however, its expression and roles in cancer progression was little known, especially in cholangiocarcinoma (CCA). MATERIALS AND METHODS The Q-PCR and IHC were performed to detect the levels of DPY30 mRNA and protein in CCA tissues. Effect of DPY30 knockdown on the proliferation of CCA cells was detected by MTS and colony formation, and cell cycle distribution was analyzed by flow cytometer. The glucose uptake, lactate release and ATP production assays were performed to detect the glycolysis of CCA cells. RESULTS The level of DPY30 mRNA and protein in CCA tissues were all significantly higher than that of pericancer tissues, and its upregulation was closely associated with pathological differentiation, tumor size, and TNM stage. In addition, Kaplan-Meier analysis of overall survival revealed that DPY30 upregulation was significantly associated with poor survival, and univariate and multivariate analysis indicated that it was an independently prognosis factor in CCA patients. Moreover, DPY30 knockdown inhibited in-vitro growth and induced cell cycle arrest at G2/M and decreased glycolysis in CCA cells. CONCLUSIONS DPY30 upregulation may promote the development of CCA and was associated with the aggressive malignant behavior and poor survival outcome of CCA patients. DPY30 might serve as a potential novel target for treatment of CCA patients.
Collapse
|